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Structure and Stability of Certain Chemical Networks
and Applications to the Kinetic Proofreading Model
of T-Cell Receptor Signal Transduction

Eduardo D. Sontadellow, IEEE

Abstract—This paper deals with the theory of structure, sta- Under the simplifying assumptions mentioned above, it is not
bility, robustness, and stabilization for an appealing class of non- difficult to see that there is only one equilibrium, whose coor-
linear systems which arises in the analysis of chemical networks. dinates depend, of course, on the given constants. We will see

The results given here extend, but are also heavily based upon,th tin fact in th | fth tants being di
certain previous work by Feinberg, Horn, and Jackson, of which atIin fact even in the general case or tne constants being dis-

a self-contained and streamlined exposition is included. The the- tinct, there is ainique equilibriumFar more interestingly, how-
oretical conclusions are illustrated through an application to the ever, we will prove that the equilibrium obally asymptoti-

kinetic proofreading model proposed by McKeithan for T-cell re-  cally stable every solution, for any choice of initial (nonneg-
ceptor signal transduction. ative) values’;(0)s, converges to the unique equilibrium. This
Index Terms—Chemical networks, feedback, immunology, ki- conclusion rules out, in particular, periodic orbits and, of course,

netic proofreading, stability, system structure. chaotic behaviors, and shows the “determinism” of the process
described by McKeithan. Moreover, we will also establish the
I. INTRODUCTION robustnessf stability with respect to a quantifiable class of per-

o ) turbations in the dynamics.
T HIS paper was originally motivated by the study of the Gqing further, and approaching now the equations from the
1 following system of first-order ordinary differential equasint of view of a control theorist, one may pose questions of a
tions: very different nature as well, questionsdfsign The equilibria
N N depend, in particular, on the value of the constaritand A/ *,
Co =k <T* — Z 07;> <M* — Z Ci> which represent total concentrations (of intermediate complexes
i=0 =0 plus T-cell receptors, and intermediates plus peptide-major his-
—(k_1,0+kp.0)Co tocompatibility complex, respectively). If these concentrations
are allowed to vary, and are seen as additional state variables,
] multiple attracting equilibria exist. So one may ask: if we are
Ci=kpi—1Ciy — (k_1,i + kp 0)Cs allowed to manipulate some of the variables, can we change the
equilibria at will (and preserve stability)? How many variables
) need to be manipulated? Such questions might eventually im-
Oy =kp no1COn1 — ko1 #ON pact approaches to therapy and rational drug design. We will
provide a global feedback stabilization result as an answer.
where the subscripteks, as well as\/* and7™, are arbitrary  Asit turns out, the system of interest can be viewed as a very
positive constants; th€’;s are nonnegative functions of time  special instance of a very large class of nonlinear systems, for
and dots indicate derivatives with respect.td'hese equations which the above-mentioned results can be established in gen-
arise in immunology, and describe a possible mechanism, difg. In this paper, we describe a theory of structure, stability,
to McKeithan, cf. [20], that may explain the selectivity of T-celland stabilization for that general class of systerfibus, this
interactions (some more details are provided below). McKelaper can be read totally independently of the above-mentioned
than analyzed the equilibria of these equations, which I’epl’eSﬁmtivating example from immunology. By providing a general
steady-state regimes, mostly under the simplifying assumptiaigory, one expects that other applications of the theorems given
that pr”‘, = k‘p and /{}_177; = k_, for some flxedkp andk_;. here will be possib]e_
During Carla Wofsy’s series of talks [25] on the topic, a number The class of systems which we consider is, basically, that of
of questions arose: what can be said about the structure of egigisficiency zero chemical reaction networks with mass-action
libria? are the eqU”ibria stable? Stablllty is a natural mathem%netics (and one |inkage C|ass)” in the |anguage of the beau-
ical requirement, with clear biological significance. tiful and powerful theory developed by Feinberg, Horn, and
Jackson, cf. [10]-[13], [17]. (the mass-action kinetics assump-
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Jackson, and we claim no originality whatsoever in that regam@ternative system descriptions. Section V deals with the main
And although theglobal stability results may not be readily ap-proofs regarding interior equilibria, Section VI with boundary
parent from a casual reading of that literature, our proofs efuilibria, Section VII with technical invariance results, and,
them consist basically of a careful repackaging of the discusally, Section VIII with the proofs of the stability theorems.
sion found in Feinberg'’s paper [10]. (One should point out that

an alternative approach to global stability, which would apply #- Chemical Networks

a somewhat smaller class of systems, could use ideas from [21}.et us motivate the formalism and results to follow by
which, in turn, was based on [24]. Also somewhat related, btdviewing some basic facts concerning chemical reaction
far more restrictive, are the results described in the book [19jetworks. We will restrict attention to “mass action kinetics”;
which apply to systems which satisfy a “conservation of energyiowever, it is important to remark that variations such as
constraint.) Michaelis—Menten reactions, obtained through singular per-

The reliance upon the Feinberg/Horn/Jackson theotyrbation analysis when starting from mass-action models, are
notwithstanding, we provide here a totally self-contained amdutinely used to model many enzymatic reactions in biology
streamlined exposition even of those results that are knownd, in fact, most of our results apply to them as well (see
for these systems (deep theories for other classes of systetasnark V.6 and the stability section).
have also been developed by these authors). We do this inn chemical network studies, one analyzes systems of
order to present things in a terminology and formalism mouifferential equations which describe the time-evolution of
standard in control and dynamical systems, and also becaushét concentrationse (t), ..., z,(t) of n given “chemical
is not obvious how to put together the necessary pieces frefecies” P, ..., P,; the P;s might denote anything from
the various sources in a way that allows us to refer to thesmall molecules to large complexes. The equations are derived
efficiently. In any case, it is our hope that this exposition wifrom a consideration of the reactions that are known to occur
serve to make a wider audience in the dynamical systems amfong the substancd$, perhaps helped by other molecules
control theory communities aware of their work. which are not explicitly considered in the equations (such as

In addition to the stability results, we also prove a robustnesatalysts or energy sources).
and a feedback stabilization result, and we show the existencés an extremely simple illustration, suppose that each mole-
of a global change of coordinates, which brings the systemsdale of a certain specield;, can react with one molecule é%
guestion into a canonical form which exhibits a particularly eto produce a molecule dfs, and that, conversely, each mole-
egant structure. We develop a formalism, and present explicitle of P; may dissociate (through a different process, typically
estimates for stability margins, with a view toward further thewith different time constants), int8; and%. This is indicated
oretical developments. Indeed, in a recent follow-up joint papgraphically by
[6] with Madalena Chaves, we have been able to derive, using
these techniques, various input-to-state stability results and, in Pi+P — P, and Py — P+ P,
particular, a design of globally convergent Luenberger-like O%'r
servers for systems of the type studied here. As new results, w
also include partial generalizations honmass action kinetics P +P, = P
(cf. Remark V.6 and the stability section).

There is an extensive literature regarding applications of cof\ example of this reaction is provided by the synthesis of ethyl
trol theory to chemical engineering, and, in particular, to bioréert-butyl ether {3 = C¢H140) from isobutenef; = C4Hs)
actors. Among many references, one may mention the textbddid ethanol £z = C;HgO). For studies of the ethyl tert-butyl
[2] and the more recent survey articles [4] and [1], and the reféther reaction in the control theory literature, see [9], and [14].
ences given there, as well as the well-known theory of compaftssuming that the reactor is well-mixed, particle-collision theo-
mental systems (see, e.g., [19]). More specifically, results bagdi&$ or quantum-mechanical potential energy methods are often
on Feinberg—Horn—Jackson theory have appeared in the conétg#d to justify the statement that the probability of such a reac-
literature, see [9], [5]. Other reactor biocontrol work deals withon occurring, in a small time interval around tires propor-
reachability and controllability issues, see for instance [3]. Bional to the produck (¢)x»(t) of the concentrations at timte
preliminary version of this paper was posted electronically @nd to the length of the interval, that is to say, to the probability
[23]. of two molecules in this bimolecular reaction colliding by virtue

The organization of this paper is as follows. In the rest &f being “in the same place at the same time.” Since we gain a
this Introduction, we motivate the formalism and results t8ingle molecule of’; for each such reaction, we arrive at a for-
follow by reviewing some basic facts concerning chemica&nula for the rate of increase of the concentratiorPpfdue to
reaction networks and working through an example. Thige first reactionfy + P> — Ps!
section can be skipped with no loss of continuity by readers
interested in the mathematical developments. The paper starts

in Section Il, where we introduce the class of dynamicgh addition, as one molecule @, and P, each are eliminated

systems being studied, and the main theorems are also stafgdhe same rate, we also have the following two differential
In Section Ill, we specialize to McKeithan's system, Interaquations:

preting the results in that special case. Section IV discusses
some basic coordinatization facts, as well as some useful i1 = —k1x122, T2 = —k1x122. (2)

é'ust by

i‘g = ]%‘1.7}1]}2. (1)



1030 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 7, JULY 2001

Here,k; is a suitable constant of proportionality, the “reactioilNote that, for instance, the term corresponding te 2 and
rate constant,” which is often taken to be (Arrhenius law) prg-= 1 in the summation in (4) gives us
portional to the Boltzmann facter £/ %7 andT is the temper-

. : —kizx
ature. One also writes graphically: 14142
klx?azéa:é(bg — bl) = —/{}1371372
P +PEp kyxyaxy
We also assumed for our example that there is a dissociatf§fich provides precisely the contributions e, &>, andis
reaction, that is, represented by (1) and (2). [Higher-order polynomial equations
may result as well. For example, suppose that each molecule of
Py *, P+ P speciesP; can react with four molecules @ to produce two
_ _ o molecules ofP;, that is, P, + 4P, — 2P;. This would give us
whereks is another.rate constant, and this reaction is also 'T‘Oéhuationsizl = —ka1x}, io = —dkzixd, andis = 2kziad,
eled by rate equationg?; decays at a rate proportional to itSgnd the vectors; andb, would becomé, = (1, 4, 0), by =
concentrationzs = —ksx3, and each of; andz, grow at this 0,0,2)]
rate. Incorporating these into the previous equations gives thex fundamental role is played by the linear subsp&oef R™
final set of differential equations: which is spanned by all the differencis— ;. This is thesto-

ichiometric subspacassociated to the reaction, and each inter-

= ~hiwies + kaw section between a parallel translatefand the positive or-
Ty = —kix172 + kows thant is called &lass,or more properly a stoichiometric com-
&3 =kix122 — koxs, (3) patibility class [“stoicheion= (Gk.) element]. The significance

] ) ) ) of classesis that, singec D, trajectories remain in classes, that
which describe the evolution of all the concentratian®). s classes are positive-time invariant manifolds for the dynam-
A very convenient and systematic formalism to describe the,| system. (The positive orthant is itself forward invariant, as

complete system of equations is as follows. The entire reactigrbasny shown.) In the example discussed abdvis the line
is represented by a graph, whose nodes are the “complexgﬁ”

. . i . anned by, — b2 = (1, 1, —1)". This line can also be de-
which appear in the reactions, suchfas+ P> and 3 in the  ¢riped as the set of solutionsef+zs = 9425 = 0, S0 each
exe}mple given above, and yvhose edges are labeled by thejgzs is given by the positive pointsfm, +z3 = c1, z2+x3 =
action rate constants. So, in the example shown above, there for gifferent constants; ande,. Of course, it is clear from

is an edge labeled; (wherek; is an actual positive number) o equations (3) that(z; + z3)/dt = d(xs + z3)/dt = 0
starting at the node in the graph corresponding?to+ P, along solutions.

and pointing to the node correspondingig and there is like-  one of the basic facts about the systems studied here is that
wise an edge labelek} from the second node to the first. Weyhere is a unique equilibrium in each class, and, under mild con-
associate to this graph isx 2 incidence (connectivity) ma- gitions, this equilibrium is globally asymptotically stable with
trix matrix A = {aj;}, listing all the edge labels (for instance ggpect to positive initial conditions. Continuing with the above
az = ki, to indicate a reaction with rate constant from  gyample, the set of possible equilibria consists of the points in
the first node to the second node). More generally, the sigg, hyperbolic paraboloitlas — kiz1zs = 0. Let's now take

of Ais m x m, if there are a total ofn complexes. One of o simplicity &, = k» = 1 and analyze the stability of the equi-
the hypotheses to be made is that the matriis irreducible, |iprium 0 = (1,1,1). Astheray(l, 1, 1) + A(1, 1, —1) is
meaning that the graph is strongly connected, that is, ther&dsyard invariant, whera ranges over the intervék-1, 1) (the
some path, typically through several stages of intermediate Jgeasection of the corresponding line and the positive orthant),
actions, linking any two given complexes (in fact, results holg may parameterize motions By One obtains the scalar dif-
under a weaker, block-irreducibility, property). Next, one introrgrential equatiol\ = —3\ — A2, which has, as claimed, the
duces a set of columm-vectorshy, . .., b, one for each com- point A — ( as an asymptotically stable state with a basin of
plex (in our simple examplen = 2). This is done by spec- ayraction which includes all of-1, 1).
ifying the contributions from each type of molecule. For ex- e start at a point which is not in the above line, the equi-
H H _ !
ample, P, + P gives rise to the vectdr, = (1, 1, 0), and jinrium approached will not be®. If this equilibriumz® is de-

P to th“e vectow; = Sov 0, 1)". _ sirable, we may want to design a feedback law to drive the so-
The “mass action” dynamics are then summarized by Hi&ions from every other (positive orthant) initial state int&

system Suppose that we can control the inflows and outflows of, let us
momn . say, P, and P5. This situation is represented by the following
E=Y Y agaTwy i (b — by) (4) control system:
=1 j=1
: . T1=—T1T2 +T3+u
(where eacty, € R"™ has entried,, ..., b.c), which the reader ! 142 . 3T
To =—T1%2 + X3

may easily verify reduces to (3) in the above example, for which
1 0 i‘g =X1T2 — T3 + Usz.

A= <]? %2) ,obi=11], b=]0]. Stabilization ofs® = (1, 1, 1)’ can be achieved for instance by
L 0 1 a simple feedback linearization, taking := z1xs—z3—x1+1
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andus := —z122 + 1. Then,z;(¢) — 1 andzs(t) — 1 as whereb, denotes théth column of B (notice that the diagonal

t — oo, and thus, by a cascade argument, we see that atsuries ofA are irrelevant, sincé; — b; = 0). Several restric-
x2(t) — 1 ast — oo, as wanted. We will provide a generaltions onA, B, and thef;s are imposed below. The powers are
result on stabilization (but using linear feedback), as well asterpreted as follows, for any ¢ > 0: 70 = 1,0° = 0if ¢ > 0,
results on robustness of stability and on global decompositiomsdr® = " if » > 0 and¢ > 0.

of dynamics, for systems (4). These results will be illustrated The main motivating example, arising from mass-action ki-
again for the above simple example, now viewed as a particutaatics in chemistry, is obtained whéy(y) = |y| for all i and B

case of McKeithan’s system, in Section lll. is a matrix whose entries are honnegative integers (so, for non-
negative vectorg, we have polynomial equations). This is the
case mentioned in the first paragraph, and will be referred to as

[l. DEFINITIONS AND STATEMENTS OF MAIN RESULTS " Y
the “standard setup” in this paper.

Some standard notations to be used are the following: The hypotheses ontlées, A, andB are as follows. Each map
* R>o (resp.R4) = nonnegative (resp., positive) real num-
bers; 6;: R — [0, oo)

* R} (resp.,R}™™) = n-column vectors (respm x m
matrices) with entries oR; similarly for Rx;
* Ry = boundary ofRY,, set of vectors: € R}, such tha

is locally Lipschitz, ha%,(0) = 0, satisfiesfo1 [Iné;(y)| dy <
t oo, and its restriction td®x, is strictly increasing and onto.
[Most results hold without this last assumption; see (28)]. We

z; = 0 for at leastoné € {1, ..., n};
« 2/ = transpose of vector or matrix suppose that
* |z| = Euclidean norm of vector iR"; A mxm e .
) = (a;;) €R is irreducible 6
s (z, z) = a'%, inner product of two vectors; (a:5) € Rz ©)
* D+ = {alfw, 2) =0Vz € D} and, for B, that
Although we develop the theory for a somewhat wider class of o
systems, we wish to emphasize thfithe results to be given are each entry of3 is either0 or >1 (7)

valid, in particular, for the following general class of systems o ] . .
evolving onR2: [this last hypothesis insures thafz) in (5) is a locally Lips-

chitz vector field, so we have uniqueness of solutions for the
differential equation],

m m

. bl besp p
B=)0 Y e ey (b= by) B= (b, ..., by) € RLZ™ hasrankm (8)

i=1 j=1

(and, as appropriate, for those systems obtained by adding c@r? its columns; are linearly independent), and

trol inputs, as discussed below). Each column vebtog R™ no row of B vanishes 9)
has entriedy, ..., bye, Which are nonnegative integers, and
the a;;s are nonnegative numbers. The systems defined Tis last hypothesis is made mainly for convenience. Observe
this fashion are described by polynomial dynamics. The oniiat if some row, let us say thigh one, were zero, then the same
assumptions required in order for the results to hold are thiinamics would be obtained if all entries in réware replaced
the b;s be linearly independent and that the x m matrix by “1” (since the differencesy; — by; are still zero) and one
A = (ai;) must beirreducible Recall that this means thatrestricts the dynamics to those states satisfyipgs ¢, where
(I+A)™=t e R7™ or, equivalently, that the incidence graph. js the positive number such tht(c) = 1.
G(A) is strongly connected [wher@(A) is the graph whose  From now on, we assume that all systems (5) considered sat-
nodes are the integefd, ..., m} and for which there is an jsfy the above assumptians
edgej — 4,4 # j, if and only if a;; > 0]. This assumption  Qur study will focus on those solutions of (5) which evolve in
amounts to a “weak reversibility” property in the applicatiofhe nonnegative orthaRe ,. Recall that a subsét C R™ is said
to chemical reactors, as discussed briefly in Section Ill, andtts beforward invariantwith respect to the differential equation
crucial to the validity of the results. & = f(x) provided that each solutian(-) with z(0) € S has

We now describe the underlying dynamics of the systemige property that:(t) € S for all positivet in the domain of
to be studied, and leave for later the introduction of additiongkfinition of (). It is routine to show (cf. Section VII) that the
terms in order to model the possibility of control actions. Oujonnegative and positive orthants are forward invariant:

systems are parametrized by two matriceand B with non- | emma I1.1: Both R%, andR" are forward-invariant sets
negative entries, as well as a collection of nonnegative functioffh respect to the system (5).
¢;,i =1, ..., n, and have the following general form: [These properties are simple consequences of the fact that,
because of the assumptions made ittiecomponent of a solu-
&= f(x) tion of (5) will satisfyi,(t) > 0 whenevet,(¢) = 0.) We will
m m also show in Section VIII-B4 that there are no finite explosion
= Z Z aiﬂl(a:l)b‘jﬁg(a:g)b?j s 9n(a:n)b”j (bz — bj) times:
i=1 j=1 Lemma II.2: For eaché € R, there is a (unique) solution

(5) () of (5) with z(0) = &, defined for allt > 0.



1032 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 7, JULY 2001

In order to state concisely the main results for systems (5), Theorem 1: Consider any system (5), under the stated as-
we need to introduce a few additional objects. The subspacesumptions. For every maximal solution of (5) witf0) € RZ,
it holds thatr(t) — E ast — +oc. B
D :=span{b;, — b;, i # j} This will be proved in Section VIII-B-2. The invariance of
=span{by — bz, ..., by — by} (10) classes (which are contained in subspaces of dimenasien
1 < n) precludes asymptotic stability of equilibria of (5). The
can be seen as a distribution in the tangent spad¥'pft has appropriate concept is that abymptotic stability relative to a
dimensionn —1 because addinf to the last-shown generatingclass We say that an equilibrium € 5 is asymptotically stable
set gives the column space of the ramkmatrix B. For each relative to a clas§ ifitis a) stable relative te [fOf eache > 0,
vectorp € R™, we may also consider the parallel translaté@of there is somé > 0 such that, for all solutions(-), |z(0) —7| <
that passes through i.e.,p+ D = {p +d, d € D}. Asets ¢andxz(0) € Simply |z(¢)—=| < =forallt > 0] and b) locally
which arises as an intersection of such an affine subspace vatiactive relative te [for somes > 0, if |+(0) — z| < e and

the nonnegative orthant: J}(O) es thenx(t) — T ast — +oo]. We say thatt € S is
globally asymptotically stable relative to a claSsf it is stable
S=(p+D) ﬂ RZ, relative toS and globally attractive relative t6 [x(t) — T for

all solutions withz(0) € S]. The main results are as follows;

(for somep, without loss of generality ifRZ ;) will be referred the fi_rst part is shown in Section V-A, and the remaining two in
to as eclass If S intersects the positive orthaRt , we say that Section VII. _

S is apositive classThe significance of classes is given by the Theorem 2:Consider any system (5), under the stated as-
fact that any solutiom:(-) of (5) must satisfy sumptions. For any positive class

a) there is a unique equilibriums € S E4;

b) the equilibriumzs is asymptotically stable relative 1%,

o ¢) the equilibriumz s is globally asymptotically stable rela-
m.m tive to S if and only if S Ey = 0.

=3 ) w(®)bi—b) €D (11)  Example I1.4; The following two trivial examples may help

=1 j=1 in understanding the above theorems. In both cases we:take

. m = 2 andf;(y) = |y| fori = 1, 2. The first example has
() = fy aij0u(w1(5))"02(2(5))" - B (wa(5))"7 ds, SO
#(t) € x(0) + D for all t. In particular, see the following. Ao <0 1) B <1 2)
Lemma I1.3; Each class is forward invariant for (5). O 1.0/ 1 1)
The introduction of control action, through additional feed.i_ e system (5) i (for nonnegative states):
back loops, may be used in order to overcome the constrainps y 9 ’
imposed by (11). In order to formulate our control-theoretic re- i1 = (21 — Da1as
sults, we will suppose that external inputs:, can be used to
independently influence each éfstate coordinates, In other

words, we will also consider the following control system asand thusk, = R2 = {z|z;2, = 0} andE; = {z|z;

T2 =0

sociated to the basic open-loop model (5): 1, zo > 0}. The positive classes are the séts- S, = {x|z; >
. 0, zz = r}, for eachr > 0, and for each suclh = S,
&= f(z) + Z ween, (12) Ts = (1, r)" is asymptotically sta_lble with domain of attrac-
_ tion {z|z; > 0,22 = r}. See Fig. 1. Each clas$. has a
second equilibriungo, =), but this second equilibrium is in the
[fis as in (5)], where is a positive integeky, . .., ¢, are the boundary, so there is no contradiction with part a) of Theorem 2.
n canonical basis vectors ®*, andky, ..., k, arer distinct Regarding Theorem 1, observe that every trajectory either con-
elements of 1, ..., n}. verges to an interior equilibriufi, »)’ or itis itself a trajectory

Of course, inputs might influence the system in manneeensisting of an equilibrium (and hence also converges, tim
other than through independent action on some coordinatasrivial sense).
which represent what are sometimes (especially in compart-The second example has
mental models) callednflow-controlled systemssee [1].
Bilinear control action, for instance, is arguably more inter- A= <0 1) B = <1 0) )
esting in reaction systems. We will only study the above class 1oy’ 0 1

of control systems, but research is ongoing on generalizatigRg now have (for nonnegative states) the following linear

to other formulations, see [7]. system:
We will first state the main results for autonomous systems

(5), and later we state a stabilization result for (12). i1 =22 — 11
We denote by (respectively £, or L) the set of nonneg- By =31 — T9

ative (respectively, positive or boundary) equilibria of (5), i.e.,
the set of states € RY, (respectivelyc R} or € Rf), such and thusty = {0} andE, = {z|z1 = 22 > 0}. The positive
thatf(z) = 0. Of course £ is the disjoint union o2, andEy. classes contain no boundary equilibria; they are the Sets
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wheref is as in (5) (and all the stated assumptions hold),@nd
, is a locally Lipschitz vector field o™ for which the following
r|.Sr T S, Sy property holds:
g (Vo eRL) (Vhe{l,...,n}) [zx =0 = gi(x) > 0]
1 r whereg; (z) denotes théth coordinate ofy(z). Property (18)

is the most natural assumption which guarantees the forward-in-
variance ofRZ, [since it will imply thatz,(¢) > 0 whenever
x1(t) = 0]. Of course, any results established for arbitrary sys-
S, = {z € Reylzy — =2 = 7}, for eachr > 0 (see Fig. 1). tems (17) will be also true for systems (5) (take= 0).

For each sucly = S,., 75 = (r, 7)’ is globally asymptotically  The feedback system (16) is of this type. To see that (18)

Fig. 1. Equilibria for Example 11.4, dark lines indicate equilibria.

stable. U holds, note that eithegx(z) = v¢(Tx, — xx,) (if k& = some
o k¢) or gr(z) = 0, and, in the first case;;, = 0 impliesgx(z) =
A. Feedback Stabilization v¢Zx, > 0. Moreover, it satisfies the following strengthening of
The invariance of classes precludes the existenaglaifal (18):
(not merely relative to a class) attractors for the uncontrolleg, . n
: ) jedl, ..., VzeRY,) (VEkE S,
system (5). Now suppose that we wish to find a feedback |;NJ { m}) ( * 20) ( )

which forces all the solutions of the closed-loop system obtained [z =0 = gi(x) > 0] (19)

from the controlled system (12) under this feedback to converggote the strict inequality, in contrast to (18)]. Indeed, pjcks
ast — o0, to a specific equilibriunt € RY. Itturns out that jn (15), % € S;, andz so thatz;, = 0. Then, for each € S;,

the obvious negative feedback solution, namely to use inpyigperty (15) guarantees that(z) = YeTx, > 0.
proportional to the errors; — x;, achieves the goal of global

stabilization toz, provided that enough inputs are used} B. Robustness
n—m-+ 1, which is obviously necessary, since solutions of (12)
evolve in linear subspaces of dimensien— 1 + ] and that th
the ks are appropriately chosen. We next state a result in tleﬁg

A different specialization of the general form (17) allows
study of robustness with respect to perturbations which
serve classes. The corresponding systems are obtained by

regard. Foreachi € {1, ..., m} we consider the set adding vector fields which lie pointwise in the span of the
o b; — b;)s. We suppose given a collection of locally Lipschitz
S; = {klbi; > 0 13) (i =0
5 i= {Mlbe; > 0} (13) functionsA;;: R™ — Rso (4, j € {1, ..., m}) such that
which is nonempty, by (8). Vi, je{l,...,m}) (Vo e RLy) (Vk € S))
Theorem 3:Let r = n — m + 1, and suppose that fox = 0 NN (x)=0] (20)
Y, ---, Y- are arbitrary positive real numbers, and = EA
ki, ..., k- € {1, ..., n} are such that and, using these, define the system
D +span{ek,, ..., ex, } =R (14) d= @)+ Y Ay (bi —by). (21)
=1 j=1
and I : .
Observe that property (20) implies that this system is of the
S; CHky, oy by} (15) general type (17). Indeed, the only possible negative signs for
' ' a(z) = 33 Ayi(x) (b — by;) can arise from the terms of
forsomej € {1, ..., m}. Pickany equilibriun¥ € E_.Then, theformA;;(z)by; withb; # 0(i.e.,k € S;), butthese vanish,
all maximal solutions of because of (20), whery, = 0. Of course, systems (5) are a sub-
- class of (21) (take al\;; = 0). The main robustness result will
b= f@)+ 3 @, - e, (16) be as follows.
;::1 Theorem 4: For each positive clasS there exists a contin-

_ _ o uous functionss: S (R} — Rxo, with §s() > 0 if and only
with z(0) € R%, are defined for alt > 0 and remain irRZ,, if ;; £ zg, such that, for any collectiopA;; } such that
andz is a globally asymptotically stable equilibrium of (16). o

Thg invariance st.atement i_s proveq in Section VII. The global Z Z Aij (2)? < 65(x) (22)
stability statement is proved in Section VIII-B1.

To study the closed-loop system (16), and also to be able to . )
formulate a result concerning robustness of the stability prop&?! all = € S1R%, the following properties hold for the system
ties described by Theorems 1 and 2, we will study “positive peé—)-
turbations” of the basic uncontrolled system model (5). These 1) bothR%, andR’, and the class), are forward-invariant;
are described by equations as follows: 2) for each{ € S there is a (unique) solutiom(-) with

2(0) = £, defined for allt > 0;
z = f*(z) = f(z)+ g(x) a7 3) the equilibriumz s is asymptotically stable relative 1%

i=1 j=1
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4) the equilibriuntzs is globally asymptotically stable rela- equilibria, this implies tha#} (0, X») = 0. To be precise, we
tive to S if and only if S Ey = 0. prove in Section V-C:

In other words, the claim is that the conclusions previously Theorem 7: Assume that hypothesigf(.) holds. Then, there
stated for systems (5) are preserved by perturbations, as longxists aC* diffeomorphism®: R — R™~* x R*~™*! such
the magnitude constraint (22) is satisfied. The result is not #hat, denoting
:;srelf surprising; 'Fhe maln.mterest is in .|ts proof, which will b(? F(X) =, ((I)fl(X)) ¥ ((I)fl(X))

gely constructive, offering an explicit formula for the func
tion &5 and, moreover, the fact th&t will depend nicely on the and writingE” = (F, F») and® = (&, ®2) in block form,
classS (in a sense that will be clear). The invariancesas$ clear 1) z — z € Difand only if & (x) = ®o(2),
from the form (21), and the (also easy) invariance of orthants is 2) ®,(z) = 0ifand only ifx € E, and hencé'(0, X,) =
proved in Section VII. Parts 2—4 are proved in Section VIII-B3. 0 for all X5, and
3) Fp(X) = 0forall X.

The preceding results provide steps in proving this one, but
For all results to be stated next, we suppose a fixed systegnversely, Theorem 7 implies Theorem 5, sie is trans-

C. Regularity

(5) has been given. formed into a coordinate space. In fact, it also establishes that
We say that a function defined on an open subse®’ofs £, transversally intersects each cla&sAlso Theorem 7 im-
of classC*, k = 1, 2, ..., oo, w if it is k-times continuously plies Theorem 6, since the map that selects the elemefij.in

differentiable (fork = 1, ..., oo) or real-analytic (folr = w). in the same class as a given point amounts to a coordinate pro-
We will refer to the following hypothesis, for each sueh jection, let us call itr, onto the lasti — m + 1 variables under
(Hx) eachy; restricted taR ., is of classC*, and the change of variables given iy Moreover, letD be the set of

nonnegative points that are not boundary equilibria of (5), that
is, O = RZ,\Ey. We will prove (Corollary VII.7) that each
Obviously, this hypothesis is satisfied with= w when#é; is z € © belongs to some positive class; thus, the mappirex-

the identity map for; > 0, as is the case in the standard setuggnds to?. SinceR includes every positive class, it includ®s

8.(y) > 0forally > 0.

leading to polynomial systems. and the extension of to O transforms into the restriction &f
We will show, in Section V-B: to ¢(©). Thus, we have the following consequence of Theorem
Theorem 5:If hypothesis (H) holds, thenE, is an em- 7:

bedded submanifold d&;, C*-diffeomorphic toR™—™+*. Corollary 11.5: If hypothesis (H) holds, then the extension
Observe that, in the standard setyigs a polynomial vector of 7 to © is also of clasg*. O

field, soE; = {z € R} |f(x) = 0} and hence is an algebraic

subset intersected witR’; . [1l. M ASS-ACTION KINETICS, AND MCKEITHAN’S SYSTEM

Theorem 2 states that there is a unique interior equilibrium

7 in each positive class. This equilibrium depends nicel¥ As mentioned in the Introduction, the results explained in
(smoothly, analytically) on the class, provided that the heorems 1 and 2 are basically theorems for what are called

be regular enough. In order to make this statement precig%ass—action networks of zero deficiency, and are given (implic-

we introduce the map: R — R" which assigns, to each itly in the case of global stability) in [10]-[13], [17]. (There is

s € R, the unique inteJrrior equﬁibriun’fs in the ’classS one global stability result stated explicitly in the above papers,

which chr)’ntainSC. The next result is proved in Section V-A. namely in [17]. The statement would be that every trajectory
Theorem 6: If hypothesis (H) holds, therr is of classC* which starts in the positive orthant must converge to the inte-

Note that, once that we know th&t, an embedded subman-rior equilibrium in the corresponding class. However, this ques-

ifold, there is no ambiguity in the above statement: if we vie\{\'/On t'rS] Stt_'f" open_i_ sm(;:ef_thte ?UQ%?S;,Edfp:O?f ur?ed the |mtpl|ca-
xasamapr: R? — E,, itis also of clas€*. ion that if a positive definite functiol’” of states has a negative

. . derivative along trajectories while away from an equilibrium,

The following open subset 61" then global stability of the equilibrium follows. This implica-
R:=R}+D (23) tion is, in general, false, without the assumption of some sort

is the union of all those parallel translatesifvhich intersect Of radial unboundedness, a property which definitely does not
the positive orthant. It includes all positive classes. Assumif@ld in the context in which it is being applied; see [18] for a
again hypothesisHy), it turns out that one may always find aretraction of that proof.)
change of variables which transforfsontoR”, and in partic- 1 he assumptions of irreducibility ot and full rank of B
ular £, onto the sef(X;, X»)|X; = 0} and positive classes (both of which may be relaxed someyvhgt, cf. Remark V.§) are
into subsets of sets of the forfi{X;, X,)| X2 = c} for con- key ones. They serve to rule out periodic (or even chaotic) be-

stantse, and transforms the dynamics @into the following haviors which may otherwise arise in chemical networks such
form: as the Belousov—Zhabotinsky reaction or Prigogine—Lefever’'s

. “Brusselator” (for which see, e.g., [8]).
X, = Fi(X,, Xa) ( g., [8])

X2 =0 A. Kinetic Proofreading in T-Cell Signaling

whereX; and X, represent blocks of variables according to the The equations with which we started represent the dynamics
decompositiof®™ = R™~! x R*~™+1_ Since points of7, are of the “kinetic proofreading” model proposed by McKeithan in
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T + M kl CO kpyo C]. kp,l .o kpvi_l C’z kp7i e kva CN

Fig. 2. McKeithan's network.

[20] in order to describe how a chain of modifications of thevith « > 0 andg > 0. The original system is nothing else
T-cell receptor complex, via tyrosine phosphorylation and oth#étan the restriction of the dynamics to the class determined by
reactions, may give rise to both increased sensitivity and selec= 7 and3 = M*. Thus, the conclusions will follow from
tivity of response. Let us introduce two additional varialfgs) Theorem 2 as soon as we prove thgt) £y = @ for any pos-
andM (¢), which represent the concentrations of T-cell receptdive classS. Pick anyz € R% and any positive clas§®:?.
(TCR) and a peptide-major histocompatibility complex (MHC)According to Proposition VI.3, it will be enough to find some

The constank, is the association rate constant for the reag-< {1, ..., m} with the property thak; # 0 for all k € S;.
tion which produces an initial ligand-receptor compléxfrom Here,S; = {1, 2} andS; = {j+ 1} forj = 2,..., m. If
TCRs and MHCs. The quantiti€% (¢) represent concentrationsthe property is not satisfied for somee {2, ..., m}, then

of various intermediate complexes, and McKeithan postulat€s = 0 for all i. But in this case, the equations 6 give
that recognition signals are determined by the concentrationglot? = « > 0 and alsaM = 5 > 0, soj = 1 can be used. In
the final complexCyx . The constants,, ; are the rate constantsconclusiongz ¢ Ey, and hence Part c) of the theorem applies.
for each of the steps of phosphorylation or other intermediateLet us compute equilibria explicitly. Setting right-hand sides
modifications, and the constarits; ; are dissociation rates. to zero givesCy = (k, n—1/k—1, v)Cn—1, and recursively
Global stability of a unique equilibrium will be deduced fronusingC; = (k;, i—1/(k—1,: + kp,+))Ci—1 We may express all
Part c) in Theorem 2 when we view the equations as those of@s as multiples ofCy. We also havely = [k1/(k_1,0 +
appropriate system (5) restricted to a suitable class (which is dg-o)]T’M. Thus
termined by the constanf&* and1™). The complete reaction
network is represented graphically in Fig. 2 (this is the same as £+ = e, B, koaf; k10f, ..., inaf)la, 5> 0}
[20, Fig. 1], except that we do not make the simplifying assumpsere thes;s are rational functions of the constants defining the
tion of equal rates). In other words, we have a system of forgystem (these are the equilibria studied in [20]). It is obvious in

(5), where we use = (1, M, Co, ..., Cy)" as a state, and this example that we obtained a two-dimensionak-(m + 1 =
takem =n—-—1=N+2 2) nonsingular algebraic subvariety Bf.
1 0 0 0 We next discuss the application of Theorem 3 to this example.
1 0 0 0 As r = 2, we consider feedback laws of the type(Zr, —
0 1 0 0 Tk, )+ 72(Tk, — x1, ), Wherey; > 0 andky, k» satisfy (14) and
=gl 2= =11 bm =| o (15). SinceD is spanned by + e — e3, ..., e1 4+ €2 — en,
. . . : this means that (14) is satisfied provided that {%1, &2} or
(') 0 0 1 2 € {k1, k2}, and this is sufficient to guarantee that also (15)
satisfied. In other words, stabilization to any desired equilibrium
andA = (a;;) with ag; = ki, a1, =k_1,;—2 (¢t =2, ..., m), s possible provided that some pair of reactants, including at
aii-1 = kpi—s (1 = 3,..., m), and all others;; = 0. The |east one off" or M, can be manipulated by a controller.
corresponding set of differential equations is To illustrate some of our constructions in a comparatively
N trivial case, let us now specialize even further, taking Nist 0
T=—kTM+ Z k_1,:C; and all constants equal to one. (This is mathematically the same
i=0 as the example treated in Section I-A.) Writingy, » instead
N of T, M, Cy, we have the system
M= —laTM + Zk—l,ici . . )
o rT=—-2Y+z Y=-TY+z 2=TY—z
Co=k1TM — (k_1,0 +kp,0)Co andE; = {(z, y, 2)|z — 2y = 0}(R3 is a hyperbolic pa-
raboloid (intersected with the main orthant). This is obviously
o a nonsingular algebraic set, but it is instructive to see it also as
Ci=kp im1Cim1 — (k=1,i + kp,:)Ci the image of the diffeomorphisd/: D+ — E, constructed in
. the proof of Theorem 5 in Section V-B. Using= (1, 1, 1Y,
. we have the formulaV{(ry, r2, 73) = (e, ™2, ™) for
Cny =k, No1Cnot —k_1 NCn. (ry, 72, 73) € DL, Here, D is the span of(1, 1, —1Y,
Notice thatD = {z|T + Co+ -+ Cy = M+ Co+---+ o W remolrs 4 rs = r2 475 = 0}, and
Cx = 0}, and the positive classes are of the fogm= 57, J\D/[(Df) _{(E’ ro, T3)|lrs = 71 4 72}, SO it is clear that
=E,.

intersections witfR2 , of the affine planes . I
20 P Note, incidentally. that there are boundary equilibria as well:

T+Co+--+Cnv=a, M+Co+---+Cn=p Ey = {(z, 0, 0)|]z > 0} | J{(0, y, 0)|y > 0}, but none of these
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is in a positive class (since both+ > andy + z are positive  Another useful way of rewriting (5) is as follows. We wrifg
constants on positive classes). for the kth coordinate off [i.e., the coordinates; of solutions
The most natural (in the motivating application, anywayy} satisfyz;, = fi(z)]. The terms in the sums defininf, can
initial state is one in which:(0) = 0. We now compute the be collected into two disjoint sets: those that do not involve a
value of the mapr considered in Corollary 1.5 at such a pointproduct containingy (), for which;; = 0, and those which
(0, yo, #z0). We must find the positive-orthant intersection oflo involved, (x:). The latter, by assumption (7), hakg > 1,
{z = zy} with the lineL,, ,, = {x + 2 = z0, y + 2 = yo}. SO we can facto (1) from 8 (z1)"16x(x2)"% - - - O, ()07
Equivalently, we need to sol\e — z¢)(» — yo) — 2 = 0 subject and there remains a locally Lipschitz product. In other words,

to the constrain® < z < min{zq, yo}, which guarantees thatwe can introduce, for each € {1, ..., n}, these two locally

z > 0andy > 0 as well asz > 0. There is exactly one suchLipschitz functions

solution, and it is the smallest of the two solutions, since the m

graphs offi(z) = z and fo(z) = (z — zo)(z — o) intersect o (x):= »_ <Z aij(bri — bkj)>

at precisely one point in the intervéd, min{xq, o }), SO we jEJ,1 \i=1

take the negative sign in the quadratic formula: gl(xl)blj%(x?)sz . _ek(xk)bkrl o en(xn)bnj
7T3(-’L'0, Yo, 0) (25)

:%[350“‘3/0“‘1—\/(950—210)24-2(3?04-2/0)4-1} and

(and corre_sponding val_ues for a_nd7r2), which is, indeed, a g, (1) := Z Z aijbri
real-analytic (hypothesis }j function. PETn o
Finally, let us find a decomposition as in Theorem 7. We let b boi by
X, :=zandX, = (u, v) = (z+2, y+2). ThusX, = 0 along Ou)76a(22) bn(zn) (26)
all solutions, and¥{; = 2 = I1(z, u, v) = (u— 2)(v — 2) — 2. Wher?c]k,l = {Jlbw; 2 1.} andJy, o = {10x; = 0}. [Note
This does not yet havg (0, u, v) = 0 for all«, v, so one needs Fhat, in terms of the sets introduced in (1B)¢ &; if and only
a further change of variables to bring the equilibrium to zerdf,j € Ji, 1.] Note that3,(x) > 0 for all z. More generally, for
which can be achieved by translating- 7 := z—3(0, u, v). Perturbed systems (17), we let
Note thatF. , the sgt_ of points withy = zy, getg mapped intq B := B + gn.
Z = 0, and the positive orthant gets mapped into the set given fth ¢ ,
by the inequalities: > 0, v > 0, andz € (—n3(0, u, v), In terms of these functions
min{u, v} — 73(0, u, v)). Jr(z) = ap(2)br(zr) + Br(x)
fi(z) = an(z)br (i) + Br()
(wheref; = fi + gi). If © € RZ, andk are such that; =

The equations (5) [and their perturbed form (17)] have a cop; then property (18) says that(z) > 0. In particular, since
siderable amount of structure, and various useful properties 8/€0) = 0,

reflected in alternative expressions for the system equations. . -
P ystem eq o =0 = fule) = fule) 20 and fi(z) = fi(x) = 0

i=1

IV. SOME PRELIMINARY FACTS

A. Other Expressions for the System Equations 27)
Foreach =1, ..., n, let us introduce the maps so the vector fieldg and f* = f + ¢ always point toward the
pily) = n6;(y) nonnegative orthant, on the boundéay.
[with p;(0) = —oc]; note thatlim,\opi(y) = —oo and B. A Coordinatization Property

fol lo:s(y)| dy < oo. Furthermore, the restriction ¢f;, to Ry
is locally Lipschitz, strictly increasing, and on. For any
positive integem, we let

When we apply the following Lemma, we will always take
D = D, but we can state the result in more generality. Actu-
ally, we may get an even more general result by dropping the
assumption that the magh are onto. We will only assume,
for the next result, that each= 1, ..., n, 6;: R — [0, o;)
éwhereo < o1 < oo0) is locally Lipschitz, ha®);(0) = 0,

7o R* = [—00, 00)™: o (p1(xy), ..., R™n(x,))

wr n

(we do not write 7,,” to emphasize the dependenceonbe-
causen will be clear from the context). Then (5) can also b

written as satisfies fol |In6;(y)dy < oo, and its restriction tdR> is
m m strictly increasing and ont0, «;), butwe are not now requiring
=fz)=>_> a7 (b —b;).  (24) o; = +oo. The reason for this relaxation is to allow consid-
i=1 j=1 eration of functions liked(z) = z/(k 4+ z) which arise in

" is interpreted in accordance with Michg_elis—Me_nten kinetics: We will impose, inst_ead, another
condition, which we describe next. Let, as earligiy) =

ln 6,(y), and letp, := lno; (infinity if o; = o). Notice that
p; 1 seen as the inverse of the restrictioppfo R, is a strictly
increasing map fronf—oo, p,) ontoR,. Thus, for any given
constanp, p;*(s) > p+1forall s > ¢y, sometg € (—c0, 5;),

but, if b; = 0, then we have’~#+(@x) = 1. which implies that, foL.(t) = [ pi(s) ds — pt, its derivative

The expression ¢bs 7(x)}
the conventions made for powers:ifis a vector andk €
{1, ..., n}is an index such that, = 0 andby; > 0, then
ebrire(@e) = 0, consistently with-—>° = 0, and thus also

el A@) — Gbuipi(an) gbajpa(za) | | b Rn(zn) _
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(dL/dt)(t) > 1forall t € (to, p;). Under the general assump-and therefore also eagh has positive derivative and & for

tion p; = oo, we have that, for any:

t
liln/ “Hs)ds — pt = +oo
e (s) p

for any finitea < p,. Instead of assuming;, = oo, we will
merely ask that (28) should hold. [Exampléz) = z/(k + z)
givesp=1(s) = ke® /(1 —¢*), SOL(t) = —kIn(1 —et) — pt —
400 ast — 0 = p.]

Lemma IV.1: Let D be any subspace &*. For eaclp, ¢ in
R?, there exists a unique = ¢(p, ¢) € R?} such that

(28)

r—peD (29)

and

plz) — plq) e D*. (30)
Furthermore, if hypothesis (H holds, then the map, ¢ +—
¢(p, q) is also of clas€*.

Proof: We fix p, q as in the statement, and start by intro

ducing the following mapping, for eaghe {1, ..., n}:

t+pi(a:)
L;(t) = / p;t(s)ds — pit
0

positive arguments. Let’ be ann x (m — 1) matrix whose
columns are a basis @b (for instance, wher) = D, we may
take the columng, —bs, ..., by —b,,), and lefV be am x (n—
m+ 1) matrix whose columns form a basisBf-. Consider the
map F: R} — R™ given by

Fla) = <W"/;$)> '

Observe that' is of classC*. Denote byJ(x) the Jacobian of
F evaluated at an € R}

We claim that/(z) is nonsingular, for any. The transpose
of J(x) can be expressed as a block matdgz)’ = (V, TW),
whereT = diag(p}(Z1), ..., p,,(Zn)) is @ symmetric posi-
tive—definite matrix. As the columns afWW are linearly inde-
pendent, as are the columns6f it will suffice to prove that
the column spans df and of I’'W intersect only at zero. Since
the column spaces &f andW are orthogonal, this fact follows
from the following observation: iff" is self-adjoint and posi-
tive definite, then”W W+ = {0} for any subspacé&/ of
R™. (Proof: factorl” = R’ R, with R nonsingular, and suppose

defined fort € £; := (—oc, p; — pi(g;)). By assumption (28), that7w € TW W=L. For anywy € W, 0 = (Tw, wg) =

L,(t) increases to infinity as ,” 5, — p:(q;). Also, L;(t) —
400 ast — —oo, because;1 is nonnegative ang; > 0. Thus,
L; is proper, that is{¢|L;(t) < v} is compact for each.

Now we take the (continuously differentiable) function

Qy) = Z Li(yi)

(Rw, Ruwo). Thus,Rw € RW (RW)+ = {0}, soRw = 0,
which impliesw = 0.)
To conclude, we note that, givgnandq, z = ¢(p, ¢) is the
unique solution of
Vip
Gle o) = o)~

= 0. 32
W’ﬁ(q)) (32)

thought of as a function of € £ := []._, £,. Observe that 0 Thus, the Implicit Function Theorem gives thatis classC*,

is in the open sef, sincep; — p;(¢;) > 0 of all ¢ by definition
of p,. This function is also proper, because

{y € £IQ(y) <wj < H{t € LilL;(t) < w— (n—1)0}

where/ is any common lower bound for the functiohs. Re-

since(8G/0x)(xz, p, q) = J(z) hasrank: atallz, p, ¢ andG
is of classC*. [ |

Remark 1V.2: Note that, sinc&7(¢(p, q), p, ¢) = 01in (32),
we know that

e g+ () =0 @

stricted toD+ (N £, @ is still proper, so it attains a minimum . )
at some poiny € DL (£, which is a nonempty (since 0 be-forallp, . Thus(de/p)(p, q) = —J(¢(p, ¢))~ (V; 0)', and
longs to it) relatively open subset &+ . In particular,y must We conclude thao/Jp has constant rank, equakte-m+1.0]
be a critical point ofQ restricted toD+ () £, so (VQ(y))' € The following quantity measures deviations relativelto.

(DH)L = D, which means that
pr (i + (@) = pus o 7 (e 4 Prlan)) — o) € D.
(31)

Finally, pickz € R"} suchthap(x) = y+p{(q). Such an: exists

Let us define, for each, » € R}

m m

S, 2) = 30 S (b — by, ) — A2

i=1 j=1
Remark IV.3: Note thaté(x, z) = 0 if and only if g(z) —

(34)

because we can solve the equatipis;;) = y;+pi(q;) foreach 52y ¢ DL, sinceD is spanned by the differences — b;.
i, becausg; < p;—pi(q:) sincey € L. Thenp(z)—/p(q) € D~ Also, note that, since — = = 0 € D, = satisfies both (29)
by definition, and (31) gives also—p € D. and (30) [which uniquely characteriz&(z, z)] if and only if
Finally, we show uniqueness. Suppose that there is a second) — 5(z) € DL. To summarize

z € R sothatz —p € D andp(z) — g(gq) € D+. This implies
thatz — » € D andp(z) — p(z) € DL. Since eaclp; is an (35)
increasing function, we have that, for any two distinct numbefsr anyz, » € R’}. O

a, b, (a — b)(pi(a) — p;(b)) > 0. So Remark 1V.4: We could also have defined a smaller, but ba-

sically equivalent, sum using only the generating differences

i

v =gz, 2) & 8z, 2) =0 & pla) - fz) e D*

> (@i — zi)(pi(wi) — pi(z) = (@ — 2, fle) = f(2)) =0 b;—by,i=1, ..., m— 1, butthe above definition fof seems
=1 more natural. Moreover, note that if we let
impliesz = z. m—1

It follows that(p, ¢) = = is a well-defined mapping from §¢, ) .— by — b1, flx) — F2)))? + - v — 2))2
R} x R7} into R} . Suppose now that hypothesis(Holds, 8(w.2) Z« bl (2)) Z(< ¢ 2

=1 l=m
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where they; constitute a basis @+, then the uniqueness partwe write:

of Lemma IV.1, applied withD = D, gives thatd(z, z) = 0 .

if and only if z = z. [Becauser = ¢(z, x), andé(z, z) = 0 & = f(z) = BAOp(x) (37)
impliesz = ¢(z, x).]

Remark IV.5: Recall the definition (23) oR. We can extend
ptoamapR x R} — R by defininge(p, q) .= ¢(p+4d, q) N . (b, 7))
foranyp € R andq € R%, whered € D is any element ©p: R" — RYo: 21— (‘3 AR
of D with the property thap + d € R’;. This definition is
valid because, for ang; andd, in D such thatp + d; and oObtained as the composition of the maps- g(x), z — B'z,
p+ dy are inR™, we havep(p + dy. q) = (p + da, ), since andy — (e¥t, ..., e¥) . In particular, sinceankB = m and

= ¢(p+di, ¢) is uniquely determined by the two conditiong€achp; mapsR,. ontoR,

§(z, ¢) = 0andz — (p+d;1) € D, and the second condition is

equivalent tar — (p 4+ do) € D. Moreover, if hypothesis (i) the restrictior®5: R} — R is onta (38)
holds, then the extension @fto R x R” , which we denote again

by ¢, is of classC*. Indeed, given any, € R, and ad, € p Note that

so thatpy + do € R, it holds thatp + dy € R’} for all p in

some neighborhood gk, so the extension af is obtained (on Op(x) = (fu(r1)" O2(x2)" - On(wn)",

where®©p is the mapping

e<bm,ﬁ<w>>)’

that neighborhood) by composition of the originalwith the o B01(x) O (mo) e - 0, (2 nm) (39)
translation(p, ¢) +— (p + do, q), and the former is of clagd"
by Lemma IV.1. O For any twoz, = € R, it holds that:
Remark 1V.6: If hypothesis (H) holds, then, for some con-
tinuousd(-) > 0, and for allz, » € RY, (Fk > 0)Og(z) = kOR(T) < plz) — (@) € D+ (40)

x—2€D = 6z, z) > d(z)

( 2I*) . (36) [recall the definition (10) of]. To see this, denotg := O 5 (),
m . . 7= Op(7).If y = w7, then, withk :=Ink,Iny; = k+1n7,,
Indeed, &(z, 2) > 3 L,((bi — by, Ale) — PN for eachj = 1, ..., m. Thus (b;, j(x)) = k + (b, ﬁ(f);,
and p(z) = p(z_) + Q@ — 2) + ofle — z[), where \ nichimpliesthatb,, j(z)— () = k for all j, and therefore
Q = Q(z) = diag(pi(z1), ..., p,(z,)) is the Jacobian
of o evaluated atz [nonsingular, by hypothesis (h], so (b; — bi, Jz) — JT) =0 Vi, j.
(a:7)>2 o(bi — b1,z — 2)g)? + o(|z — z|*), where 7 7
{n, &)@ = (. Q5> is a nondegenerate inner product D Conversely, if this holds, we may defike= (b, p(z)—g(T)),
This gives (36), because the—b, s constitute abasis @. [Or, ; .— ¢k and reverse all implications.
more concretelys(z, 2) > 32, [W/E[* +o(|x — 2|?), where e also note, using once again ttihas full column rank,
§ = Ro(x —2), W. := (Ro(by — b1), -y Re(bm — b1)), that f/(Z) = 0 is equivalent tod©z(z) = 0, that is the fol-
and R. is a symmetric positive definite matrix, continuous ofging.

z, with RZ = Q(z). So, we may use thdW’{| > do(2)[¢], Lemma V.1:A state z is an equilibrium if and only if
wheredy(») is the smallest singular value &F restricted to g ,(7) € ker A. 0
R.D, which is nonzero sincé/¢ = 0 implies¢ € (R.D)*,  we now consider the matrixA. The row vector
together with|¢| > d;(z)|x — 2|, whered; (z) is the smaIIest 1 = (1,...,1) has the property thatA = (0, ..., 0),
eigenvalue of?., to obtain again an estimate (36).] U so, in parUcuIarA is singular. The following is a routine
consequence of the Perron—Frobenius (or finite dimensional
Krein—Rutman) Theorem.
Lemma V.2:There existsy € RT Nker A so that
It is convenient to also express the dynamics (5) in matrf®Z,\{0}) Nker A = {x7, » > 0}.
terms. Letting Proof: If y € RY, is any elgenvectoroﬁ corresponding
m m to an eigenvalua, it follows that0 = 1Ay = 1\y = Ag, where
A=A_ diag <Z @, e Z am) q = 1y is a positive number (becaugebemg an eigenvector,
; is nonzero), and therefore necessadily= 0. In other words,
a nonnegative eigenvector can only be associated to the zero
—Z a1 a1z e a1m eigenvalue. Pick now any > 0 large enough such that all en-
il tries of A := A+~1I are nonnegative. Since the incidence graph
G(A) coincides withG( A), it follows thatA is also irreducible.
a1 —Z Qi e a2m By the Perron—Frobenius Theorem, the spectral ragliog A
- i#2 is positive and it is an eigenvalue dfof algebraic multiplicity
: : : one, with an associated positive eigenvegter R;'. Moreover,
m every nonnegative eigenvectpe RZ, associated to is a pos-
_Z Aim itive multiple ofy. As addingy! m~0\7es eigenvalues bywhile
iZm preserving eigenvectors [that (54 + 1)y = (A + )y is the

V. INTERIOR EQUILIBRIA

=1

Am1 Am2
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same asdy = \y], 7 is a positive eigenvector of the original Since each, is irreducible, we can find positive eigenvec-
matrix A. It is necessarily in the kernel of, since we already tors for the entire matrix4, and the possible such eigenvec-
remarked that any nonnegative eigenvector must be associdted are of the form(«x1%,, ..., xr%)’, where eachy, is a
to zero. Finally, ify is any other nonnegative eigenvector/bf positive eigenvector ofi, and therx,s are positive numbers.
and in particular any element 6RZ,\{0}) (ker A, then itis The function® is still onto, so we obtain the existence of
also a nonnegative eigenvector.4fand thus it must be a posi- positive equilibria. Note tha® (=) decomposes into blocks
tive multiple ofy, completing the proof. m O, ..., ©f, mapping intdR7s, respectively, and (40) gener-
Corollary V.3: The set of positive equilibri&, is nonempty. alizes to:0%(x) = kO%(T) for somer > 0iff jlx) — p(T) €
Moreover, pick any fixed € E, . Then, for any positive vector DL, Thus, uniqueness in each class holds just as before, since

z € R}, the following equivalence holds: D+ is the intersection of th®t, s = 1, ..., L, and alsar is
an equilibrium iff all f;(z) = 0.
re b, <= 6x,7)=0. (41) As a last comment along these lines, we remark that the as-

sumption thatB has full rank can also be slightly relaxed, as
Proof: By Lemma V.2, there is somg € R7 in ker A. follows. Suppose that the column spaces of ihs intersect
By (38), there is som& € R’} such that©z(z) = 7. In view only at the origin, and the column space of soBgspans an
of Lemma V.17 is an equilibrium. affine space of dimension, — 1, i.e.,D, has dimensiom,—1,
Now fix anyZ € E, and anyz € R, and lety := ©p(z), but B, itself has rankn, — 1 (instead ofm,). Then, we may
7 := Op(T). Suppose: € F,. By Lemma V.1y € ker A. By add a state variable to the system, which satisfies a differential
Lemma V.2, every two positive eigenvectorsbfire multiples €quationzo = 0, and extend the system in such a manner that
of each other, so there is somec R, such thaty = 7. By B has rankm: this is equivalent to adding a row constantly
(40), 5(z) — §(T) € D*. Conversely, if this holds, then, againeéqual to 1 to the matrix3; (and to the remaining matrices as
by (40),y = x7. Hence,y is also an eigenvector of, so by Well). The original system appears as the restriction of the new
Lemma V.1 we conclude € E,. m System to the invariant subset consisting of those states whose
Remark V.4: Even if the assumption that eaéfr. , is onto last coordinate is equal to one. O
R is dropped, the second part of Corollary V.3 is still valid, .
as the proof of the previous lemmas did not use ontoness, ButProof of Part a) in Theorem 2 and Theorem 6
merely (28)_. We are not assured that equilibria exist, but if theregijx anz < E. and anyp € R".. Applied withg = z (and
is any equilibriuntz then (41) holds. U D = D), Lemma IV.1 says that = ¢(p, Z) is uniquely char-

Remark V.5:Itis possible to generalize many of the results tacterized by ay € p + D and b)é(x, T) = 0, the second of
the case wher is not irreducible but, instead, there exists a pe{yhich is in turn equivalent by (41) to E. . In conclusion,

mutation matrixP with the property that’ AP is a block ma- , — ¢(p, T) is the unique point i which is an equilibrium
trix with irreducible blocks. Let us sketch this next. Assumingind lies in the same class asThis proves Part a) in Theorem
already such a reordering has taken place, the family of systemsind, moreover, shows that

considered is as follows. The dynamics are described by

b= filz)+ -+ fo(x) m(p) = ¢(p, T) (42)

wherelL is a positive integer (the “number of linkage classes

and eachf, has the form in Equation (5), for some matrice . ; i
A= A,andB = B,.We suppose that each is an irreducible provided hypothesis (H holds, which proves Theorem 6.1
nonneéative matri; of sizer. % m.. and eachB. has size: x Remark V.6: Theorem 2 is valid even under the weaker as-

ms. We letm = my + -+ - + my. Further, we also assume thalf‘r:”?pt'o?ﬂthat C?nﬂg't'onM(ZS) hold_snolt _?‘fﬁess"?‘”'ﬁ IaSSL;mmg
the matrix B which is composed from the blockg,, namely & .?g? g 'S{r?n Oth 20- olre preurs]elén Theretlsbe'll't eas tone_“
B =(By, ..., Br), satisfies the properties (7)—(9) required oﬁqu' ibrium, then the conclusions hold. The stability parts wi

B. We letD, be the subspace 8" spanned by the differences e remarked upon later, but regarding Part a), it is only necessary
b—b. of colsumns ofB. foreachs — 1 I and now define O note that Lemma IV.1 was proved under the weaker hypoth-
T 7 81 - PR H

D as the sum of the spac®s. (Note that the column spaces of°SIS: and that _(41) holds (cf. Rem"?‘”‘ V-A4). . .
the B,s intersect only at zero, because we are assuming that th ow let us introduce the following condition, expressed in
columns ofB are linearly independent; tha3 is also a direct Ferms of the transpose of the vector= (1, ..., 1) and the
sum of theD, s. The dimension of eadh, ism, — 1, andD has 'Made of the transpose @f:

dimensionm — L.) Since the differencelg — b, of columns of

different B,s do not ever appear in the vector fields defining the 1" € B'(RY). (43)
system, the same argument as before shows that the paséts

(with the new definition ofD) are invariant. Classes are nowObserve that, if the system is “homogeneous” in the sense
defined using thi®, and are also invariant. We can express thtbat the exponents in each term add to a fixed constant, then
dynamics in the form (37), wheré s formed as before, starting (43) holds, since homogeneity amounts to the requirement
from them x m matrix A that is obtained by using,, ..., A; that B’1,, = 1, where we denote by, the vector of length

as diagonal blocks. n consisting of 1s.]We claim that if (43) holds (instead of

»{S the assignment gf into the unique positive equilibrium in
L(s class. Furthermore, by Lemma IV&(-, 7) is of classC*
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unboundedness), then there exists at least one interior equil®- Proof of Theorem 7

rium. For this we may assume, without loss of generality,

that e will construct a preliminary transformatiah of R into

o; = 1forall ¢ (if this were not the case, we simply rescalgy, i SinceD is a linear space of dimensien— 1, and since

all the functionsf;, adjusting the4A matrix accordingly; thus by Theorem 5 we know thak,

is a manifold diffeomorphic

we rewrite the system equations as those of a system of EB%nfrn+l' the result will then easily follow. We assume that

same form, for whichr; = 1). It follows that the image 0B 5

is exp(B’(—R’)), where ‘exp” means taking exponentials of

each coordinate. Now take agyc R"}" (1 ker Aandlety € R™

be so thaty = exp(v). As B'(R%) is an open set, and using

(43), there ar@ > 0 andg € R} such thatl’ — (1/A\)v = By,
or equivalently —A\1 + v B’(—Xq) which means that
e™y = Op(x) for somexr € R%. Ase™*7 € ker 4, z is an
equilibrium, as wanted. O

Remark V.7:Recall Remark IV.5. After fixing a € E,,
we may extendr to R by lettingn(p) := ¢(p, T) for anyp €
R.Aso(p, T) := p(p+d, T) for somed so thatp + d € R},
andy(p + d, 7) € E, by (42), we have that(p) € £ for all
p € R. Note also that(p) = pif p € E,, since in that casg
is itself the unique positive equilibrium in its class. Thus

p=m(p) < pEE} (44)
for anyp € R. Furthermore, ag(p, Z) — (p + d) = p(p +
d, 7) — (p+d) € D by definition of, we know thaty(p, =) €
p+ D, so

p—m(p) €D (45)
for all p € R. We also have that
7r(p1) = 7r(p2) = p1 —p2 € D (46)

for all p1, p» € R, by (45) and because(p,) is the unique
positive equilibrium inps + D = p; + D whenp; — ps € D.
Finally, note thatr is of clasC* if hypothesis (H) holds, once
more by Remark IV.5. O

B. Proof of Theorem 5

Suppose that hypothesis fHholds. Then the restriction of
eachp; to R, is of classC¥, and so is its inverse, which is a
mapR — RT. With some abuse of notation, we will denote i
this section the restriction of eaghto R, and more generally F

the associated vector functighrestricted td®’; , with the same
symbols. Note thaF is aC*-diffeomorphism (clas€* and has
an inverse which is also of clagé). Now we fix any equilib-
riumz € E4, and in terms of it, define

M: R = Rl g 57Ny + ()

which is aC*-diffeomorphism since botly — y + 5(Z) and

p~* areC*-diffeomorphisms. As an illustration, in the standar:

setup we would havg; () = Inr andp; *(s) = ¢*, sOM (y) =
(1Y, ..., Tpe¥) .

We claim thatM (D+) = E,. Once that this is shown, The-
orem 5 will be established, since diffeomorphisms map subman?

ifolds into submanifolds, an®- has dimensiom — (m — 1).
Note thatr € M (D) if and only if 5{(z) = v + 5(z) for some
y € D+, thatis, if and only if7(x) — 5(z) € D+, so Corollary
V.3 gives the equivalence withe F . [ |

hypothesis (H) holds, and fix anyr € £ .
Recalling Remark V.7, we define, fare R

d(x) = (él(x), <i>2(x)) = (z — (), 7(x))

(see Fig. 3). The functiof is of clas<C* as a map int®” x R%,
and, because of (44),

reEp < &i(z) =0 <= (z)=(0, z) (47)
for all z € R. Also, property (45) gives thab,(z) € D for
all z, and we have thaég(a:) € E. (sincer assigns positive
equilibria). So the image ob is contained iD x £, which
is an embedded submanifold&f x R’} becauseD is a linear
subspace and using Theorem 5. Thixslefines also &* map-
ping into the submanifol® x £, and we view it as such.

Now consider the mapping

W DXR1—>R": (a, b)) —a+b

and its imageR = ¥(D x R} ) = R’ 4 D. If we show that the
restriction® of ¥ to D x E. is the inverse ofp, then we will
know that® is a diffeomorphism. It is clear from the formulas
that U(®(x)) = z. Pick now any(a, b)) € D x E,, and let
r=U(a,b)=a+0b.Thusz—a=0¢e E,,andp(h, T) = b
by (35) and (41). By the definition of, and thuss, on R,
we have thatr(z) o(x, T) o(z — a, T), S0 P(x)
(z—p(z—a, T), o(x—a, T)), which equal§z—b, b) = (a, b).
Thus also®(¥(a, b)) = (a, b).

In conclusion, we have a diffeomorphisRi — D x E,,
which can be composed with a diffeomorphigm x 5: D x
E, — R™~1 x Rn=m+1 (wherey is a linear map) to yield the
final diffeomorphism® = (&1, ®5): R — R™~1 x R*—™+1L,
We let " be the vector field obtained under this change of coor-

Hinates (namelyl(X) = &, (®~1(X))f(®~1(X))) and write

= (F1, F») in block form. Note that, by (47)¢.(x) = 0
if and only if z € E,. Thatis, block vector§X;, X,) with
X1 = 0correspond under the coordinate changEto That is,
every vector of the fornf0, X») is an equilibrium. This implies
that (0, X») = 0 for all X», and in particular the same is true
for the first blockF; . Also, by (46) we know that — z € D if
and only if &,(z) = $2(2), i.e., if and only if®,(z) = ®,(z).
Finally, we show thatF; 0. It suffices to prove that
(»(t) = ®o2(x(t)) is constant, for an arbitrary solutiar{z) of
5) taking values ifR. This follows from the fact that classes
are invariant, and hence the functigriz(¢), =) is constant,
which gives from the definition thab,(z(t)), and thus also
D,y (z(t)), is constant. [

VI. BOUNDARY EQUILIBRIA

Fixanyz = (z1, ..., zn) € RZ,. We wish to study the
implications of some coordinate, vanishing. Recall the defi-
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Ey
D+z
R}
()
T
z —7(z) D

Fig. 3. Change of coordinates.
nition (13) of the setss;. We will use repeatedly the following and
fact, foranyj € {1, ..., m}andk € {1, ..., n}: (V4 € 8;)(me > 0)

= (Vk e S&)(zr > 00r fi(z) > 0). (51)

rp =0andk € S; = 01(x1)"70a(x2)"> - 0, ()" = 0
(48) Proof. Pick anyk € &;, and assume that, = 0. The as-
sumption? € S; = z, > 0"isequivalenttoj € J, 1 = x¢ >
0. So, sincer;, = 0, necessarily € Ji o. By (27), fu(x) =
Br(z), whereg,, is as in (26), and the indekbeing considered
does appear in the sum definifgg. Moreover, for eacli € S,
x¢ # 0 by hypothesis, $8, ()% 05(x2)%5 - - 0, (x,)" > 0.
2 =0 = 0(x1)"702(22)" -+ 0,(2,)"bi; =0 (49)  Onthe other hand; € S; means thaky; > 0, and alsay;; # 0.
Thus, the term involving this particularand j in the sums

since eitheb; = 0 or (48) applies. We state results for arbidefining Pr(x) is positive (and the remaining terms are non-

trary perturbed systems (17). [Note that (50) below is merely tRg9ative). We conclude thak.(<) > 0, establishing (50). In
particular case of (51) that arises for systems wita 0, butit ddition, since we are assuming that= 0, property (27) also
will be useful to have the conclusion fdy, stated separately.] S&YSthalfii(z) = fi(z) +gx(x); as we proved that () > 0,
LemmaVI.1: Take anyi, j € {1, ..., m} suchthat,; 0. @ndg(z) > 0 [by assumption (18)], also (51) holds. ~ m
Then We will denote byE™ (respectively,E or Ef) the set of
nonnegative (respectively, positive or boundary) equilibria of
(17),1.e., the set of statese R%, (respectivelyc R’} ore Ry),
(VL€ S;)(ze > 0) such thatf*(z) = 0. Wheng = 0, these are the same as the sets
= (Vk e S;)(xp > 00r fr(x) > 0) (50) E, E4, andEy, and, more generally, for systems (17), we still

which is obvious, sincé (x)% s vanishes whem;, = 0 and
bx; # 0. In particular
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useFE, etc., for the equilibria of the system (5) which has thend hast'(¢, ) = F(0, y) fort < 0 andF(¢, y) = F(t*, y)

samef. fort > ¢*. Note thatf'(¢, 0) > O forall £, because (27) says that
Proposition VI.2: For any system (17), and for an arbitraryf; (z) = Sx(z) > 0 whenz, = 0. Fort € [0, t*], the scalar
z € R%,, consider the following properties: functiony(t) := z(t) satisfies the scalar differential equation
1) z € Ej.
2) (Vied{l,...,m})@EkeS;)z =0. y(t) = F(t, y(t)).
3) (Vied{l,...,m}) 01 (x1)"902(22)"% - - Oy (2n)Pmi =
4) 2 € E,. We must prove thaty never vanishes. For this, we let

G(t, p) := F(t, p) — F(¢, 0) and introduce the auxiliary initial

Thenl = 2 & 3 = 4. value problem

Proof: [1 = 2] Pick anyz € E§. If the second property
is false, then there is some indgxsuch thatz, > 0 for all
¢ € S;. We claim that for every indek x;, > 0 forall k € S;. #(t) = G(t, (1),  »(0) = y(0).

Since{J; S; = {1, ..., n} [recall hypothesis (9)], this will

mean that:;. > 0 for all k, sox could not have been a boundarysince (7 is locally Lipschitz (in both variables, but just on
point, a contradiction. Let’ = {j|lz, > 0V{ € S;} and let |ocally uniformly ont would be enough) and 0 is an equilibrium
I'=A{1,..., mj\J. We know that/ # () and must prove that of ; = G(¢, ), 2(t) > 0 for all ¢ in its domain of definition.
I = 0. Suppose by contradiction that (. Pick somei € I Moreover, we have that = G(t, z) < F(t, z) for all . By
and; € J such thata;; # 0 (irreducibility of A), and take 3 standard comparison theorem, see, e.g., [16, Corollary 1.6.3],
anyk € S;. We claim thatz, > 0. Suppose that this is notywe know thatz(t) < y(¢) for all ¢ in the common domain of
the case, i.eq; = 0. From (51) in Lemma V1.1, we conclude gefinition of z andy. Sincey(¢*) is well-defined,z(¢) remains
that f;(x) > 0. This contradicts the fact thatis in E*. In  pounded, and thus is defined as well for= *. So,y(t*) >
conclusionz; > 0 for all £ € S;, contradicting the fact that 2(t*) > 0. m
el Corollary VII.2: The seR, is forward invariant for (17).

[2 < 3] The product in 3 can vanish if and only if some  proof: Consider any solution: [0, 7] — R" of (17), and
bj > 0 andz; = 0 for the samek, but this is precisely the suppose that(0) € R7:. We must prove thai(7') € R”. Since
condition in 2. z(0) is in the interior ofRZ ), the only way that the conclusion

[3 = 4] Since all terms in the definition (5) of(x) vanish, could fail is if z(¢) € R? for somet € (0, 7]. We assume
it follows thata € E. On the other hand; must be a boundary that this happens and derive a contradiction.fet= min{t €
point, since otherwise no product as in 3 could vanish. ® 1o 7]|4(¢) € R2} > 0. By minimality, for all4, z;(¢) > 0 for

For systems (5), all the properties are equivalent, skite=  aJ| ¢ € [0, t*), and in particular; (t) € RZ,, for all ¢ € [0, ¢*],
Ey. More generally, this stronger result holds for all systems @hd also there is some indéxsuch thatzy (t*) = 0. But this

form (21): ~ contradicts the conclusion of Lemma VII.1. ]
Proposition V1.3: For any system (21) and for an arbitrary  The closure of an invariant set is also invariant, so:
x € RZ,, the properties in Proposition V1.2 are equivalent.  Corollary VII.3: The setRZ, is forward invariant for (17).

Proof: We prove thatt = 2 = 1. If 4 holds, we apply  Note that Corollaries VII.2 and VII.3 prove Lemma II.1 as
Proposition VI.2 to the system (5) which has the safp¢o \ye|| as the invariance parts of Theorems 3 and 4.
conclude that 2 holds. Assume now that 2 (and hence also 4) emma VI1.4: Consider any solution: [0, 7] — R" of
holds. Since we already know thAtz) = 0, all that needs to (17) for whichz(0) € RZ,. Suppose that there is sonje €
be verified is that\;;(x) = 0 for all ¢, j. Pick anyi, j. Choose {1,..., m}suchthat
k € §; sothats;, = 0. Property (20) then gives the conclusmn.

(V£ € 8;,)[xe(0) > 00r £ (2(0)) > 0.
VII. | NVARIANCE

We start with an easy but key observation. Then,z(t) € R, for all t € (0, 77.

Lemma VII.1: Suppose that: [0, t*] — RY, is any so- Proof: We know that:(t) € R%,, by Corollary VII.3, and

lution of (17). Then the following implication holds for any,ye need to prove that,,(£) > 0 for all k and all¢ € (0, 7). Let
kEk=1,...,n:

Ii={ie{l,...,m}aw(t) >0VEk €S;, YVt e (0, T]}.
a:k(()) >0 = a:k(t*) > 0.

SincelJ; S; = {1, ..., n}, it will be enough to show that =

Proof: Suppose that is so thatr;(0) > 0. Let F: R? — {1, ..., m}.

R be the (locally Lipschitz) function which coincides fore ~_ We start by remarking thaf, € I, because, for each €
[0, ] andy € R with S, eitherz(0) > 0, and then Lemma VII.1, applied on any

subintervall0, t*], says thatex(¢) > 0 for all ¢, or 4,(0) =
F(=(0)) > 0 andz(0) = 0 imply thatz,(¢) > 0 forall ¢
F(t, y) := filz1(t), ..., zp_1(t), ¥, Trq1(t), ..., z,(t))  small enough, so also (again by Lemma VII.1) forzall
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Suppose by way of contradiction thidt:= {1, ..., m}\I # such thay; = ¢,,, and.J its complement; as. € I, I # (. We
0. Pick some; € I andh € H so thata;; # 0 (irreducibility need to see that = §). Suppose thal # (. The connectedness
of A). We will show that, for any givety € (0, 7], and for any of the incidence graph of provides art € I andj € J such
givenk € &y, z(to) > 0, and this will contradict € H. thata,; # 0. Thus,q; = ¢; = ¢, contradictingj € J.

Sincei € I, z¢(to/2) > 0forall ¢ € S;. Then, we can apply  Let us introduce next a quadratic formsin— 1 variables
Lemma VI.1, to obtain that(¢o/2) > 0 or f/(z(¢0/2)) > 0.

As before, ifz(to/2) > 0 then via Lemma VII.1 we conclude m—1m-1 m—1 m—1

the positivity of z;,(¢) for all ¢ > t,/2, and in particular of DY a7+ D amél + Y amil
zk(to). And if insteadfi(z(to/2)) > 0, theniy(to/2) > 0 =1 j=1 i=1 j=1
andxzy(to/2) > 0imply z(t) > 0for all ¢t > t,/2 nearty/2,

and so by Lemma VII.1 once agaif,(#o) > 0. m Whichwe denote aB(¢y, ..., &n1). SiNCe(n; —1m) — (n; —

For the special case of systems (5), and more generally per) = 7: — 7; for all ¢, j, one has
turbed systems (21), we conclude that every trajectory starting

on the boundariRy which is not an equilibrium must immedi- Qs ooy M) = PO — My + ooy Mhne1 — M) -
ately enter the positive orthant.
Corollary VII.5: Consider any solutiom: [0, 7] — RY, of Note thatP is positive definite: ifP(q:, ..., gm_1) = 0, then
(21) for whichz(0) ¢ E5. Then,z(t) € R forallt € (0, 7. Q(qi, ..., gm_1, 0) = 0, which as already observed implies
Proof: By Proposition VI.3,5(0) ¢ E7 implies that there that allg; = 0. Thus, there is some constaqt > 0 such that
issomej € {1, ..., m} such that:;(0) # 0forall £ € S;. So,
Lemma VIl.4 insures that(t) € R’} forall ¢ € (0, 77. ] m—1
Another special case of that of the feedback system (16), and P(p1, .-y Dm—1) = Ko Z P
more generally when property (19) holds. This property says i=1
thatthereis som@ € {1, ..., m} suchthat, forevery € S, ,
it holds for eachr € RZ,, that either a}, > 0,0rb)z, =0and forall (py, ..., pm—_1) € R™ !, which means that
g¢(z) > 0 [in which case alsgf; (z) = Bk(z) + gr(z) > 0].
Applying with z = z(0) and using Lemma VI1.4 with thigy, m—1
we have: Qars - am) 2 K0 Y (@ —am)’ (54)
i=1

Corollary VII.6: Suppose that property (21) holds. and con-
sider any solutiorr: [0, T] — R%, of (17). Thenx(¢) € R

forall t € (0, 7. O forall (g, ..., gn) € R™ As (g — q;)* < 2 — m)” +
We also note, for further reference, the following. 2(q; — qm)* for all4, j, we may re-express the estimate (54) in
Corollary VII.7: Consider a system (21), and pick afye the form (53), using a smaller constanwhich depends only

RZ,. Then, eithe€ € E} or £ belongs to some positive class. ON Ko andm. u

= Proof: If ¢ ¢ Ef, then Corollary VII.5, applied to a solu- The following estimate will be the basis of a Lyapunov func-

tion starting from¢, and forward invariance of classes, give thd{on Property to be established later. .
¢ is in the positive class containing 7). - Lemma VIII.2: There exist two continuous functions

VIII. STABILITY v: R"—=R", o R} =Ry

We start by establishing some useful estimates.

Lemma VIII.1: Define the following quadratic function: ~ SUch that, for every pair of points = in R’

m m <ﬁ($) - ﬁ(z)v f(x»
Qo) =3 D aslw =)’ (52 < —e(2)6(z, 2) + (W(z) — 7)), f(2)).  (55)
Proof: As B has full column rank, there is an x n matrix

Then, there exists a constant> 0 such that B# (for instance, its pseudo-inverse) such tBa#tB = I. We

m m let
Q(Qb---,%n)Z“ZZ(Qi—Qj)Q (53) ,
im1 j=1 (o) = ((e<b170>7 o e<bm,o>) B#)
forall (g1, ..., gm) € R™. and ) 5, FO)
Proof: We first observe that co(C) = jopm ¢ PO
Qlgt, -, gm)=0= gi=gni=1,...,m— 1L Now take any pair of positive vectors z. Denote, for each
j=1,...,m
Indeed, obviousl¥)(q1, ..., ¢») = 0impliesg; = g¢; for each

pair ¢, j for which a;; # 0. Now let I be the set of indices g = {b;, plx) — p(2))



1044

and observe that

<bi7 U(ﬁ(.’l)’) -
s0, using formula (24),

m (3

(W) = 7, FE) = 30 Y a7 e — ),

(56)

Therefore [writingg(x, z) = (v(§(z)
plicity]

— 7(2)), f(2)) for sim-

_Zza 03 PEN (B (g — q;) — (¥ — b))
=1
+9($7 Z)

m m

=32 4y P (g — q;)* + g(x, 2)

i=1 j=1

(57)

IA

m

o) YD s -

i=1 j=1

co(2)Qq1, - @m) + 9(z, 2)

I/\

)+ g(z, 2)

(58)

whereQ is the quadratic form in Lemma VIII.1. Equality (57)

follows by adding and subtracting(«, ») and using (56). To
justify (58), we note first that, for eacta > 0, the function
R>0 — R

fa(r) :=e%(r—a) — " + e+ 3(r —a)®

is always<0 [becausef, (0) = —c% — 1+ ¢® +(1/2)a? < 0,
fo(r) = —o0asr — +oo,andfl(r) =e¢"—e"+(r—a) #0
for all » > 0]. Now we use the inequality” (r —a) —e" 4+¢* <
—(1/2)(r — a)? in each term of the sum withh = ¢; andr = ¢;
[recall a; et 730 2 > 0].

Lemma VIII.1 gives that)(qy, - ..
we may take(z) := rco(2)/2.

) an) > I‘Eé(l‘, Z). ThUS,

A. An Entropy Distance

We will show the stability conclusions even if one does n
impose the assumption that eattis ontoR>. Note that none

of the results in Sections VI and VIl used this condition. Thus,

we suppose that ea¢h: R — [0, o;) (where() <o; < x)is
locally Lipschitz, hags;(0) = 0, saUsﬂesf0 los(y)| dy < oo
[where p;(y) = Iné;(y)], and its restriction t®R> is strictly
increasing and ontf®, o;), with o; < +c0. We letp, :=Ilno;.
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[For the stability results, we will not even need to ask for con-
dition (28).]

For any fixed constante (—oo, p,),andeacli=1, ...,
we consider the following function:

n’

wa=zlmwwwf

This function is a well-defined continuous mappiRg, —
R, continuously differentiable for € (0, 5,). Moreover, R
achieves a global minimum at the unigefe= »{ € Ry where
pi(r°) = ¢, decreases fof € [0, 7], and increases tg-oo for
T > e

The following function will play a central role:

n

=3 R (),

=1

W: Ry, x R} — R: (=, 2)

The above-mentioned properties of the functidifs'*")
that

imply

T F# 2

i.e., for each fixed: € R}, the functionW (-, z) has a unique
global minimum, at. Note also that the gradient & (-, z)

= Wz, 2) > W(z 2), (59)

= (A=) — (60)
(defined forz € R7) vanishes only at = » and that [since
Rf( )( 2) — +oo if 2; — 4o0]

|z] = +o0 = W(z, z) = +o0 (61)

for every givenz. As W (-, z) is continuous, this implies that

{z|W(z, z) < w} (62)

is compact for every and everyw € R.

Remark VII1.3: In the standard setup, = In, W(x, 2) =
Z;;l z; Inx; — z; — x; In ;. Then this formula, when states
are interpreted probabilistically in applications such as chemical
networks, is suggested by “relative entropy” consideratiads.

B. Main Stability Results
The next lemma will be applied later wits equal to the

whole space or to a class, depending on the type of system.

LemmaVlil.4: LetS C RY, be aclosed set, and pigke 5.

%uppose that

(p(z) — p(@), (63)
is valid for all z € S(R%, z # . Consider any. € RZ,
for which the maximal solutior(¢) of (17) with z(0) = ¢ is
included inS.

(@) <0
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1) Ifthe system has the form (21) the(x) is defined for all VI1.6). Thus (65) says tha#V'(=(¢))/dt < 0 for all ¢ > 0,
t > 0,and which means thal’(z(-)) is strictly decreasing. But this is a
contradiction, sincd’ (z(t)) = a.
_ The stability statement is a simple consequence of the fact
=(t) = Eo U{x} ast = eo. thatV is a Lyapunov function (see, e.g., [22, section 5.7]) rela-
tive to for the dynamics restricted 8 R} . |
2) If (19) holds, thenz(t) is defined for allt > 0, and 1) Proofof Theorem 3:Suppose = n—m~+1,7v1, ..., ¥r
are positivefy, ..., k. € {1, ..., n} are such that (14) holds,
2(t) — T ast — +oc. andj is such that (15) holds. Fi>§ any equilibriume E+.
We must prove that, for any giveéhe RZ,, the maximal so-
lution z(#) of (16) with z(0) = ¢ is defined for allt > 0 (the
Furthermore, in either cageis an equilibrium of (17), asymp- fact that the solution remains 2, has already been estab-
totically stable relative tc. lished) and that is a globally asymptotically stable equilibrium
Proof: Fix S, 7, and¢ as in the statement, and let-) be  of (16).

the maximal solution of (17) witk(0) = &, defineda priori on We apply Lemma VIII.4, withS = RZ . Notice that
some maximal intervdD, ¢*). We will use B

(plz) — p(@), f(z)) < —c(@)é(z, 7) <0 (66)
Viz):=W(z, 7) - W(z, T) (64)
forall z € R’} by (55) [sincef(Z) = 0]. The inequality is strict

as a Lyapunov-like function. By (59), this function is positivainlessé(z, z) = 0, i.e.,
definite relative to the equilibriurg, i.e., Vi(z) > 0 for all
z € R%,, andV(z) = 0if and only if z = =. Moreover,V 50— HE) e DL 67
is proper, meaning that the sublevel sét$V (z) < w} are ple) = @) € D ©7)
compact, for alkw € R>g, by (62). Finally,V' is continuously
differentiable in the interioR’., and, using (60) On the other hand,

VV(z)f*(z) < 0 (65) (plz) = (7)), 9(x)

=3 % (@ — o)) = F@). o)
whenever: € SNR%Y, « # Z, by (63). —

If the system has the form (21) agde Ey, thené € Ef T
(cf. Proposition VI.3), and thus, in that special casg) is of =3 v (Tn, — 21, (21,) = pr, (Fa,)) SO
course defined for all >> 0 and converges to an equilibrium in =1

Ey (it is constant, in fact).

So, from now on, we suppose that either the system has wi@ere the last inequality follows from the fact that eagls an
form (21) and¢ ¢ E,, or that (19) holds. By, respectively,increasing function, and the inequality is strict unless
Corollaries VII.5 and VII.6, we know that(t) € S(\R7 for
all¢ € [0, t*). SoV(x(t)) i_s differentiable fort € (0, t*), ar_ld (Plz) = F(T), en) = pr, (T1,) — pre, (Tne,) =0 (68)
dV(xz(t))/dt < 0 [by (65) if z(¢) # =, and obvious otherwise,
sinceVV (z) = 0], which means thal’ («(¢)) is nonincreasing.
SinceV is proper, this means that the maximal trajectory is pr
compact, and hence it is defined on the entire intefak-oc),
as claimed. Furthermore, the LaSalle Invariance Theorem im- {p(z) — §(Z), f(x)) + {p(z) — p(T), g(x)) <0,  (69)
plies that

fort=1---r. Thus{p(z) — p(Z), f*(z)) equals

and this inner product can only vanish if both (67) and (68) hold,
which implies, because of (14), thatz) = p(z), i.e.,z = =.
whereQ2*(¢) is thew-limit set of ¢, which is a compact subset | 'S means that (63) holds. As the system (16) is a system (17)
of {p|V(p) = a}, for somea > 0. As the setS is closed, for which (19) holds, Lemma VII1.4 provides the proof of global

Q+(£) C S. We pick any¢ € Q+(¢), and show that necessarilyStaPility. _ u

¢ = 7 or, in the case of systems (21)€ Eo. 2)_ Proof of _Theorem 1:Consider any system (21) and any
If ¢ = 7, we are done, S0 we may assume from now on th&@ximal solutionz(-). By Corollary VI1.7, either«(t) = ¢ €

¢ # 7. Similarly, if the system is of type (21), we will assume®0 = Eo, in which case of course(t) — £, or there is a

that¢ ¢ Eo. We now derive a contradiction. positive classS such thatz(¢) € S for all ¢, which we assume

Consider the forward trajectory(t) starting from¢. Since from TLOW on. Letr = fs..Nptice that (66) again hOIdS’.’ for al
QF(€) is invariant and a subset &, z(f) € S for all ¢, and ¥ € R7}. Let us now specialize to systems (5). We claim that

z(t) # = for all ¢ [since otherwise(t) = ). Moreover,z(t) €
Ry for all t > 0 (using either Corollary VIL.5 or Corollary (Pz) — p(@), f(x))y <O (70)

z(t) — QT (¢) ast — +
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[i.e., property (63) for (5)] is valid for alt € SR,z # 7. V(x(¢)) can be shown to decrease strictly alangrytrajec-
Sincec(z) > 0, by (66) all we need to show is thétx, ) # 0. tory (not merely in the positive orthant), and this proof applies
But the only way that(x, ) could vanish is ifc is an equilib- as well in the multiple-linkage class case described in Remark
rium (cf. Corollary V.3), and uniqueness of equilibriadifi\R’;  V.5. [The fact that all trajectories approach equilibria, in the
then givest = 7. So, Part 1in Lemma VIIl.4 gives(t) — E.m  multiple-linkage class case, may also be proved directly. The
3) Proof of Theorem 4:Let S be a positive class, and pickLaSalle argument proceeds in basically the same manner; the
T = Ts. Define: critical step is to study those trajectories that remain in a level
set of the Lyapunov function and start on the boundary. In the
case of a single class, such trajectories are either equilibria or
enter immediately the interidt’y (Corollary VI1.5). In the gen-
eral case, there may be a block which is “turned off,” that is,
restricted tor € S(\RY. Sincec(z) > 0 andé(x, &) = 0if  f,(x(t)) = 0 for somei € {1, ..., L}. In that event, we are
and only ifz is an equilibrium, which by uniqueness means  reduced to studying a system with— 1 classes, and the same
7, we havess(z) > 0 for all » # 7. take now any collection of |yapunov function (restricted to a possibly smaller state space,

functions{A;; } such that (22) holds. after dropping those state variables which only appear in the
Notice that (66) again holds, for all € R’. On the other “off’ reaction) can be used inductively. O
hand, forx € SRY

8s(x) == 2e(Z)%6(x, T)

AN

C. A Remark on Exponential Stability

Suppose that hypothesis {}Hholds. Recalling the definition
(64) of the Lyapunov functiofy’, and the form of its gradient
given by (60){p(x)—p(Z))’, we know that the Hessian dfatz

(plx) — p(Z), 9(x))

m m

=Y > Ay(a)(ple) — p@), b — b;)

i=1 j=1 is given by@ = diag(p}(Z1), ..., R"n/(Z,)) and is therefore
< Vbs(z)\/6(z, T) nonsingular. Sin_ce the gradienﬂz_if\fanishesiat =T, We_hr;we
< Le(@)b(x, 7) a Taylor expansioV (z) = (x — ) Q(z — T) + o(|x — F|*),

and thus, for allz in some neighborhood of, ¢;|z — 7|? <
V(x) < co|z — 7|? for some positive constants andc,. If we
where the first inequality follows from the Cauchy-Schwartget d, = d,(z)/2in (36), we also have thatz, T) > dy|z—z|2
inequality, the estimate (22), and the definitionbofl herefore, for all - in a neighborhood af. So inequality (71) gives us that,
(p(z) — p(T), f*(z)) equals along trajectories in the class containiagas long ase(t) is
nearz we have

() = p(E), J()) + (pla) — p(Z), g(x))

< —Le@)s(z, 7) (71) W

(p(x) = p(@), ["(2)) < =<V (2(D)),

forall z € Sﬂ_IR", and this expression _is negat_ive whe  \wherec — o(@)dac1 /2. Integrating,V (z(t)) < e~V (2(0)),
Z. Thus, (53) in Lemma VIIl.4 holds, witl$ as given. Part 3 4 \we obtain an estimate(t) — 7|2 < (ca/c1)e—°t|z(0) — 7|2
(asymptotic stability ofr) follows from the Lemma. for all trajectories of system (21) which start nearin other

We pick any¢ € S, and consider the ensuing maximal SO'“Words, (relative) stability is in factxponential -
tion. By Part 1 of Lemma VIIl.4, the solution is defined for all

t > 0 (proving Part 2 in Theorem 4) andt) — Ey|J{Z} as

t — 4o0. SinceEy and{z} are at positive distance, this means )
that eitherz(t) — Eo or z(t) — . In the first caseS being The apthor vylshes to express great thanks to C. qusy fora
closed implies that(¢) — Eo [ S. Thus, if B, = £ does not fascinating series of lectures, tol. Keshet fqr organizing a su-
intersects, the only possibility is that(t) — z. Conversely, if Perb workshop, and most especially to M. Feinberg for making
S E, # 0 thenzZs is not globally asymptotically stable re|a_ayallabl_e reprints of his work and for very enlightening e-mail
tiveto S. This is clear, since if € E, (S # @ then( (beingan discussions.
equilibrium) is not attracted t®. This proves Part 4 of Theorem

4 |
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Correction to “Structure and Stability of Certain Chemical —|— g(x, z) Q)
Networks and Applications to the Kinetic Proofreading m ) g
Model of T-Cell Receptor Signal Transduction” ZZ“ Dl 4 _|_ 5( ) + (e, 2) )
=1 j=1
Eduardo D. Sontag =
<- 4_1_(5(7 > ;]Z]au(qz_%) + g(=, z)
Index Terms—Chemical networks, stability. _ ~colw) Q(qra e go) + g 2).
4+ 68(x.2)
|. THE ERROR As earlier, equality (1) follows by adding and subtractifg, z). To
There is an error in the statement and proof of Lemma VII1.2 in tHgstify (2), we note first that
above papet. R
The estimate (55) is incorrect, and it should be replaced by the fol- 14+ h—et <= h .
lowing one: 44 h?
X c(x)8(z,2) |, . ) forall h € R. We apply this ingquality witth = ¢; — ¢; and use that
(@) = pz), f(z)) < - m"'(b(l)(f)—/?b))af(é)) (g —¢)* <X, (g0 — q)? = 8w, 2). ‘
Lemma VIII.1 gives thaQ)(q1, . . ., gm ) > k6(x, z). Thus, we may

(the first term in (55) was-c(z)6( . z)). The mistake was made whentakec(z) := rco (). This completes the proof of the revised version
passing from (57) to the next line, because the funcfiois not always of Lemma VI11.2.
negative. (As a side remark, note that the relevant equation numbers in
the published version are inconsistent with the discussion).

We will explain here how this new estimate is proved, and why the
main results are not affected by the change. All notations are as in irBecause of the new statement, a couple of small changes must be

I1l. THE PROOFS OF THEMAIN RESULTS

the above papér. made in the proofs of the main results of the paper. First of all, in
the proof of Theorem 4, instead 6f (z) = (1/4)c(%)? 6(x, %), one
Il. THE Fix should define
We first note that (56) can also be written as 55 (x) 1 c(z)?6 (2, %)
r)i= - ——-=
. 44+6(nn)’
g(x,z) = ZZa (b5.5(2)) (pi—a; _ 1).
i=1 j=1 which then leads to an upper bound as follows in (71):
The main derivation is now as follows: 1 c(2)6 (2, %)
7 5 T24+4%6 )
() = A=), f) o= 2)
_ Z i“' (B (g Finally, Remark VIII.C on exponential stability is still valid with the
& = Y R modified formulas, because
_ m m . /<bj1/—;(_7)> L L /t]i—qj 1 _lc(.’E)LS(;L’./ .f‘) < —p -
;;a”(’ (qz q; —e + ) 274_1_(5(}):.%) < —k6 (2, )

for any constant >0 which lower-bounds the valug$/2)c(x)/(4+
Manuscript received November 5, 2001. 8(x,)) on a neighborhood of.
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