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Abstract 

In  this paper, we study time-optimal trajectories for 
fully actuated planar underwater uehicles, with con- 
straints on input forces. Using the Maximum Princi- 
ple, we focus on the structure of singular extremals and 
their possible optimality. 

1 Introduction 

We consider in this paper the time-optimal prob- 
lem for fully actuated underwater vehicles. We view 
our work as a preliminary step towards understanding 
optimal paths for a special class of underwater vehi- 
cles called underwater gliders. An underwater glider 
has no propellers and typically no control surfaces; it  
operates by means of a buoyancy-driven engine. Ad- 
vantages of this design include low noise and vibration, 
high reliability, and the potential for lower reliance on 
battery power as compared to thruster-driven vehicles. 
Moreover, the propulsion and steering mechanisms for 
a fixed-wing, underwater glider are totally contained in- 
side the vehicle. Thus, vulnerability to the harsh effects 
of seawater is significantly reduced. 

The equations of motion describing an underwater 
glider include a rigid body dynamic model with fluid 
dynamic forces associated with buoyancy and viscous 
effects and extra degrees of freedom corresponding to 
actuated mass redistribution for attitude control [ 5 ] .  
Further, there are constraints on the control inputs d e  
pending on the state. 

To gain some insight into the time-optimality prob- 
lem we first consider, i n  this work, a simplified model 
which uses control thrusters with magnitude limits. 
Such vehicles, described in Section 2, can be adequately 
modelled as conservative controlled mechanical sys- 
tems. Our study is based on the results obtained in [l]. 
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Here, we restrict to the fully actuated situation in the 
vertical plane. A next step towards the eventual goal 
of understanding underwater gliders, is to consider the 
underactuated case, also in the vertical plane, in which 
the two inputs (for a three degree-of-freedom system) 
correspond to a force in the inertial vertical direction 
(like a variable buoyancy) and a torque (such as that 
produced by a shifting mass). 

While we focus on time-optirnality, one would ide- 
ally want to minimize a combination of time and energy 
consumption. We conclude this paper with a brief dis- 
cussion of energy minimization in the context of what 
we have done for time-optimality. 

2 Statement of the problem 

Dynamics of underwater vehicles are described in 
[4]. In this paper, we consider a neutrally buoyant, el- 
lipsoidal vehicle restricted to the vertical plane. We 
assume vehicle mass is uniformly distributed and we 
neglect viscous effects so that Kirchhoff's equations de- 
scribe the vehicle dynamics. The configuration space 
of the vehicle is SE(2). Denote by ( z , z )  the abso- 
lute position of the vehicle, where x is the horizontal 
position and z the vertical position. The angle 6 de- 
scribes the vehicle's orientation in this plane so that 
vehicle configuration is given by q = (x, z , B ) .  Let Cl 
be the scalar angular rate in the plane and l i lr l iQ the 
horizontal and vertical components of vehicle velocity 
in body frame coordinates. Following Kirchhoff's po- 
tential flow model of a rigid body in a fluid, the kinetic 
energy for our veliicle restricted to the plane is given by 
T = ; ( I Q 2  + m,u? + mau;) where I is the body-fluid 
moment of inertia in the plane and ml,  m3 are body- 
fluid mass terms in the body horizontal and vertical 
directions, respectively. We assume the planar vehicle 
is not a circle: m, # m3, 

Let the state vector be w = ( z , z , l , u l , v ~ , C l ) .  The 



equations of motion are 

cos 6ul + sin 6u3 
cos 6213 - sin 6ul 

w= f ( w ) =  [ ;& j 
q v 3 m  -m 

For the fully actuated case considered here, the con- 
trol vector is U = ( u 1 , u ~ .  u3) where u l  is a force in the 
body 1-axis, u2 is a force in the body 3-axis and u3 is a 
pure toFque in the plane. Accordingly, the input vector 
fields yi are given by 91 = ( O , O ,  0, &, 0, O)', yz = 
( O , O , O , O , & , O ) '  and 93 = (O,O,O,O,O,~)'.Thefol- 
lowing constraints will be assumed on the domain of 
control: {ai 5 U ,  5 Pi; ai,@, E R,ai  < 0,Pi > 01, 
i =  1 , 2 , 3 .  

Clearly, the fully actuated system is controllable if 
we assume the initial and final configurations to be at  
rest. Indeed, such a pair of configurations can he joined 
by a motion formed of pure rotations (ul = u2 E 0 
and u3 takes its value everywhere in { 0 3 ,  @3}) and pure 
translations ( u ~  = u3 I 0 and u1 takes its value ev- 
erywhere in { a l , P i } )  as depicted in Figure 1 (in this 
paper, we will prove, however, that such a motion is not 
time optimal unless there is only a single piece formed 
by a pure rotation or a pure translation). This result 
can be generalized to complete controllability by show- 
ing that any configuration WO can be steered to a given 
configuration with zero velocities using a control sa t ic  
fying I ui(t) I< ai I , & )  (we take the minimum 
in order to have a symmetry property). We also note 
that from [l], any fully actuated controlled mechanical 
system is flat, here the flat outputs are the position and 
orientation variables ( I ,  z ,  8). 

2 .  H ( w ( t ) , X ( i ) , u ( t ) )  = max, H ( w ( t ) , X ( t ) , v )  > 0 
where the Hamiltonian function is given by 

H ( w , X , u ) = A l ( c o s B u ~  +sin6u3) 

ml 
fA2(cos Bu3 - sin 6 ~ 1 )  + X3R - X4u3R- m3 

f i n d  position 
Controllobilir) 

Figure 1 

In [I], we used the Maximum Principle (see [6] for a 
general reference) to obtain necessary conditions for a 
trajectory of a control system to be time optimal. Let 
us recall what these conditions are in our case. If w ( . )  is 
a time-optimal trajectory defined on [O,T], and U ( . )  is 
the corresponding time-optimal control, then there ex- 
ists an absolut.ely continuous vector function, called the 
odjoint uector, X : (0, TI + R6, such that the following 
conditions are satisfied: 

1 .  X ( t )  # 0 for all t E [O,T]; 

3. the adjoint vector A(.)  satisfies the followingequa- 
tions: 

A1 = 0 ( I )  
A 2  = o  (2) 

X3 = X 1  (ul sin 6 - v3 cos 6) 

+Xz(ul cos 6 + u3 sin 8 )  (3) 

i, = - X I  cos6 + ~2 sin8 - A ~ R -  - & U 3 0  (4) 

i, = - ~ 1 s i n ~ - ~ z c o s 6 + ~ 4 ~ - - ~ 6 U l o  ( 5 )  

m l  
m3 
7n3 

mt 

where a = is a nonzero constant. Note 
that as the two variables .E and z do not appear 
explicitly in the expression of the Hamiltonian 
the corresponding adjoint variables X I ,  X2 are COII- 

stant. 

A triple (w .  A ,  U )  solution of conditions 1 ,  2 and 3 is 
called an extremal. From the maximization condition 
of the Hamiltonian: 

H ( w ( t ) , M t ) , u ( i ) )  = n i y H ( w ( t ) , W , v ) ,  

. . , . , . . . 
i = 1,2 ,3 .  The functions Oi(t) = X ' ( t ) g i ( w ( t ) ) ,  de- 
fined along an extremal ( w ,  A, U ) ,  are called the switch- 
ing functions associated to that extremal. Clearly, the 
zeroes of these functions are crucial for the study of 
optimal synthesis. If there exists a nonempty interval 
such that a given $i(.) is identically zero, we say that 
the extrema1 is ui-singulor on that interval. If an ex- 
t r e n d  is ui-singular for all i = 1 , 2 , 3 ,  it is called totolly 
singular. Assume now the extremal to be bong-bong for 
the component ui of the control, i.e. U,  takes its value 
in {ai,,&) for almost all t .  A time t ,  such that ti, is 
not almost everywhere constant on any interval of the 
form 12, - E ,  t ,  + E [ ,  E > 0 is called a uj-switchzny t ime 
for 11, and the corresponding state a upswitching state 
(or point).  

From Propositions 3.2 and 3.3 i n  [l] we deduce the 
following result for the fully actuated underwater vehi- 
cle considered here: 
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Proposition 1 Along an extremal, there cannot exist 
any common accumulation point of zeroes for all switch- 
ing functions. In  particular, there is no totally singular 
extremal. 

This means, in particular, that if the Underwater ve- 
hicle follows the equations of motion of the conserva- 
tive mechanical system (this corresponds to the con- 
trol being identically equal to 0),  such a motion is not 
time-optimal. Hence we have to study extremals with 
at  most two components of the control singular at  the 
same time. 

In our case the switching funct.ions are given by the 
last three variables of the adjoint vector. Indeed, we 
have d l ( t )  = $: 42( t )  = $ and &(t) = y. 
It is well known that the key tool in the study of the 
zeroes of these functions is the Lie algebra generated 
by the Lie bracket of the vector fields f ,gi .  The Lie 
brackets of length 2 and 3 are computed in [2]. We 
know also from [l] that in the case of one nonsingular 
control, the nonsingular control has a finite number of 
switches along an extremal defined on an interval [0, TI 
with T > 0. We prove here that there is a uniform 
bound on this number and that this bound is in fact 
1. Notice that the existence of a bound is not a conse- 
quence of the Maximum Principle. Finding bounds on 
number of switches is a well-known problem in optimal 
control; see for instance in [7], where the author pro- 
vides examples of optimal trajectories with an infinite 
number of switchings. 

3 2-singular extremals 

3.1 u l ,  ua-singular extremals 
Along a U] ,  u2-singular extremal, both correspond- 

ing switching functions 41 and d2 are identically zero. 
This is equivalent to E 0 and A5 % 0. 

Proof: Along a u l ,  u2-singular ext,remal, we have F 0 
and Q2 E 0. As the first derivative of the switch- 
ing functions are absolutely cont.inuous functions, this 
implies 4 relations on the adjoint vector: $;(t) = 
At(t)gi(tu(t)) = 0 and &(t )  =.A'(t)[f,g;](w(t)) = 0 
for all t ,  i = 1,2 .  Since $l(t) = &!A and &(t) = U, 
from equations (4) , (5)  we have: 

rnl m3 

Proposition 2 Along a U ] ,  u2-singular extremal, there 
is at  most one us-switching and a necessary condition 
for there to be one switching is that ul E v3 z 0 along 
the ertremal (an which case u l ,  U? are identically zero). 
Conversely if along an extremal we haue U I  and v3 
identically zero, then the corresponding trajectory is a 
U ] ,  uz-singular extremol with at most one us-switching 
and u1 E U? G 0. 

~ 
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Applying Propositiou 3.3 from [l], the us-switching 
states are contained in the set of points Si = AI n A? 

0}, i = 1,2 .  Computing we find A1 = {w; +u3 = 
0}, A2 = {w; +vl = 0) .  Hence: S; = {w; ul = 
v3 = O}.  Assume to to be a u3-switching time: 43(tn) = 
+ X , ( t n )  = 0. We must have u l ( t o )  = z)3(to) = 0 and 
equations (8), (9) evaluated at  t o  imply A 1  = 0, X2 = 0. 
Froni,equations (3) and (6), we deduce A 3  = constant 
and X , j ( t )  = -As.  Hence, the nonsingular switch- 
ing function & is linear in t and given by 43(t) = 
- b t  I + (this function cannot be identically zero 
because u3 is nonsingular). It follows that there is at  
most one us-switching along a u t ,  uz-singular extremal. 
Finally, replacing X I  = A? = 0 in equations (8),(9) we 
conclude that a necessary condition for a u l ,  u2-singular 
extremal to have a us-switching is that the linear ve- 
locities ul and 03 are identically zero. Conversely if 
u1 e 0 and v g  0 we have from the equations of mo- 
tion ; l ( t )  = = 0, ~ 3 ( t )  = $ = o for all t .  
Hence, the components of the control U], u2 are identi- 
cally zero. 
Remark. From the equation for 43: d3( t )  = - y t  + 
y. If there is a us-switching time t, it  is given by 

Physical interpretation. Along a U] ,  u2-singular ex- 
tremal with u1, va identically zero, the corresponding 
motion for the underwater vehicle is a pure rotation 
with constant angular acceleration (the angular veloc- 
ity is a linear function of time), see Figure 2. In the 
event of one switching, the angular acceleration changes 
sign, i.e., after an  acceleration in one direction the vehi- 
cle will first slow down and then accelerate in the other 
direction. 

From the proof of Proposition 2, if v1 and v3 have 
a common zero then they are identically zero along the 
extremal. Consider now the case in which VI and us 
never vanish at  the same time. In that case the switch- 
ing function 43 does not vanish and the nonsingular 
control u3 is constant. To compute u1 and u2 we use 
Proposition 3.3 from [l]. These computations are done 
in [a] with an example of such motion. 

where A; = {w; det(g1,g1,g3,[f,gil,[f,g?I,ad;g;) = 
m,ma 

ml"'3 

1, = y. 

\ 

pure roinlion 

Figure 2 

3.2 U ] ,  us-singular extremals 

extremal: A4 I 0, Ag = 0. 

Lemma 1 Along a 211, us-singular extremal, the com- 
ponent u2 of the control is nonsingular with a finite 
number of switchings, and if t o  is a u?-switching time: 

In this case 41 and $3 are identically zero along the 



42(t0) = 0 and til(t0) = Q(to) = 0, but &(to) does 
not uanish. Moreover. along a u1, us-singular extremol 
the following diflerentiol equation is satisfied: 932(t) = 

Proof: From [l], as discussed above, for an extremal 
with two components of the control singular, the non- 
singular control has a finite number of switchings. A s  
sume t o  to  be such that 42(to) = &&,(to) = 0. Fol- 
lowing [l] we can prove that the u2-switching states 
belong to  the set Sg = {w;  81 = Cl = 0). Hence, 
vl(t0) = n(to) = 0. Using i l ( t )  = e, i s ( t )  = + 
and equations (4) and ( 6 ) ,  we obtain -XI cos8(to) + 
XzsinB(t~) = 0 and XB(t0) = 0. As & ( t )  = s, 
if &(to) = 0 it would imply by equation (5) that 
XI sin B(to) + X? cos @ ( t o )  = 0. Thus, X1 = A2 = 0. As 
we have also Xq G 0 and A6 I 0 we deduce X ( t 0 )  = 0. 
This contradicts the fact that the adjoint vector can- 
not vanish along an extremal. Moreover, comput- 
ing the second derivative of As(.) we have & ( t )  = 
(-Xlcos(l(t)) + Xzsin(l(t)))Cl(t) and using 0,  
g,(t) = &X5( t )  we obtain i z ( t )  = 2C12(t)42(t). 

Proposition 3 Along a U ] ,  us-singular extremol there 
is at most one uz-switching. Moreover, if there is one, 
then R I 0, v1 s 0 and both singtilor components of 
the control are identically zero. Conversely, if C2 I 0 
and v1 G 0, the corresponding trajectory is a u1,u3- 
singular extremal with at most one uz-switching and 
U 1  3 U3 5 0. 

Proof: From Lemma 1 the switching function &(.) and 
its second derivative are absolutely continuous func- 
tions with the same sign. Assume the extremal is de- 
fined on [0,T] and t l ,  t z  such that 0 < tl  < t? < 7'. 
If $2( t t )  = 4?(t2) = 0, there exists t l  < 1, < t a  such 
that q5(tm) is a maximum or a minimum. This con- 
tradicts the fact that signgz(t) = sign+z(t). Assume 
there is one u?-switching time 1, along the extremal: 
& ( i s )  = 0. Then, using the differential equation for 
qi2(.) and the fact that at a switching point R has to  he 
zero (see proof of Lemma l), we can easily verify that 
q$)(t3) = 0 for n > 2. SO, 42 ( . )  is a linear function 
and has at most one zero. This implies 42(t) = 0 for 
all 2 ,  hence R 0 along the extremal. To prove that 
u1 must also be identically 0 we use the algorithm de- 
scribed in [I] to  compute singular controls. We find that 

is given by 2 - 1 (see [2]). From the equations of mo- 
tion, we have q ( t )  = g2(t)-TrC where C is aconstant. 
We proved in Lemma 1 that a t  a u2-switching U] must 
vanish, i.e., u l ( i s )  = 0. Since $ ? ( i s )  = 0, then if y1 > 0 
the only solution is 211 5 0. If y1 < 0, then uI(t,) = 0 
but u I ( t )  + 00 when t --f t,. This contradicts the as- 
sumption on the domain of controls. Finally, if Cl = 0 
and q 0,  using the equations of motion we conclude 
that u1 and us must he identically zero. Conversely, if 
Cl 0 and ul z 0, then from the equations of motion 

E R 2 ( t ) d ? ( t ) .  

u l ( t )  = -*. "1 t -I*& Note that $2 is a constant and y1 

we haveiil(t) = %, G(t )  = v. This impliesul 0 
and us z 0. 
Remark. From the equation for 9 2 ,  if there is a 142- 

switching time it occurs at t, = *, Qln Cars (remem- 
ber that if there is one switching, then 8 is constant 
along the motion). 
Physical interpretation. Along a u l ,  u3-singular ex- 
tremal with R and u1 identically zero, the corresponding 
motion for the underwater vehicle is a pure translation 
with constant linear acceleration in the direction of the 
vertical axis of the body frame (zi3 is a linear function 
of time), see Figure 3. Both singular components of the 
control U , ,  us are identically zero along such a motion. 
In the event of one switching, the linear acceleration 
changes sign, i.e., after an acceleration in one direc- 
tion the vehicle will first slow down and then accelerate 
in the other direction. If R and u1 are not identically 
zero, then the nonsingular component of the control 
u2 is constant and the corresponding trajectory can be 
computed using Proposition 3.3 from [I]. 

l a  0 

%' 0 
wnicol translotion in the body frame coordinate 

Figure 3 

3.3 U ? ,  us-singular extremals 
In this case 4 2  and 43 are identically zero along the 

extremal: A s  0, A6 3 0. The results and proofs are 
similar to  the ones of Section 3.2 (simply invert the roles 
of u1 and U>). 

Proposition 4 Along a U ? ,  us-singular extremal there 
is at most one ul-switching. Moreover, if therr is one, 
then R I 0, us I 0 and both singular components of 
the control are identically zero. Conversely, if R 5 0 
and u3 E 0, the corresponding trajectory is a ug,u3-  
singular extremal with at most one ul-switching and 
uz 5 U 3  s 0. 

Physical interpretation. Along a U?,  us-singular ex- 
tremal with R and 213 identically zero, the corresponding 
motion for the underwater vehicle is a pure translation 
with constant linear acceleration in the direction of the 
horizontal axis of the body frame (211 is a linear func- 
tion of time), see Figure 3. Both singular components 
of the control u2, ug are identically zero along such a 
motion. In the event of one switching, the linear accel- 
eration changes sign, i.e., after an acceleration in one 
direction the vehicle will first slow down and then ac- 
celerate in the other direction. If Q and us are not 
identically zero, then the nonsingular component of the 

4207 



control t i l  is constant and the corresponding trajectory 
can be computed using Proposition 3.3 from [I]. 

horizonral rranslation in the 6ody frame coordinares 

Figure 4 

3.4 Concatenation of 2-singular extrenials 
In [l], we state necessary conditions on the Lie 

brackets of the vector fields f, g; under which some con- 
catenations of singular extremals are not time-optimal. 
Here, we apply these conditions to fully actuated uii- 
derwater vehicles. 

Proposition 5 The concatenations of two digwent 2- 
singular extremals is not an extremal. I n  particular, 
such motions are not time-optimal. 

proof: The result can be obtained by applying P ropu  
sition 3.5 in [l] or it can be also be proved directly. In- 
deed, assume (w, X , u )  defined on [ O , q  to be the con- 
catenation of a ul,u2-singular extremal and a u1,us- 
singular extremal. Then, there exists 0 < t o  < T such 
that 4 i ( t o )  vanishes as well as its derivative & ( t o ) ,  for 
i = 1 , 2 , 3  (w( to )  is the state corresponding to the switch 
from one extremal to the other). From the differential 
equations satisfied by the adjoint vector (see Condition 
3 in Section 2) we deduce that X ( t 0 )  = 0 which is a 
contradiction with the Maximum principle (see Condi- 
tion 1).  The proof is similar for the concatenation of 
a ul,u*-singular extremal (resp. u1,ug) with a U*,  213- 

singular extremal (resp. u z ,  us). 
Physical interpretation. 
A consequence of Proposition 5 is that any motion 
formed by the concatenation of a pure rotation with a 
pure translation ( in  the direction of a body frame axis) 
or by the concatenation of a horizontal and a vertical 
translation (in the body frame) are not time-optimal. 
In particular, the motion described in Figure 1 is not 
time-optimal. A physical interpretation of this result 
is that in order t o  switch between two ?-singular ex- 
tremals, the underwater vehicle has to be at  rest, i.e., 
it has to spend time slowing down in the first direction 
before it can begin accelerating in the second direction. 

3.5 Conclusions 011 2-singular extremals 
In the previous sections, we have proved that along 

a 2-singular extrema1 there is at  most one switching 
for the nonsingular component of the control. More- 
over, we showed that the basic motions: pure rotations 
and pure translations i n  the direction of a body frame 
axis, are 2-singular extremals. We conjecture the time- 
optimality of these basic motions; hence, they are likely 
to play a crucial role in time-optimal synthesis of m u  
tion. This means, in particular, we shonld not restrict 

ourselves to the study of bang-bang trajectories when 
dealing with time-optimality. 
Remark. It is straightforward to  verify that along an 
abnormal 2-singular extremal, a switching time can oc- 
cur only when the vehicle is stoping: vl(t,) = 2)3(tr) = 
Q ( t , )  = 0. We conjecture the general result that along 
a time-optimal trajectory the underwater vehicle never 
stops moving, hence such extremals would not have to 
be taken into account t o  determine time-optimal mo- 
tions. 

4 Optimality of some specific trajectories 

Let us consider the initial and final positions illus- 
trated in Figure 5 (same orientation and vertical posi- 
tion z) and assume the underwater vehicle is at  rest 
at  these positions. In the case that = - P I ,  we 
conjecture that the horizontal translation with one ul- 
switching at  half of the travel time is time-optimal, see 
Figure 6. As we saw previously this motion is a U T ,  ug- 
singular extremal. 

motion = horizonfol rronslorion 

Figure 6 

It is important to note further that the time used to 
travel between these two positions is not altered if to 
the horizontal motion we add some vertical motion as 
described by Figure 7.  It can be verified that these 
motions are us-singular with one ul-switching and a 
finite number of uz-switchings. But as illustrated by 
Figure 7 ,  there is no uniform bound on the number of 
uz-switchings. We remark that in order for the singular 
component 213 (determined using 52 z 0 along such m u  
tion) to satisfy the constraint as 5 213 5 03 along the 
trajectory, we have to assume that the initial and final 
positions are not too far away. The same kind of argn- 
ment applies to motions represented on Figure 8 (along 
these motions u2 is singular and u3 is bang-bang with 
a finite number of switchings). The  conclusion is that 
there exists an infinite number of trajectories joining 
these initial and final positions with the same elapsed 
time, and we conjecture that they are all optimal. This 
is true for more than just this particular choice of po- 
sitions. Hence, this makes the use of numerical algo- 
rithms very sensitive for our problem. 
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Figure 7 

Figure 8 

This leads us to consider the equally important 
problem of minimizing energy. When studying under- 
water vehicles, one is most often not only concerned 
with time of t,ravel, hut also with the energy spent in 
the process. Of course, a precise definition of “energy 
cost” has  to he made. In [3], the author studies under- 
water vehicles with buoyancy-controlling mechanisms 
(there is no independent means of redistributing mass 
in the case studied). This buoyancy force is converted 
to horizontal motion by wing and fuselage lift (see also 
[SI). As for our gliders, a horizontal motion is not a fea- 
sible one (it would have been energy minimizing), and 
we have to look at  motions such as those described in 
Figure 7 in order to find the time-optimal ones. In [3], 
it is shown that if we minimize the energy spent per 
meter of horizontal motion travel at  a given horizontal 
speed, then the propulsion energy required for depths 
of 30 meters or less is more than 80 percent greater 
than that required at  depths of 100 meters. Therefore, 
it costs less energy to let the vehicle glide deeply and 
make only one switch, than to make it oscillate around 
the straight line with a lot of switching. It is of inter- 
est to extend these results to our setting (with a glider 
that can change buoyancy and redistribute mass inde- 
pendently) and also to determine the optimal gliding 
angle. 

It has been recently pointed out, see (91, on marine 
mammals that, as for underwater vehicles with gravity- 
buoyancy controlling mechanisms, travelling in the hor- 
izontal plane near the water surface demands different 
behaviors and energy cost as compared to travelling i n  
the vertical plane. Using video cameras, biologists have 

observed that for depths exceeding 300 meters, nearly 
80 percent of the descent is spent in a diving mode 
(which entails no locomotor activity for the mammal). 
This allows the animal to conserve energy and oxy- 
gen, in contrast to the swimming mode, and it helps 
explain the secret of marine mammals being able to 
diving deeply without breathing. This seems to be di- 
rectly related to the previously mentioned results on 
energy expense for underwater vehicles driven with a 
buoyancy-engine. 

In summary, to single out among the candidates for 
time-optimality those which minimize an energy cost, 
we should consider making our glider behave in this 
sense like a dolphin. Of course, in a realistic oceanic 
environment, there will in addition be constraints due 
to terrain and obstacles. We expect to extend our. work 
in the future to include energy considerations as well as 
workspace constraints. 
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