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Abstract. We give an example of a neural net without hidden layers
and with a sigmoid transfer function, together with a training set of
binary vectors, for which the sum of the squared errors, regarded as
a function of the weights, has a local minimum which is not a global
minimum. The example consists of a set of 125 training instances,
with four weights and a threshold to be learned. We do not know if
substantially smaller binary examples exist.

1. Introduction

Backpropagation (bp) is one of the most widely used techniques for neural net
learning. (Cf. Rumelhart and Hinton [3], Hinton [2] for an introduction and
references to current work.) The method attempts to obtain interconnection
weights that minimize missclassifications in pattern recognition problems.

Though there are many variants of the basic scheme, they are all based
on the minimization of a cost function through the use of gradient descent
for a particular nonlinear least squares fitting problem. Thus bp is subject
to the usual problems associated to local minima, and indeed many experi-
menters have found training instances in which bp gets stuck in such minima.
It is often asserted, however, that even when these minima do occur their
domain of attraction is small, or that even if not true minima, the obtained
networks tend nonetheless to classify correctly. In addition, it seems to be
“folk knowledge” that no spurious local minima can happen when there are
no hidden neurons. (The argument made in this last case is roughly that
the problem should be analogous to the standard quadratic least squares
problem, in which neurons have a linear response map.)

We approach the problem from a purely mathematical point of view, ask-
ing what are the constraints that the local minima structure will ultimately
impose on any bp-like method. In [4] we remarked that even for the case
of no hidden neurons there may be “bad” solutions of the gradient descent
algorithm, and this point was also raised by Brady, Raghavan, and Slawny in

© 1989 Complex Systems Publications, Inc.



92 Eduardo D. Sontag and Héctor J. Sussmann

the last section of [1]. The main point of the latter reference is to deal with
the second of the above assertions. Through a careful and rigorous analysis
they show that even if a training set is separable, that is, if it is recognizable
by a perceptron, weights obtained through bp may not classify the data cor-
rectly. (A modification of the cost function, as described in [5] and discussed
below, allows one to avoid this problem, however.) In addition, the domain
of attraction of such “bad” weight configurations is very large. So neither
of the above three assertions is, in fact, correct in general. Of course, it is
entirely possible that “real” problems — as opposed to mathematically con-
structed ones — will not share these pathologies. In that case, it becomes
even more urgent to characterize those features of such real problems that
are not included in the present formulation.

The constructions of spurious local minima that existed until now did
not use binary but rather real-valued inputs. Further, in one case ([1]) the
fact that outputs are not allowed to take limiting values ({—1,1}, or {0,1},
depending on the conventions,) is critical. Our main result will show that
there are indeed counterexamples with binary inputs and outputs, which a
situation often encountered in practice.

Precisely, we consider a network with n input neurons and one output

neuron. We let zy,...,z, be the connection weights, so that the output b
computed by the net for an input vector a = (ay, ..., a,) is given by
b=0(a1z; + axzs + ...+ a,zy,). (1.1)

Here § : IR — IR is a sigmoid function, i.e. a strictly increasing smooth
function such that 6(u) goes to —1 as u — —oo and to 1 as u — +oo.

Suppose we are given a finite sequence ¢ = (%, ¢%,. . ., ¢™) of input-output
pairs ¢ = (a’, ¥’), where the a? are vectors in IR”, and the &' are real numbers
belonging to the closed interval [—1,1]. We then want to choose the weights
z; so as to minimize the error function

E{1, B3, »0vs Ba) = Z[é’(a{ml +dzy+ ...+ alz,) — bj]Z. (1.2)

=1

We will give an example showing that the function E can have local
minima that are not global minima. This will show, in particular, that
any algorithm for minimizing E which is based on some version of gradient
descent may get stuck in a local minimum of E which is not the desired
solution. This situation is in marked contrast with the case of Boltzmann
machines, where the “folk fact” that, if there are no hidden neurons, then
there are no spurious local minima, actually is a true theorem. (Cf., e.g. [6].)

In our example, all the components of the a’, and all the &, will be
binary (i.e. equal to 1 or —1). If, as is sometimes the case, one wishes to
consider outputs & that satisfy 67| < 1 rather than 6’| = 1, then it is easy to -
construct an example for this situation as well, since the property that E has
local minima that are not global minima is stable under small perturbations
of the function E.
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This latter remark is of interest because of the recent result obtained
by the authors (see [5]) where it is proved that if (1) one modifies the cost
function to be of a threshold-LMS type, i.e. one does not penalize “overclas-
sification,” and (2) the training data is separable in the sense of perceptrons,
then it is true indeed that there are no local minima that are not global.
Moreover, if (1) and (2) hold, then the gradient descent procedure converges
globally, from any initial condition and in finitely many steps, to the min-
imum. But stability under small perturbations allows us to conclude that
even if a threshold-LMS criterion is used, there still will in general exist badly
behaved local minima (if (2) does not hold).

In the example we use the sigmoid function tanh(u), which is up to a
simple rescaling the logistic function

1

14ev’ (1-3)

which is routinely used when the binary values are taken to be {0,1} rather
than {1,—1}. We prefer the latter convention, since the mathematics be-
comes much more symmetric.

Remark 1.1. As described, our setting does not involve thresholds. How-
ever, it is easy to transform our example with n input neurons and no thresh-
olds into an example with n — 1 input neurons and thresholds. Indeed, it is
well known that the presence of a threshold is equivalent to having one neu-
ron who activation is always equal to 1. Since the sigmoid function is odd,
we can always change the sign of an input vector, so as to make sure that
the first component is 1, and leave the error function unchanged, provided
that we also change the sign of the output.

The example given is rather complicated, and it is very possible that a
simpler one exists. However, we have been unable so far to simplify our
construction.

Intuitively, the existence of local minima is due to the fact that the error
function E is the superposition of functions that may have minima at differ-
ent points. In the more classical case of linear response units, each of these
terms is a convex function, so no difficulty arises, because a sum of convex
functions is again convex. In contrast, sigmoidal units give rise to noncon-
vex functions, and so there is no guarantee that the sum will have a unique
minimum. In order to actually exhibit such an example, it is necessary to
obtain terms whose minima are far apart, and to control the second deriva-
tives in such a way that the effect of such minima is not cancelled by the
other terms (as happens in the case of convex functions). The calculations
are rather involved, and we base them upon a change of variables which con-
verts the function E into a rational function. Properties of local minima of
rational functions are decidable (theory of real-closed fields), so in principle
this change of variables is of some interest besides the role that it plays in
the present paper.
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2. The example
We let # : IR — IR be the function §(u) = tanh (u), i.e
— €

#u) = et +e v

We will take n = 5. (As indicated above in Remark 1.1, an obvious mod-
ification of our example will then yield an example with four input neurons
plus a threshold.) The inputs will be the following 11 vectors:

—-u

(2.1)

vy, = (1,1,1,-1,-1),
v = (1,1,-1,1 —-1),
vy = (1,-1,1,-1,1),
vy = (-1,1,1,-1,1),
vs = (— 1,1,1 1,-1),
ve = (—1,— 1, e
v = ( T :l)a
Vg = ( :17 =L}
vg = (1,— -1),
vie = (1,— 1 31);

Vi1 = (1, 1,1,1,1).

The first five vectors will be repeated 15 times. The sixth to tenth vectors
are repeated just once, and the eleventh vector is repeated 45 times. The
outputs &’ are always equal to 1.

We will show:

Theorem 1. With the above choice of inputs and outputs and of the sigmoid
function 0, the error function E has local minima that are not global minima.

3. Proof of Theorem 1

Ifz=(21,..-,%a); ¥ = (Y1,---,Yn), are vectors in R", we use (z,y) denote
the inner product of z and y, i.e. (z,y) = 2", z:y:. We use [ to denote the
set {1,—1}, so I™ is the set of all vectors of length n all whose components
are equal to 1 or —1.
If a=(a’,...,a™) is a finite sequence of vectors in I", we let ¢, : R™ —
IR be the function given by
Ll . 2
eale) = 2 (0(a,2)) - 1) (3.1)
=1
Our goal is to produce an example of a sequence a such that the function ¢,
has a local minimum which is not a global minimum.
In order to simplify our calculations, let us rewrite the function ¢, in the
form
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pa(z) = 3 au(0((a,2)) — 1), (3.2)

agl®

where the numbers ¢, are nonnegative integers. (Precisely, each «, is the
number of times that the vector a occurs in the sequence a.)
It is easy to verify that

Let us make the transformation 7 given by &; = €% (so that &; takes val-
ues in IR, the set of positive real numbers), and use ¢ to denote a vector

(61) £ -aén) S ]R-l- Write

A= LR L, (3.4)
Then we have p,(z) = 49a(€), where
a,

So it suffices find an a such that 1, has a local minimum that is not a global
minimum.

Now pick, once and for all, a subset A of I"™ such that no vector a €
I™ satisfies ¢ € A and —a € A. Suppose we are given a collection v of
nonnegative integers v, for a € A. Then we can consider the function

p— Y oo
V0= T (rrer ) =

acA

It is clear that every such function is of the form 1, for some appropriate
choice of a.

It is convenient to rewrite (3.6) in the simpler form

A Yo + V-a Eh

A ( aEZA TEwoe (3.7)
1.e.

¢An(£) == E h('Yas Y—as Ea)s (38)

a€A
where
2
h(p,q,u) = %%- (3.9)

It will be useful to understand the behavior of the function A(p,q,-) for
a particular pair p, ¢ of nonnegative integers. Let us use ' to denote differ-
entiation with respect to u. Then an easy computation shows that
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2(qu — p)

T (3.10)

h(p, q,u) =
Therefore, we have

Lemma 3.1. If p > 0 and ¢ > 0, then the function A(p,gq,-) is globally
minimized at u = ‘3, and the minimum value is 7—3%. Moreover, h(p,q,-) is
strictly decreasing for u < *;3, and strictly increasing for u > ‘3. In particular,

M= fé is the only critical point of A(p, g, -).

On the other hand, it is clear that, if p or ¢ (but not both) vanishes, then
the function A(p, q,-) does not have a minimum. Lemma 3.1 shows that one
can place this minimum at any rational point @ of IRy by suitably choosing
p and gq.

If we now choose an a € I"™ and positive integers p, ¢, and consider the
function ¢ — h(p, ¢,£?), we see that this function is globally minimized at

all points ¢ in the set S(a,p, q) of those £ € IR]} such that {* = iy

Now suppose we choose n linearly independent vectors ql, Frnm e i I,
and positive numbers p;, ¢;, 2 = 1,...,n. Then the sets S(a*, p;, ¢;) intersect
at exactly one point. (To see this, just notice that, under the transformation
T, the set S(a, p, ¢) corresponds to the hyperplane (a, z) = 1log (:£L).) This

P+q
point is then the global minimum of the function. So we have established:

Lemma 3.2. Let al,...,a™ be linearly independent members of I", and let
Pls- s Pny Q15+ -+, qn be positive numbers. Then the function ¥ given by
n 2af
pi + g€
W) =) (3.11)
=1 (1 + é‘a )2
has a unique global minimum at the point £y characterized by (f_q,)ai — ’é%
forz =1,2,...,n, and the value of 111(5\1,) is equal to vy, where
P11 P242 Pndn
vy = - cveE—— 3.12
v pl+Q1 P2+f12 Pn"i’Qn ( )

We now specialize even further, and choose n = 5. Moreover, we choose
the five vectors a’ to be such that three of their components are equal to 1, and
the other two equal to —1. For instance, we can choose a!, a?, a2, a*, a® to be,
respectively, the vectors (1,1,1,-1,-1), (1,1,-1,1,-1), (1,-1,1,-1,1),
(-1,1,1,-1,1) and (—1,1,1,1,—1). From now on it will be assumed that
n =5 and the a* are the five vectors listed above. Finally, we choose all the
p; to be equal to a number p, and all the ¢; equal to 1. Then it is clear that
the point &, = (p, p, p, p, p) is none other than {y. So we have:

Lemma 3.3. The function ¥ has a unique global minimum at E,,, and its

value there is equal to f_f—l-.
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Notice that this value is very close to 5 if p is very large. On the other
hand, if ¢; denotes the point (1,1,1,1,1) (i.e. the point of R} that corre-
sponds to the origin under the transformation 7°), then ¥(£;) = S(p+1).
Since B < 2l with equality holding only if p = 1, we see that lI'(fp) <
U(£;) unless p = 1, in which case the points £, and £ coincide. More-
over, when p is very large the value vy is approximately equal to 5, whereas
V(&) =3 +1)

We now let ¥ be the function

U(6) = h(p,4,£%), (3.13)

where the vector @ € I™ and the numbers p, ¢ are chosen so that the minima
of ¥ (i.e. the points in the set S(a,p, §)) are very far from §,. This can be
achieved by taking @ = (1,1,1,1,1) to begin with, so that the value of U at
5,, is (’;‘:_—";f:;;, whereas the value at § is ﬁ':—‘i. Notice that the condition on p,
¢ that would make ép belong to S(&, p, §) would be p = p°§, so in particular
p would have to be much larger than ¢, since we are going to choose p large.
We will choose p, § so that we are very far from this situation, by taking ¢
much larger than p. Actually, to make matters even easier, we will take p
to be 0, and choose § “sufficiently large.” (Precisely how large will be seen
below.)
We now let U= = ¥ + ¥. In particular,

wFy_ 9P gp*°
and
s, Bp & 5
U@ =245+ (3.15)

It is then clear that U*(£,) > ‘I’*(gl) if p and § are large enough. For instance,
one can easily verify that

Lemma 3.4. If p > 2 and § > 2p then 11:*(5,,) > U*(&).

Now let us use B(p, p) to denote the closed ball with center Ep and radius

p, provided that 0 < p < +/5p, so that B(p,p) C IR. Then it is clear that
the inequality

() > T () (3.16)

will hold for ¢ € B(p, p) if p is sufficiently small, In particular, this will imply
that, if the function has a local minimum in the interior of B(p, p), then this
is not a global minimum.
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We need to know how p can be chosen so that 3.16 will hold on B(p, p).
We have

) = T+ (3.17)
> U(E,) + U(¢) (3.18)
_ _op_

= 531 +0(¢) (3.19)

B 5p A 623
= iy ay (3.20)

5P A a2
= p+—1+qn(€ Y (3.21)

where

neu) = 1+u_1_liu. (3.22)

Clearly, n is an increasing function of u for v € IR,. On the other hand,
the function £% = & £,63¢4¢5 is bounded below on B(p, p) by (p — p)°, so the
lower bound

1 2
> + Do e e 3.23
r© 2 Lt ii- o] (3.29
holds throughout B(p, p). Suppose we choose p, p such that p > 2 and 4p < p.
Then p_5+&1 > 1. Also, (p—p)® > 7, and so U*(¢) > 1+ 2L throughout B(p, p).
If we choose § = kp, then 3.16 will hold for £ € B(p, p) as long as k > 3. So
we have shown

Lemma3.5. If p > 2, § > 3p, 0 < p < E, then Inequality 3.16 holds
throughout the ball B(p, p).

We now have to show that, by suitably choosing p, p and ¢, we can satisfy
the hypotheses of the previous lemma and also guarantee that ¥* will have
a local minimum in the interior of B(p,p). The crucial point here is that
¥ has a minimum at §,. The addition of ¥ should not disturb this fact
too much, because ¥ is nearly constant in the neighborhood of Ep, and the
Hessian matrix of ¥ at Ep is nondegenerate. To make this precise, we need
to have an upper bound on the gradient of ¥ and a lower bound on the
second derivative of ¥. Indeed, once we have established those bounds, the
following lemma gives us the desired result. In the statement, || ...|| denotes
the usual Euclidean norm, and D, f, D2f denote, respectively, the first and
second directional derivatives of the function f in the direction of the unit
vector v € R™.

Lemma 3.6. Let f, g be C? functions on a closed ball B C IR™ of radius
r centered at a point Z € IR™. Assume that A, C' are constants such that
IVg(z)|| £ A for all z € B, and D2f(z) > C for all z € B and all unit
vectors v € IR™. Then, if Vf(Z) = 0, and Cr > 2A, it follows that the
function f + g has a local minimum in the interior of B.
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Proof. Let F = f+ g. Let S be the boundary of B. We show that
F(z) > F(Z) for all z € S. The bound on Vg implies that |g(z) —g(Z)| < Ar
for z € S, so g(z) > g(0) — Ar for all such S. If z € S, write ¢ = Z + rv with
v a unit vector. Let f(t) = f(Z+tv) for 0 < t < . Then the derivative f(t)
vanishes at ¢ = 0 and has a deriva.tive bounded below by C. So f(t) > Ct for
0 <t <r. But then f(r) > F(0) + (z )>f(:f)+02'2. We then get
F(z) > F(z)+ C; — Ar. Since Cr > 2A, we have shown that F(z) > F(0)
for all z € S. |

Lemma 3.6 enables us to get an a priori idea on how large one has to
take r. Suppose we compute D?f(Z) for all v, and Vg(Z), and we find that
C = inf{D2f(z) : ||v|| = 1}, A.= ||Vg(Z)||. Then it is clear that, no matter
how we choose r, the constants A and C are going to satisfy C < C, A > A,
so the smallest r can possibly be is r = 364. In the case of interest to us, the
functions f, g and the point Z depend on the parameter p, and the numbers
A C behave like p~® and p~3, respectively. So r should be chosen so that
B e

We wa,nt to apply Lemma 3.6 with n = 5, Z = 5,,, i — \I!, i = U and
r = p. The hypothesis that V f(Z) = 0 holds since f has a minimum at Z.
Naturally, the bounds on Vg and D? hold for some choice of the constants
A, C, with C not necessarily positive. We have to show that, by suitably
choosing p, ¢ and p, we can satisfy the condition Cr > 2A. (This will imply
in particular that C' > 0.) Obviously, the condition that C' > 0 is related to
the fact that the vectors a* are linearly independent so that, in each direction,
at least one of the five functions whose sum is ¥ is strictly convex near &,.
To make this precise, we must study the quadratic form @ given by

5

Qv) = (a',v)? for v € R®. (3.24)

=1

Then Q is clearly nonnegative. Since the a form a basis of R, Q(v) can never
vanish unless v = 0. So there exists a constant ¢ > 0 such that Q(v) > ¢||v||?
for all v. It will be useful to know an explicit value of ¢. A crude estimate,
which will be sufficient for our purposes, is the bound (cf. Appendix A):

Q) > %nvnz for v € R®. (3.25)

We now get a lower bound for the second derivative of ¥ on some neigh-
borhood of §,. An elementary calculation gives the formula (cf. Appendix

B):

DIU(¢) =U(p,v,€) - V(p,v,¢), (3.26)

where

2 2a 30 _ al
Ulp,v,€) = 22(— i\ [p+1)(§1+£a§)4 pe” | (3.27)
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and

Ay §2aj—P§aj
V(p,v,) = 22(52, ) [——(l - gaj)3], (3.28)

where % denotes the vector

v ('01 () ’Us)

) 5757"'35 ’ (329)

£
and ‘2’; is defined similarly.

Now assume that v is a unit vector. We will get a lower bound for D2¥(¢)
on a ball B(p, p) by getting a lower bound for U and an upper bound for the
absolute value of V. Notice that, near Ep, ¢% is approximately equal to p,
and all the components of ¢ are also approximately equal to p. So, if pis large
enough so that we can ignore the “1” in 1+p, then U(p, v, £) is approximately
equal to 2Q(v)p~3. So we have an approximate bound U(p,v,¢) > 2p~. On
the other hand, V(p,v,£) is a difference of two expressions, each of which
is bounded in absolute value by a constant times p~3. However, these two
expressions are equal at §,, which means in particular that the leading powers
of p cancel, and V(p,,€) is actually O(p~) for £ near £,. To make all this
precise, notice that on B(p, p) we have the bounds

(p=p)° _ ai _ (p+p)°
(10+p)25 S(p—p)z'

Using this, we easily get:

(3.30)

2w a0 _sai o o@D =p)° (@+p)° (p+p)
Ap 1)~ —pt™ 22 p+0*  (—pF “(p—p)p? 3(3:31)

for £ € B(p,p). So, if we write u = %, we have

2(p +1)62 — £ — pt > PP (w) (3.32)

where
o) = I+90-w)° (1+w)° u(l+u)?

A(u) =2 CERnL A=~ i) (3.33)

Also,
g (p+0)%\*

(14+¢¥)< (1+——(pmp)2) : (3.34)
so that

(14 €)* < pra(u), (3.35)

where
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=[5+ (2]

We therefore have the bound
1 2a7 _ 3a7 _ al
2(p+1)¢ ¢ 29 >l/\(._0_),
P

(1+&2) Tp
where the function A is given by
A (u)
Alu) = .
() ()

101

(3.36)

(3.37)

(3.38)

Notice that A(0) = 1, so the bound (3.37) says that the left-hand side of

(3.37) is approximately bounded below by p~* if £ is small. Then

2 # v
U(p,'u,f) 2 ;)\(E)Q(-)

£
if £ € B(p,p). In view of the lower bound for @), we have
SR
o 3 6 bl
so that
v 1
o I . —
) 2 5y
Therefore
U(p,v,€) 2 A(ﬁ)
7 7 p ?
for ¢ € B(p, p), where
_ 2
D
We now get an upper bound for |V(p, v, £)| on B(p,p). Clearly,
( lvli2
&S -
Also, we can Wnte
62:1.’ _ p§a3 gaﬁ _ p
ATey ATy
|€“ ol
(1 + £
o[ =1
=i €2aJ
(p & p) aJ
Sl—pP L

= (e -

where

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
(3.46)

(3.47)
(3.48)

(3.49)
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1 4
il = % (3.50)
On the other hand, the inequality
_ )3 _ 3
e
yields
— )3 . 3
so that
6 2l < pa (), (3.53)
where
B (1+u)® (1—u)?
vz(u) = max ("(—1—:-“—)2 == 1, 1-— m) . (354)
Combining all these bounds we get
V(p,0,8)| < "I(j), (3.55)
where
v(u) = 21(11(11_)_1/5)(7?12 (3.56)
Finally, we get
A(E) — (2
DIU(¢) > G) V("), (3.57)

as long as ¢ € B(p, p).
Since A(0) = 2 > 0 and »(0) = 0, the lower bound for D2¥(¢) given by

the preceding formula is positive if f; is small enough.

Next we need an upper bound for V. We have (cf. Appendix B):

ol 2q¢%
&~ L1+ W)
so that
ol
a 3.59
5| S 2 e

In particular, if £ € B(p, p), and § = kp, we have the bound
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- 2k
V8@l < (), (3.60)
where
1
If we let
A(2) —v(£)
2k /p
A= —pul= .
- #(p)’ (3.63)
and
_Cp
K = 51 (3.64)

then the hypothesis of Lemma 3.6 will be satisfied if X > 1. On the other
hand,

_ PPp[A(8) - v(2)]
K= s (5) . (3.65)

Since A(0) = £, »(0) = 0, p(0) = 1, it is clear that, for any fixed p and
k, the inequality K > 1 will hold if p is sufficiently large. Moreover, if one
chooses k = 3, then the conditions of 3.5 will also hold if p is sufficiently
large.

To prove Theorem 1, all we need to do is to verify that the conditions of
3.5 as well as the inequality & > 1 hold for £ = 3 for some choice of p, not
just for p sufficiently large, but for p = 15. So all we need is to find a value
of p such that 4p < 15, with the property that, if we plug in p = 15 and
k = 3 in Equation 3.65, then K > 1. For each p, it is clear that there is a
smallest p such that X' > 1. Let this p be denoted by p(p). Then a direct
computation shows that, for p in the range between 0.08 and 0.14, the value
of p(p) is equal to 15. (As a function of p, p(p) decreases for p < 0.08 and
increases again for p > 0.14, so p = 15 is the best value that can be obtained
from our estimates.) This completes the proof of Theorem 1. | |

Acknowledgments

Sussmann’s work was partially supported by NSF grant DMS83-01678-01,
and by the CAIP Center, Rutgers University, with funds provided by the
New Jersey Commission on Science and Technology and by CAIP’s industrial
members.

Sontag’s work was partially supported by NSF grant DMS88-03396, by
U.S. Air Force grants AFOSR-85-0247 and AFOSR-88-0235, and by the
CAIP Center, Rutgers University, with funds provided by the New Jersey
Commission on Science and Technology and by CAIP’s industrial members.



104 Eduardo D. Sontag and Héctor J. Sussmann

Appendix A. Derivation of Formula (3.25)

The bound we seek is the smallest singular value of A (where A is the matrix
whose rows are the vectors al,...,a®), i.e. the smallest eigenvalue of ATA.
It can be computed numerically, and turns out to be approximately 1/2.52.
The following simple argument gives the bound used in the text.

Set u; = (a’,v). Using the explicit formulas for the a/ we find that

Uy = vy + vy + v3 — vg — s, (A.1)

Uy = vy + vy + Vg — vz — Vs, (A.2)

U3z = U1 + V3 + Us — Uy — Uy, (A.3)

Uy = Vg + U3 + U5 — Uy — Vg, (A.4)
and

Us = Vg + V3 + Vg — V1 — Us. (A.5)

This system can easily be inverted, resulting in the following expressions for
the v’s in terms of the u’s:

2v; = ug + us, (A.6)
20y = ug + uy, (A7)
2v3 = uz + us, (A.8)
2v4 = Up + Uz + us — Uy, (A.9)
205 = Ug + Uz + Ug — U;. (A.10)

If we now square each equation and sum, we get
4v||* = 2u® + 4ud 4 4ud + 2u2 4 2uZ + S, (A.11)
where S 1s the sum of the cross terms, which turns out to be given by

S = —dujug —4duguz — 2ugug — 2uqug + (A.12)
+6ususz + duguys + 2uqus + 2usuy + 4dusus.

Using the bound ab < “2;{’2 for each of the terms in the above sum, we get

4lv]|* < 8u? + 12uj + 12u + 6uj + 6u’ (A.13)

so 4||v]|? < 12||u|]?, i-e. ||[v]|* < 3Q(v). |
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Appendix B. Appendix: Derivation of Formulas (3.26) and (3.58)
We use the identity
06*  a;
& &

valid if @ = (a1,...,a,) € R
If f is a function

£, (B.1)

_ pt+g®
flé)= TFNDE (B.2)
then
of _ a1+ - BEA+E) P+ o)
ok (1+£2)*
2a; g€* — p¢°
. . B.
& (14-64P (B3)
Setting p =0, ¢ = ¢, a = &, we get (3.58).
If we now multiply (3) by v; and sum over 2, we get
_o/V \2a;g§* —pf°
va—2<£,a> AR EYOLR (B.4)
Differentiation with respect to &; yields
7] v
6_§;(D"f) = 2(27 a>
[(%qf2° — Spg®) (1 +£9)° — 3(q€% — p) (1 + 6“)2%56“]
(=5
_ 2via; [QE“ i PE“]
& LA+
o | —gf™ 4+ 2p+ g™ ~ pé“]
2<5’“>&-[ (16t
2Ui ; 2a __ a
- [q(i + &f)i ] .
If we multiply by v; and add over 2, we get
2p _ oV \2|—q€%* +2(p+ q)€* — pé*
pis = o |
,UZ qfi.’a. _ pga
— 2<§, G,> [m] a (Bﬁ)

If we now set ¢ = 1, a = @’, and sum over j, we obtain Formula (3.26). H
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