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Abstract

This paper provides a necessary and sufficient condition for detectability for chemical
reaction networks of the Feinberg-Horn-Jackson zero deficiency type. Under this condition,
an explicit construction of globally convergent observers is obtained based on ISS techniques.
The observers are easy to implement, and several robustness aspects are tested in numerical
simulations.
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1 Introduction

One of the most interesting questions in control theory is that of constructing observers. Ob-
servers compute estimates of the internal states of a dynamical system, using data provided by
measurement probes or partial state information. For linear systems, Luenberger observers (also
known as “deterministic Kalman filters” since they amount to Kalman filters designed without
regard to the statistics of measurement noise) provide a general solution, but, for nonlinear sys-
tems, establishing generally applicable conditions for existence and convergence of observers is
an open and active area of research.

The question of constructing observers has long been of interest in chemical engineering, and
in particular for bioreactors; see for instance the papers [2, 5, 15] and the book [3]. Observers are
of great potential interest, in particular, for biological experimentation and biomedical applica-
tions, where the online monitoring of proteins involved in signaling pathways (using for instance
fluorescent labelings of molecules) will lead to a better understanding of cellular dynamical pro-
cesses.

The main objective of this paper is to construct (when and if possible) state observers for the
class of systems which describe chemical reaction networks of the type introduced by Feinberg,
Horn, and Jackson in [6, 7, 8, 9, 11, 12]. As outputs, we take a subset of state variables or, more
generally, monomials in state variables (which could, in practice, be associated to measured
reaction rates). We provide here a complete solution to the observer problem for this class. The
results given in [20] provide a convenient formalism as well as a set of technical tools, in the
∗Work was supported in part by US Air Force Grant F49620-98-1-0242
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form of Lyapunov estimates, which are central to our results, and we will repeatedly refer to that
paper for basic concepts and results.

As a first step in this paper, we prove a necessary and sufficient theoretical condition for
detectability. As a second step, we proceed to explicitly construct a full-state observer that is
guaranteed to converge globally, under the hypothesis that the system is detectable.

We also provide simulations which test the behavior of our observer in the presence of ob-
servation noise and even of unknown inputs acting on the system; the observers turn out to be
surprisingly robust to such effects, but we leave for future work the formulation of theoretical
results which quantify this robustness. The advantadges of our observer over the standard con-
structions of Luenberger and the extended Kalman filter are also illustrated by simulations. Most
of the examples worked out in this paper, as well as the simulations testing the robustness of our
observer, all concern the kinetic proofreading model proposed by McKeithan in [14] for T-cell
receptor signal transduction (which motivated [20]).

The organization of this paper is as follows: this section introduces the problem as well as
some notations and definitions to be adopted in this work. Section 2 introduces the observer, and
the main results are stated and proved. Some examples that illustrate the result are presented,
applying the construction to the case of the McKeithan network. Section 3 shows how to adapt
the proof of the main result to a more general model. Section 4 provides simulations, testing in
particular the effect of noise and of unknown inputs acting on states, or state drift. A comparison
between the Luenberger observer, an extended Kalman filter and our observer is also given here.
An appendix collects various technical results.

1.1 The Problem

The main objective of this paper is to construct (when and if possible) observers for a certain type
of systems that provide a mathematical model for a class of chemical reactions. Several stability
and other control-theoretic results applicable to such systems were discussed and surveyed (but
without outputs) in the paper [20] (see also [4]). The systems that we study all have the generic
form

ẋ = f(x), y = h(x), (1)

with the requirements on f and h specified next. The function f : Rn → Rn is of the mass-action
kinetics form

m∑
i=1

m∑
j=1

aijx
b1j
1 x

b2j
2 . . . x

bnj
n (bi − bj), (2)

where m ≤ n and each bj is a column vector in Rn and has entries b1j , b2j , . . . , bnj , which are
nonnegative integers. It is assumed that B := [b1, b2, . . . , bm] has rank m and that none of its
rows vanishes.

The constants aij are all nonnegative, and the matrix A = [aij ] is assumed to be irreducible.
In the language of Feinberg et. al., irreducibility amounts to a restriction to “single linkage
class” systems. This restriction can be removed, as explained in [20], provided that the space D
introduced below is defined in a slightly different way to account for the number of connected
components in the incidence graph of A. In order to simplify the presentation, the main result
is stated for irreducible systems, and a sketch of how to treat the “multiple linkage classes” case
is given in Section 3.

Although (2) is defined on all of Rn, we will be interested only on those trajectories which
evolve in the positive orthant Rn>0 = {(x1, . . . , xn) ∈ Rn : xi > 0 for all i}. It is easy to verify
(cf. [20] and below) that Rn>0 is a forward invariant set for (1) when f has the form (2).
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Define

D := span{bi − bj : i, j = 1, . . . ,m}

and let the canonical basis of Rn be {ei : i = 1, . . . , n}.
The function f does not depend explicitly on time t; however, throughout the text, several

variations of the system will be considered, obtained by adding input terms to f . The inputs
will be assumed to be measurable and bounded functions u : [0,+∞) → Rp, and the resulting
right hand side will be denoted by f∗(x, u).

In order to decide what kind of output functions h : Rn → Rp are natural to consider, we
should think of the quantities that may be measured when performing a chemical experiment.
Some possibilities are, for example, concentrations of some of the substances, or certain reaction
rates (through markers, fluorescence, or energy released). This leads us to consider outputs whose
coordinates are monomials. This kind of output includes both the case when the concentrations
of some of the substances are measured (x1, x2, etc.) and the case when some of the reaction
rates are measured (proportional to a monomial such as x1x

3
2).

Thus, we consider in this paper output maps h : Rn → Rp (typically, p ≤ n), of the form:

h(x) =

 xc11
1 xc12

2 · · ·xc1nn
...

x
cp1
1 x

cp2
2 . . . x

cpn
n

 , (3)

where C = (cij) is a matrix all whose entries are either 0 or real numbers ≥ 1. (In view of the
preceding discussion, the most natural choice would be to take the entries of C to be nonnegative
integers, but we allow more arbitrary exponents since the results do not require integers. The
restriction cij ≥ 1 is imposed in order to insure that h(x) is locally Lipschitz, which is needed
in order to guarantee uniqueness of solutions in the observer equations to be presented later.
Although we are ultimately interested in behavior for positive xi’s, the ouputs make sense on
Rn, provided that we interpret exponents xci as |xi|c for negative xi’s.)

Let us introduce the following vector functions:

ρn(x) = (lnx1, . . . , lnxn)′ and Expn(v) = (ev1 , . . . , evn)′

defined on Rn>0 and Rn, respectively. (From now on, we will drop the subscript n of ρn and Expn,
since its value is usually clear from the context.) Then, for x ∈ Rn>0,

ρ(h(x)) = Cρ(x) and h(x) = Exp(Cρ(x)),

as long as all state variables (concentrations, when dealing with chemical models) xi are positive.

No Boundary Equilibra Assumption

For the rest of this paper, we will make the following assumption: the system (1) has no boundary
equilibrium in any positive stoichiometric class. That is, if x = (x1, . . . , xn) is any vector with
nonnegative components xi, and some component xi of x vanishes, and if x − x̄ ∈ span{bi −
bj , i, j = 1, . . . ,m} for some x̄ ∈ Rn>0, then f(x) 6= 0. This assumption amounts to saying
that no reaction consistent with positive concentrations can be in equilibrium if one of the
participating substances is at zero concentration. It is an assumption that is often satisfied in
chemical reaction models, and is in particular satisfied in the main example (kinetic proofreading)
to be discussed. It is possible to weaken this boundary assumption and still obtain significant
(though more restricted) results (using the techniques developed in [20]) but we prefer not to do
so in order to streamline the presentation.
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Under the above assumption, the following result is a simple consequence of the theory
developed by Feinberg et. al., see [20]. A (positive) class is any intersection of Rn>0 with an affine
manifold of the form ξ +D, where ξ ∈ Rn>0 and D = span{bi − bj : i, j = 1, . . . ,m}. We use the
notation |x| for Euclidean norms.

Theorem 1 For each positive class C there exists a (unique) state x̄ = x̄C ∈ Rn>0 which is a
globally asymptotically stable point relative to C, i.e., for each x0 ∈ C, the solution of ẋ =
f(x), x(0) = x0 is defined for all t ≥ 0, and x(t) → x̄ as t → ∞, and for all ε > 0 there exists
δ > 0 such that, if |x̄− x0| < δ, then |x̄− x(t)| < ε for all t > 0.

1.2 Detectability

Definition 1.1 The system (1) is detectable if, for every two trajectories x and z such that x(t)
evolves in Rn>0 and z(t) evolves in Rn≥0 and both are defined for all t ≥ 0,

h(x(t)) ≡ h(z(t)) ⇒ |x(t)− z(t)| → 0 as t→∞.

In particular, the system is detectable on Rn>0 if this implication is satisfied for every two trajec-
tories x(t) and z(t) that evolve in Rn>0 and are defined for all t ≥ 0.

Remark 1.2 Although we use it in this paper, this is not the most natural definition of de-
tectability, because it is not “well posed” enough. In principle, one would want the definition
of detectability to also include the property: “h(x(t)) ≈ h(z(t)) for all t implies |x(t) − z(t)| is
asymptotically near zero as t→∞”, which can be formulated as an “incremental output to state
stability” (or more generally, “incremental input/output to state stability”, if there are inputs)
property. Such a more general concept, in the style of [13] and [23], can also be studied.

Definition 1.3 By a (full-state) observer for (1) we mean a system ż = g(z, h(x)) evolving on
a state space X which is an open subset of Rn containing Rn>0, such that, for each x(0) ∈ Rn>0,
z(0) ∈ Rn≥0, the composite system has solutions defined for all t > 0, and |z(t)− x(t)| → 0 as
t→ +∞.

This is a weak definition, on that only “attraction” and not stability is required; however,
in our proofs we achieve a stability property as well, as will follow from “KL” estimates. De-
tectability on Rn>0 is, obviously, necessary for the existence of an observer, and detectability is
also necessary if the observer is consistent in the sense that g(z, h(z)) = f(z) for all z, as our
observer will be.

For system (1), we denote by E the set of all equilibria, i.e., all x̄ such that f(x̄) = 0. Let
E+ denote the subset of E of strictly positive equilibria, and E0 denote the set of all boundary
equilibria. Then E = E+ ∪ E0 as a disjoint union. In [20], the following is proved:

Lemma 1.4 (Corollaries 7.5 and 7.7 in [20]) Consider the system ẋ = f(x). Pick any trajectory
x evolving in Rn≥0. Then, either x(t) ≡ ξ ∈ E0 or x(t) ∈ Rn>0 for all t > 0.

Lemma 1.5 For system (1), detectability is equivalent to:

[h(x̄) = h(z̄) & x̄ ∈ E+, z̄ ∈ E] ⇒ x̄ = z̄ . (4)

Proof. [necessity] Suppose that the system is detectable, and pick x̄ 6= z̄ distinct elements of
E+ and E, respectively, so that h(x̄) = h(z̄). Then x(t) ≡ x̄ and z(t) ≡ z̄ are two trajectories
evolving in Rn>0 and Rn≥0, respectively, and h(x(t)) ≡ h(z(t)) and distinct limits, a contradiction.
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[sufficiency] Suppose that (4) holds and pick any two trajectories evolving in Rn>0 and Rn≥0,
respectively, and h(x(t)) ≡ h(z(t)). Since h is continuous, this implies h(x̄) = h(z̄) for the limits
of x and z, which exist and belong to E+ and E, respectively (to see this: by Lemma 1.4, either
z(t) ≡ z(0) ∈ E0, or z(t) ∈ Rn>0 for all t > 0. Under the assumption that each positive class
contains no boundary equilibria, Theorem 1 says that z(t)→ z̄ ∈ E+. Similarly, x(t)→ x̄ ∈ E+).
Then (4) says x̄ = z̄, as we wanted to prove.

Remark 1.6 A more symmetric detectability condition would be “[h(x̄) = h(z̄) & x̄, z̄ ∈ E] ⇒
x̄ = z̄”, but this turns out to be quite strong. It is not reasonable to expect h(·) to distinguish
between any two boundary equilibria. For instance, in Example 2.1 below, h(x) ≡ 0 on E0.

Since the function Exp is one to one, for positive vectors x, z ∈ Rn>0 we have

h(x) = h(z) ⇔ Cρ(x) = Cρ(z),

so that the condition h(x̄) = h(z̄) and x̄, z̄ ∈ E+, becomes just ρ(x̄) − ρ(z̄) ∈ kerC . Recall also
this fact from [20]: if x̄ ∈ E+, then, for any z̄ ∈ Rn>0,

ρ(x̄)− ρ(z̄) ∈ D⊥ ⇐⇒ z̄ ∈ E+ . (5)

Theorem 2 The following statements are equivalent:
(a) The system (1) with f as in (2) and h as in (3) is detectable on Rn>0;
(b) ∀x, z ∈ Rn>0, if ρ(x)− ρ(z) ∈ kerC and x, z ∈ E+, then x = z;
(c) D⊥

⋂
kerC = {0};

(d) D + imC ′ = Rn .

Proof. [(a)⇔ (b)] That condition (4) is equivalent to (b) follows immediately from the discussion
above.

[(b) ⇒ (c)] Pick any y ∈ D⊥
⋂

kerC; we need to show that y = 0. Let x̄ be any point of
E+ and put ỹ = ρ(x̄) − y, ỹ ∈ Rn. Then find z = Exp(ỹ) ∈ Rn>0 so that ỹ = ρ(z). Thus
y = ρ(x̄) − ρ(z) with x̄ ∈ E+ and z ∈ Rn>0. By definition of y, ρ(x̄) − ρ(z) is contained both in
D⊥ and in kerC. Condition (5) now implies that z ∈ E+. By assumption (b), we now conclude
that x̄ = z, or equivalently, y = 0 as wanted.

[(c) ⇒ (b)] Let x, z ∈ Rn>0 satisfy both ρ(x) − ρ(z) ∈ kerC and x, z ∈ E+. Then, from (5),
if follows that ρ(x) − ρ(z) ∈ D⊥. Therefore, ρ(x) − ρ(z) ∈ D⊥

⋂
kerC. By assumption (c)

ρ(x)− ρ(z) = 0, and therefore, since ρ(·) is a bijective function on Rn>0, we have x = z.
[(c) ⇔ (d)] This equivalence follows by duality.

Corollary 1.7 The system (1) is detectable if and only if it is detectable on Rn>0 and h(x̄) 6= h(z̄)
whenever x̄ ∈ E+ and z̄ ∈ E0.

Remark 1.8 A useful sufficient condition, on the matrix C, for system (1) to be detectable is
now given. This condition is straightforward from the results above and depends only on the
stoichiometric space D (more precisely, on the matrix B).

Since hi(x̄) > 0 for all i and all x̄ ∈ E+, the condition

(∀ z̄ ∈ E0) (∃ i ∈ {1, . . . , p}) hi(z̄) = 0, (6)

is certainly sufficient for h to distinguish between interior and boundary equilibrium points.
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On can show that every boundary equilibrium z̄ satisfies z̄b1j1 z̄
b2j
2 . . . z̄

bnj
n = 0 for all j =

1, . . . ,m, see Lemma 6.2 in [20]. An easy way to satisfy (6) is to ask that one of the columns of
C ′ is a multiple of one of the columns of B — in other words, as discussed in the introduction,
choose one of the measured quantities to be one of the reaction rates. (In fact, in this case,
hi(z̄) = 0 for all z ∈ E0, where i is the column in question.) Since dim D = m − 1 and rank
B = m, it is very easy to construct C so that both condition (6) and D + imC ′ = Rn are
satisfied, and thus system (1) detectable.

Remark 1.9 Note that dimD = m− 1 and that detectability implies m− 1 + rank C ′ = n. In
the case the matrix C has full rank, then rank C ′ = p and detectability implies m− 1 + p = n.

2 Constructing Observers

The main result is stated next and its proof is given in Section 2.2:

Theorem 3 Consider the system (1) and assume that it is detectable. Then the following
system, with state space X = Rn, is an observer for the system (1):

ż = f(z) + C ′(h(x)− h(z)). (7)

Example 2.1 Consider the system with n = 4 and m = 3, determined by the vectors:

b1 = (1, 1, 0, 0)′, b2 = (0, 0, 1, 0)′, and b3 = (0, 0, 0, 1)′.

Then D = span{(1, 1,−1, 0), (1, 1, 0,−1)}, and for positive constants k, k3, k4 and β3, the sys-
tem (1) becomes the “McKeithan network”,

ẋ1 = −kx1x2 + k3x3 + k4x4

ẋ2 = −kx1x2 + k3x3 + k4x4 (8)
ẋ3 = kx1x2 − (k3 + β3)x3

ẋ4 = β3x3 − k4x4.

The boundary equilibria of the system are given by x1x2 = x3 = x4 = 0, i.e., elements of
E0 have the form (r, 0, 0, 0)′ or (0, r, 0, 0)′ for r ≥ 0. The positive classes are characterized by
x1 + x3 + x4 = α, x2 + x3 + x4 = β for each pair of positive constants α, β. Suppose that the
output is given by h(x) = (x1x

2
2, x1x4)′. It is easy to check that h satisfies the detectability

conditions (in fact, for this example, the condition D+imC ′ = Rn is necessary and sufficient for
detectability, since any such matrix C also satisfies (6)). Then, we can construct the following
observer:

ż1 = −kz1z2 + k3z3 + z4z4 +(x1x
2
2 − z1z

2
2) + (x1x4 − z1z4)

ż2 = −kz1z2 + k3z3 + z4z4 +2(x1x
2
2 − z1z

2
2)

ż3 = kz1z2 − (k3 + β3)z3

ż4 = β3z3 − k4z4 +(x1x4 − z1z4).

The remainder of this section will be devoted to proving this theorem. The basic idea is to
study the stability properties of system (1) when a certain input is added to the function f ,
specifically, the system with right-hand side: f∗(z, u) := f(z) +C ′(u− h(z)). We will show that,
for the system thus obtained, an “input to state stability” condition holds. The observer for (1)
is obtained by letting the input be u(t) = h(x(t)). The analysis of this system with inputs is
interesting in its own right, since it provides a means of studying the behavior of the model under
bounded inputs.
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2.1 An ISS Property

The definition of an input-to-state stable (ISS) system was introduced in [18]. Here, we adapt this
notion to deal with constrained inputs and relative equilibria, as well as positive states (i.e., those
states with all coordinates in the strictly positive half-line). We also use a notion of semi-global
ISS, for dealing with systems that evolve in a compact set of their state-space.

From now on, whenever we mention an input u(·), we will mean a measurable essentially
bounded function u : [0,+∞) → Rp, possibly restricted to take values in a set U of Rp. For
u : [0,+∞)→ Rp and any fixed ū ∈ Rn, denote

‖u− ū‖ := ess. sup .{|u(t)− ū| : t ≥ 0}.

Definition 2.2 A system ż = f∗(z, u), with input-value set U, evolving on a state space X which
is an open subset of Rn containing Rn>0, is Rn>0-(forward) invariant (respectively, Rn≥0-(forward)
invariant) if, for each initial state z(0) ∈ Rn>0 (respectively, z(0) ∈ Rn≥0 ∩ X ) and each U-
valued input u(·), the corresponding maximal solution of ż = f∗(z, u) as a differential equation
in X , which is defined on an interval Jz(0),u = [0, tmax), has values z(t) ∈ Rn>0 (respectively,
z(t) ∈ Rn≥0 ∩ X ) for all t ∈ Jz(0),u.

The system is Rn>0-(forward) complete if it is Rn>0-(forward) invariant and, for each z(0) ∈ Rn>0

and U-valued input u(·), Jz(0),u = [0,+∞).
The system is Rn≥0-(forward) complete if it is Rn≥0-(forward) invariant and, for each z(0) ∈

Rn≥0 ∩ X and U-valued input u(·), Jz(0),u = [0,+∞).

For the following definitions, fix points x̄ ∈ Rn>0 and ū ∈ U, where U is a subset of Rp.

Definition 2.3 A system ż = f∗(z, u), evolving on a state space X which is an open subset of
Rn containing Rn>0, is [semi-gobal] input-to-state stable with input-value set U (with respect to
the point x̄ and the input ū) if it is Rn>0-complete and if for every compact set F ⊂ X there exist
a function β = βF of class KL and a function ϕ = ϕF of class K∞ such that, for each U-valued
input u(·), and each initial condition z0 ∈ F ∩ Rn>0, it holds that

|z(t)− x̄| ≤ β(|z0 − x̄|, t) + ϕ(‖u− ū‖) (9)

for all t ≥ 0 such that z(s) ∈ F for all s ∈ [0, t].
If the same functions β, ϕ are valid for every compact subset F of X , then the system is

input-to-state stable with input-value set U.

To study the stability properties of the system ż = f∗(z, u) a Lyapunov-type technique is
used, and the following definition is needed.

Definition 2.4 An [semi-global] ISS-Lyapunov function with respect to the point x̄ and input ū,
for the system ż = f∗(z, u) with inputs in U ⊆ Rp, evolving on a state space X which is an open
subset of Rn containing Rn>0, is a continuous function V : Rn≥0 → R, whose restriction to Rn>0 is
continuously differentiable, which satisfies:

(i) For z ∈ Rn≥0, V (z) ≥ 0 and V (z) = 0⇔ z = x̄.

(ii) The set {z ∈ Rn≥0 : V (z) ≤ L} is compact, for each positive constant L.
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(iii) For each compact subset F of the state space X , there exist two functions α = αF , γ =
γF ∈ K∞ such that

∇V (z) f∗(z, u) ≤ −α(|z − x̄|) + γ(|u− ū|)

for all u ∈ U and z ∈ F ∩ Rn>0. If the same function γ is valid for every compact F ⊂ X ,
then one says that V is γ-uniform on Rn>0.

If the functions α, γ given in (iii) may be chosen independently of the compact F ⊂ X , then
the function V is an ISS-Lyapunov function with respect to the point x̄ and input ū.

Remark 2.5 This definition differs slightly from other definitions of “ISS-Lyapunov” functions,
such as given in [21]. The difference is in the fact that here the function V is only required to
be differentiable in the set Rn>0, and it is not required to satisfy a decrease condition except at
positive vectors. Observe that V is not proper when restricted to the positive orthant: it remains
finite as the boundary of Rn>0 is approached.

Remark 2.6 For a function V defined as above, there always exist K∞ functions, ν1, ν2, such
that

ν1(|z − x̄|) ≤ V (z) ≤ ν2(|z − x̄|) (10)

for all z ∈ Rn≥0 (see [24]).

Next, we introduce our candidate ISS-Lyapunov function. Fix an x̄ ∈ E+, and define the
following function: V : Rn≥0 → R:

V (z) =
n∑
i=1

x̄i g

(
zi
x̄i

)
=

n∑
i=1

x̄i

[
zi
x̄i

ln
zi
x̄i

+ 1− zi
x̄i

]
(11)

where g : R>0 → R, g(r) = r ln r + 1− r, with the convention that g(0) = 1. The function V is
continuously differentiable on Rn>0 and has the following properties:

(i) It is positive definite on Rn≥0 with respect to x̄, i.e., V (z) ≥ 0 and V (z) = 0 ⇔ z = x̄:
indeed, g′(r) = ln r so each g(r) strictly increases on (1,+∞) and strictly decreases on (0, 1).
But since g(1) = 0, it must be that g(r) > 0 for all r ∈ R>0. As a sum of nonnegative quantities,
V (z) is also nonnegative and, moreover,

V (z) = 0⇔ g

(
zi
x̄i

)
= 0∀ i⇔ zi = x̄i ∀ i,

that is, V (z) = 0⇔ z = x̄.
(ii) For each constant L > 0 the set {z ∈ Rn≥0 : V (z) ≤ L} is a compact subset of Rn≥0:

V (z) ≤ L implies g(zi/x̄i) ≤ L for all i; continuity of g on [0,+∞) (since limw→0 g(w) = 1)
implies that zi stays in a compact interval of R≥0 and hence z stays in a compact subset of Rn≥0.

In the next lemma, we show that the existence of an ISS-Lyapunov function (according to
Definition 2.4) for a given system, implies that the trajectories of that system satisfy an ISS
estimate.

Lemma 2.7 Consider an Rn>0-invariant system ż = f∗(z, u), with input-value set U. Fix a state
x̄ ∈ Rn>0 and input value ū ∈ U. Suppose that there is some [semi-global] ISS-Lyapunov funtion
V with respect to x̄ and ū. Assume that either: (a) the system is Rn>0-complete, or (b) the
state-space X contains Rn≥0 and V is γ-uniform on Rn>0.

Then, the system is [semi-global] input-to-state stable with input-value set U (with respect
to the same x̄ and ū).
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Proof. This proof is very similar to what is done in the case of the usual definition of an ISS
system (see [21], for instance). Fix any compact set F ⊂ X . According to the definition, V
satisfies an estimate of the form

∇V (z) f∗(z, u) ≤ −α(|z − x̄|) + γ(|u− ū|),

for each z ∈ F ∩ Rn>0 and each u in the input value set U, where α = αF , γ = γF ∈ K∞.
From Remark 2.6 there exist two class K∞ functions, ν1, ν2, such that ν1(|z − x̄|) ≤ V (z) ≤

ν2(|z − x̄|), for all z ∈ F .
We define new functions χ, ϕ ∈ K∞ by χ = α−1 ◦ (2γ) and ϕ = ν−1

1 ◦ν2 ◦χ, and β, β̃ ∈ KL by
β(r, t) = ν−1

1 (β̃(ν2(r), t)), where β̃(r, t) is the (unique) solution y(t) of ẏ = −1
2α(ν−1

2 (y)), y(0) = r.
Note that β and ϕ are independent of F whenever α, γ are independent of F .

Pick any initial condition z0 ∈ F ∩ Rn>0, and an input u : [0,+∞) → U, and consider the
corresponding maximal solution z(t), defined on the (maximal) interval J . We first prove the Rn>0-
completeness of the system. We have nothing to prove in case (a); if case (b) holds and the system
is not complete, i.e., J = [0, t̂max), where t̂max < +∞, then ∇V (z(t)) f∗(z(t), u) ≤ γ(‖u− ū‖) = c
for all t ∈ [0, t̂max). Then

d

dt
V (z(t)) ≤ c ⇒ V (z(t)) ≤ V (z(0)) + c t̂max = L ∀ t ∈ J

and, by property (ii) of Definition 2.4, z(t) belongs to a compact subset of Rn≥0 ⊂ X for all t ∈ J .
Hence J must be [0,+∞) which is a contradiction.

Define also tmax to be such that z(t) ∈ F for all t ∈ [0, tmax]. Observe that:

|z − x̄| > χ(|u− ū|)⇔ α(|z − x̄|) > 2γ(|u− ū|)⇒ ∇V (z) f∗(z, u) < −1
2
α(|z − x̄|) (12)

for all z ∈ F ∩ Rn>0.
For s = ν2(χ(‖u− ū‖)), define the following sublevel set of V : S = {ξ ∈ Rn≥0 : V (ξ) ≤ s}.

Claim. Suppose there exists an instant σ ∈ I such that z(σ) ∈ S. Then z(t) ∈ S for all
σ ≤ t ≤ tmax.

To see this, argue by contradiction: suppose there exists a t > σ (but t ≤ tmax) and an ε > 0
such that V (z(t)) > s + ε. Let τ = inf{t ≥ σ : V (z(t)) ≥ s + ε}. Then z(τ) /∈ S which implies
V (z(τ)) > ν2(χ(‖u− ū‖)), and therefore, since V (z) ≤ ν2(|z − x̄|) and ν2 is strictly increasing,

ν2(|z(τ)− x̄|) > ν2(χ(‖u− ū‖))⇐⇒ |z(τ)− x̄| > χ(‖u− ū‖).

By (12), d
dtV (z(t))|τ < 0, implying that V (z(t∗)) ≥ V (z(τ)) for some t∗ ∈ (σ, τ), and thus

contradicting minimality of τ . So the claim holds.
Now, let T = inf{σ : z(σ) ∈ S} (with T = tmax if the trajectory never enters S). We have

two cases to consider, for each 0 < t ≤ tmax:
For t ∈ (T, tmax]: V (z(t)) ≤ ν2(χ(‖u− ū‖)) implies

ν1(|z(t)− x̄|) ≤ ν2(χ(‖u− ū‖)) =⇒ |z(t)− x̄| ≤ ν−1
1 ◦ ν2 ◦ χ(‖u− ū‖).

For t ≤ T : V (z(t)) ≥ ν2(χ(‖u− ū‖)), which implies |z(t)− x̄| ≥ χ(‖u− ū‖) and hence

d
dt
V (z(t)) ≤ −1

2
α(|z(t)− x̄|) ≤ −1

2
α[ν−1

2 (V (z(t)))].

9



By a standard comparison principle, there exists a function β̃ ∈ KL (which depends only on α
and ν2) such that V (z(t)) ≤ β̃(V (z0), t) for all t < T . Then

|z(t)− x̄| ≤ ν−1
1 (β̃(V (z0), t)) ≤ ν−1

1 (β̃(ν2(|z0 − x̄|), t)) := β(|z0 − x̄|, t).

Thus, for all t ∈ I,

|z(t)− x̄| ≤ max{β(|z0 − x̄|, t), ϕ(‖u− ū‖)} ≤ β(|z0 − x̄|, t) + ϕ(‖u− ū‖)

where β = βF ∈ KL and ϕ = ϕF ∈ K∞.
If V is an ISS-Lyapunov function, then α, γ are independent of F , and so are β, ϕ.

2.2 Proof of Theorem 3

The following formulas will be useful:

πj(z, x̄) = πj :=
[
z1

x̄1

]b1j [ z2

x̄2

]b2j
. . .

[
zn
x̄n

]bnj
,

qj(z, x̄) = qj := 〈bj , ρ(z)− ρ(x̄)〉,

where x̄ = (x̄1, . . . , x̄n)′ ∈ E+ and πj is defined for z ∈ Rn≥0 and qj is defined for z ∈ Rn>0.
Observe that πj = eqj . Define the function Rn≥0 × Rn>0 → R≥0

Ψ(z, x̄) :=
m∑
i=1

m∑
j=1

(
e−πi − e−πj

)2
.

Lemma 2.8 If x̄ ∈ E+, then for all z ∈ Rn≥0:

Ψ(z, x̄) = 0 ⇔ z ∈ E.

Proof. The function Ψ can be zero only if πi = πj for all i, j ∈ {1, . . . ,m}. This can happen if
(a) either πi = 0 for some i ∈ {1, . . . ,m}, hence for all i in this set, which implies that z ∈ E0;
(b) or all πi 6= 0 and eqi = eqj for all i, j ∈ {1, . . . ,m} which is equivalent to qi − qj = 0 for all
i, j ∈ {1, . . . ,m} and, from (5), we know this implies z ∈ E+.

Lemma 2.9 Let c0, c1 > 0 be constants and fix x̄ ∈ E+. Let h be a function of the form (3)
such that ẋ = f(x), y = h(x) is detectable. Then, the function Rn≥0 → R≥0,

µ(z) := c0Ψ(z, x̄) + c1|h(z)− h(x̄)|2

is positive for all z ∈ Rn≥0 \ {x̄}, and µ(z) = 0 if and only if z = x̄.
Moreover, given any compact subset F ⊂ Rn≥0, there exists a class K∞ function, α = αx̄,F

such that

µ(z) ≥ α(|z − x̄|)

for all z ∈ F .
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Proof. Since both terms in µ are nonnegative it is clear that µ can be zero only if both terms are
simultaneously zero. By Lemma 2.8, Ψ(z, x̄) = 0 iff z ∈ E. Thus we conclude that µ(z) = 0 if
and only if z ∈ E and h(z) = h(x̄). But, from the detectability conditions (and because x̄ ∈ E+),
we have that: (i) z ∈ E0 ⇒ h(z) 6= h(x̄), so µ(z) > 0; (ii) z ∈ E+ and h(z) = h(x̄) imply z = x̄,
so that µ(z) = 0 if and only if z = x̄.

Next, let F ⊂ Rn≥0 be any compact set and set R to be such that the closed ball |z − x̄| ≤ R
contains the set F . Consider the function Rn≥0 → Rn≥0 given by

α(r) :=
r

r + 1
min{µ(z, x̄) : r ≤ |z − x̄| ≤ R, z ∈ Rn≥0}

for all 0 ≤ r ≤ R, and α(r) := α(R) rR for all r > R. Since µ(z) = 0 iff z = x̄ and since the
minimum is taken over a compact set, the function α satisfies α(0) = 0 and α(r) > 0 for r > 0.
It is continuous for 0 ≤ r < R because µ is, and for R ≤ r by construction. Also clearly, for
R ≤ r, α is strictly increasing and satisfies α(r)→ +∞ as r → +∞. For 0 ≤ r ≤ R, α(r) is also
strictly increasing, as a product of a strictly increasing function and a nondecreasing function.
Finally, by construction, µ(z) ≥ α(|z − x̄|) for all F .

We next establish some useful estimates.

Lemma 2.10 Let f(z) be defined as in (2). There exists a positive constant κ(A) and a contin-
uous function c : Rn≥0 → R≥0 given by c(ξ) = 1

2 minj e〈bj ,ρ(ξ)〉 such that, for all z, x̄ ∈ Rn>0:

〈ρ(z)− ρ(x̄), f(z)〉 ≤ −κ(A) c(x̄) Ψ(z, x̄). (13)

Proof. Note that

〈ρ(z)− ρ(x̄), f(z)〉 =
m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉[eqj (qi − qj)− (eqi − eqj )]

≤ −1
2

m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉(e−πi − e−πj )2

≤ −1
2
κ(A) min

j
e〈bj ,ρ(x̄)〉Ψ(z, x̄).

To justify these inequalities, consider the function, for any fixed a ∈ R:

fa(r) := ea(r − a)− (er − ea) +
1
2

(e−e
r − e−ea)2

and note that it is negative for r 6= a, and zero at r = a. Indeed, consider its derivative

f ′a(r) = ea − er − ere−er(e−er − e−ea)

and note that

(i) |e−er − e−ea | ≤ |er − ea|, because the function e−y is Lipschitz for y ∈ [0,+∞) with con-
stant equal to 1;

(ii) er < ee
r
, so ere−e

r
< 1.

From (i) and (ii) it follows that, for all r, a ∈ R, r 6= a,

ere−e
r |e−er − e−ea | < |er − ea|,
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meaning that the first term, ea − er, always dominates the sign of f ′a(r). Therefore, when r > a,
f ′a(r) < 0 and hence fa is strictly decreasing on the interval (a,+∞); when r < a, f ′a(r) > 0
and hence fa is strictly increasing on the interval (−∞, a). This gives the desired result, since
fa(a) = 0.

So, let a = qj and r = qi and recall that πi = eqi , to obtain the first inequality. For the
second inequality, use the irreducibility of the matrix A = (aij) and Lemma 8.1 of [20], to get
the positive constant κ(A) that depends on A and satisfies that inequality.

Lemma 2.11 For every compact set F in Rn≥0, there exists a constant cF > 0 such that for
every z ∈ F ∩ Rn>0:

−〈C(ρ(z)− ρ(x̄)), h(z)− h(x̄)〉 ≤ −cF |h(z)− h(x̄)|2. (14)

Proof. Recall the form of the function h and observe that

〈C(ρ(z)− ρ(x̄)), h(z)− h(x̄)〉 = 〈ρ(h(z))− ρ(h(x̄)), h(z)− h(x̄)〉,

which in turn is equal to
∑
|ln(hi(z))− ln(hi(x̄))||hi(z)− hi(x̄)|.

To show (14), we let M = max{hi(z) : z ∈ F, i ∈ {1, . . . , p}} and put κ = 1/M . For any fixed
a ∈ (0,M ], consider the (scalar) function

fa(r) := |ln r − ln a| − κ|r − a|.

We now show that fa(r) ≥ 0 for every 0 < r ≤ M . Clearly fa(a) = 0. For r > a,
fa(r) = ln r − ln a − κ(r − a) and f ′a(r) = 1

r − κ ≥ 1
M − κ = 0, so that fa(r) is increasing

for all r > a, hence always nonnegative. For r < a, fa(r) = − ln r + ln a + κ(r − a) and
f ′a(r) = −1

r + κ ≤ − 1
a + κ ≤ − 1

M + κ = 0, so that fa(r) is decreasing for all r < a, hence always
nonnegative.

Therefore, taking r = hi(z) and a = hi(x̄), we obtain |ln(hi(z))− ln(hi(x̄))| ≥ κ|hi(z)− hi(x̄)|
for each i, which gives the desired inequality with cF = κ.

Lemma 2.12 Let f∗(z, u) = f(z)+C ′(u−h(z)) with C such that D+imC ′ = Rn. Let x̄ denote
any point in E+, and θ be any real number with 0 < θ < 1. Define the following subset of Rp:

Uθ = {u ∈ Rp : |uk − hk(x̄)| ≤ θ

2
hk(x̄), k = 1, . . . , p}.

Then, for the function V defined in (11), there exist functions α1 = α1,x̄ positive definite, and
γ = γx̄ of class K∞ such that

∇V (z) f∗(z, u) ≤ −α1(|ρ(z)− ρ(x̄)|) + γ(|u− h(x̄)|),

for all z ∈ Rn>0 and all u ∈ Uθ. In particular, one may choose γ(r) = c3r
2, with c3 = 1

2θλ where
λ = min{hi(x̄)/2 : i = 1, . . . , p}.

Furthermore, let F be any compact subset of Rn≥0 which contains x̄. Then there exists a
function α = αF of class K∞ such that (γ is the same as before)

∇V (z) f∗(z, u) ≤ −α(|z − x̄|) + γ(|u− h(x̄)|),

for all z ∈ F ∩ Rn>0 and all u ∈ Uθ.
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Proof. Pick any x̄ ∈ E+ and any 0 < θ < 1. We have

∇V (z) f∗(z, u) = 〈ρ(z)− ρ(x̄), f(z)〉+ 〈ρ(z)− ρ(x̄), C ′(u− h(z))〉.
Using the notation % = ρ(z)−ρ(x̄), notice that the second term on the right can be rewritten as:

〈C%, u− h(z)〉 = 〈C%, u− h(x̄)〉 − 〈C%, h(z)− h(x̄)〉.
Introducing the notation σ = C%, µ = h(z) − h(x̄) and v = u − h(x̄), the expression for
∇V (z) f∗(z, u) becomes

∇V (z) f∗(z, u) = 〈%, f(z)〉 − 〈σ, µ〉+ 〈σ, v〉 = P (z, x̄) +R(z, u, x̄)

where

P (z, x̄) = 〈%, f(z)〉 − (1− θ)〈σ, µ〉,
R(z, u, x̄) = −θ〈σ, µ〉+ 〈σ, v〉 =

∑
σi(−θµi + vi)

We now bound each of these terms.
Step 1. We show first that R(z, u, x̄) ≤ c3|v|2, for some positive constant c3.
Notice that µiσi = (hi(z)− hi(x̄))(lnhi(z)− lnhi(x̄)) ≥ 0 for all pairs hi(z), hi(x̄).

(i) if θ|µi| ≥ |vi|, then immediately σi(−θµi + vi) ≤ 0.

(ii) if θ|µi| < |vi|, then σi(−θµi + vi) ≤ 2|σi||vi| ≤ 2cL
θ |vi|2 where the last inequality follows

from the bounds on u:

|vi| = |ui − hi(x̄)| ≤ θ

2
hi(x̄) ⇒ |hi(z)− hi(x̄)| = |µi| ≤

1
θ
|vi| ≤

1
2
hi(x̄),

so that hi(z) ≥ hi(x̄)/2, and with a Lipschitz constant, cL, of the logarithmic function on
[λ,+∞), when λ = min{hi(x̄)/2 : i = 1, . . . , p} (for instance, cL = 1/λ):

|σi| = | lnhi(z)− lnhi(x̄)| ≤ cL|hi(z)− hi(x̄)| = cL|µi|.

In either case, R(z, u, x̄) ≤ 2cL
θ

∑
|vi|2 as wanted. We may take γ(r) = c3 r

2.
Step 2. Show that P (z, x̄) ≤ −α1(|ρ(z)− ρ(x̄)|), where α1 is positive definite. From equa-

tion (13) and from the form of h, it follows that

P (z, x̄) ≤ −κ(A) c(x̄) Ψ(z, x̄)− (1− θ)〈ρ(h(z))− ρ(h(x̄)), h(z)− h(x̄)〉.
Then P (z, x̄) is clearly either negative or zero. Recall that, for z ∈ Rn>0, the first term is zero only
when z ∈ E+ and the second term is zero only when h(z) = h(x̄): thus, from the detectability
condition it follows that P (z, x̄) may be zero only when z = x̄.

Consider the function R≥0 → R≥0

α1(r) = inf {κ(A)c(x̄)Ψ(z, x̄) + (1− θ)〈ρ(h(z))− ρ(h(x̄)), h(z)− h(x̄)〉 : z ∈ Cr} ,
where Cr := {z ∈ Rn>0 : |ρ(z)− ρ(x̄)| = r}. This function is a continuous, has α1(0) = 0 and is
strictly positive for all r > 0 (by the previous discussion and since Cr defines a compact subset
of Rn>0, because, for all i, ln zi → ±∞ if zi → +∞ or zi → 0), and satisfies the desired inequality
for every z ∈ Rn>0. Steps 1 and 2 establish the first part of the Lemma.

Step 3. Assume now that F ⊂ Rn≥0 is an arbitrary compact set. Then, using both (13)
and (14), we have that

P (z, x̄) ≤ −κ(A) c(x̄) Ψ(z, x̄)− (1− θ)cF |h(z)− h(x̄)|2.
By Lemma 2.9, there exists a function α = αx̄,F , of class K∞, such that P (z, x̄) ≤ −α(|z − x̄|),
for all z ∈ Rn>0 ∩ F . Since the estimate obtained in step 1 is valid for all z ∈ Rn>0, putting these
together proves the second part of the Lemma.
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Proposition 2.13 Suppose that the system defined by (2) and (3) is detectable. Consider the
system with inputs

ż = f∗(z, u) := f(z) + C ′(u− h(z)) (15)

with state-space X = Rn. Then, the system is Rn>0-invariant with input-value set Rp≥0.
Furthermore, let θ be any real number with 0 < θ < 1, and pick any fixed state x̄ ∈ E+. Let

Uθ be the subset of Rp defined in Lemma 2.12. Then, the system (15) is semi-global ISS with
input value set Uθ (with respect to the point x̄ and the input ū = h(x̄)).

Proof. The proof of the first statement, namely that the system is Rn>0-invariant with input-value
set Rp≥0, is fairly routine, and it proceeds as follows.

Given an initial condition z(0) ∈ Rn>0, and an Uθ-valued input, let z(t) be the maximal
solution of (15), defined on a (maximal) interval J . Let I = [0,+∞).

Assume that one of the coordinates becomes ≤ 0 at some instant and define

t0 = inf{t ∈ J : zk(t) = 0 for some 1 ≤ k ≤ n}.

Pick one coordinate k such that zk(t0) = 0. We reorder variables, singling out this coordinate,
and look at the time-dependent differential equation that results by fixing the remaining n − 1
variables. It is useful for that purpose to introduce the following notation:

(ž(t), x) = (z1(t), . . . , zk−1(t), x, zk+1(t), . . . , zn(t)).

In addition, we wish to see the obtained scalar equation as well-defined for all t, not just t ≤ t0.
So we construct a new function F : I × R→ R as follows:

F (t, x) =
{
f∗k (ž(t), x;u(t)), t ∈ [0, t0)
f∗k (ž(t0), x;u0), t ∈ [t0,+∞)

where u0 is any fixed element of Uθ. Then, for each fixed t, F (t, x) is locally Lipschitz in x and
the Lipschitz constants, α(t), are uniformly bounded (and hence locally integrable as a function
of time). In addition, for each fixed x, F (t, x) is measurable as a function of time. Thus the
standard existence and uniqueness conditions apply.
Claim. F (t, 0) ≥ 0 for almost all t ∈ I.

To prove this, write

f∗k (ž, x;u) =
m∑
i=1

∑
j∈A0

aijz
b1j
1 . . . z

b(k−1)j

k−1 z
b(k+1)j

k+1 . . . z
bnj
n bki

+
m∑
i=1

∑
j∈A+

aijz
b1j
1 . . . z

b(k−1)j

k−1 xbkjz
b(k+1)j

k+1 . . . z
bnj
n (bki − bkj) (16)

+
p∑
j=1

cjk[uj − hj(ž, x)],

where A0 = {j : bkj = 0} and A+ = {j : bkj > 0}.
For x = 0 and t ∈ I:
(a) the third term is nonnegative since we are assuming that cji ≥ 0 and uj ≥ 0 for all i, j,

and because hj(ž, x) = z
cj1
1 . . . xcjk . . . z

cjn
n , so either cjk = 0, or cjk > 0 and hj(ž, 0) = 0.

(b) the second term is zero since x = 0;
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(c) the first term is nonnegative since, by definition of t0, we are evaluating at zi = zi(t) ≥ 0,
for all i and t ≤ t0, and zi = zi(t0) for t > t0.

This proves the claim.
Moreover, notice that, for all t ≤ t0, the scalar variable zk(t) satisfies the initial value problem

ẋ = F (t, x), x(0) = zk(0), where F (t, 0) ≥ 0 for all t ≥ 0. Solutions of this initial value problem
exist on an open interval J̃ , and this interval contains [0, t0] because zk(t) solves the equation in
that interval. Then, by Lemma A.1, x(t) > 0 on J̃ and zk(t) = x(t) > 0 for all t < t0; since both
x(t) and zk(t) are continuous functions, we also have that zk(t0) = x(t0), contradicting the fact
that zk(t0) = 0.

This concludes the proof of Rn>0-invariance with input-value set Rp≥0. This implies that (15)
is also Rn>0-invariant with (the smaller) input value set Uθ. To prove that (15) is semi-global ISS
with input value set Uθ, it is enough, by Lemma 2.7, to show that this system admits the function
V defined in (11) as a semi-global ISS-Lyapunov function with respect to the state x̄ and the
input h(x̄), with V γ-uniform on Rn>0. Properties (i) and (ii) of Definition 2.4 have already been
shown in the discussion following formula (11). Property (iii) follows from Lemma 2.12, as well
as the fact that γ may indeed be chosen independently of the set F .

Lemma 2.14 Let f∗(z, u) = f(z) +C ′(u− h(z)) and let V denote the function defined in (11).
For each fixed x̄ ∈ E+, and each constant umax ≥ 0, there exists a constant cx̄,umax such that

∇V (z) f∗(z, u) ≤ cx̄,umax , ∀ z ∈ Rn>0, ∀ u ∈ [0, umax]p.

Proof. Pick any x̄ ∈ E+ and any nonnegative umax. Then, using estimate (13),

∇V (z) f∗(z, u) = 〈ρ(z)− ρ(x̄), f(z)〉+ 〈ρ(z)− ρ(x̄), C ′(u− h(z))〉

≤ −c0

m∑
i,j=1

(e−πi − e−πj )2 + 〈ρ(z)− ρ(x̄), C ′(u− h(z))〉

≤ 〈C(ρ(z)− ρ(x̄)), u− h(z)〉 :=
p∑
i=1

si(z, u, x̄)

where si(z, u, x̄) = (lnhi(z)− lnhi(x̄))(ui − hi(z)).
Now, let hmax be a constant depending only on x̄ such that, maxi=1,...,p | lnhi(x̄)| ≤ hmax.
For each fixed z, define the following finite, disjoint sets of integers

I+ = I+(z) = {i : hi(z) > 1} and I− = I−(z) = {i : hi(z) ≤ 1}.

Clearly I+ ∪ I− = {1, . . . , p}, and for each i ∈ I−,

ui lnhi(z) ≤ 0
|ui lnhi(x̄)| ≤ umax| lnhi(x̄)| ≤ umaxhmax

|hi(z) lnhi(z)| ≤
1
e

|hi(z) lnhi(x̄)| ≤ | lnhi(x̄)| ≤ hmax,

so that, for the corresponding ith term in the above sum:

si(z, u, x̄) = ui lnhi(z)− ui lnhi(x̄)− hi(z) lnhi(z) + hi(z) lnhi(x̄)

≤ 0 + umaxhmax +
1
e

+ hmax.
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On the other hand, for each i ∈ I+, si can be decomposed into two terms

−(lnhi(z)− lnhi(x̄))(hi(z)− hi(x̄)) + (lnhi(z)− lnhi(x̄))(ui − hi(x̄))

the first of which is always negative. Since hi(z) > 1 there is a Lipschitz constant cL = cL(x̄)
such that | lnhi(z)− lnhi(x̄)| ≤ cL|hi(z)− hi(x̄)| for all z such that hi(z) > 1. So we have,

si(z, u, x̄) ≤
{

0, if |ui − hi(x̄)| ≤ |hi(z)− hi(x̄)|
2cL|ui − hi(x̄)|2, if |ui − hi(x̄)| > |hi(z)− hi(x̄)|.

In either case, we may just write

si(z, u, x̄) ≤ 2cL(u2
max + h2

max)

whenever i ∈ I+. Then, with cx̄,umax = pmax{umaxhmax + 1/e+ hmax, 2cL(u2
max + h2

max)},

∇V (z) f∗(z, u) ≤ cx̄,umax , ∀ z ∈ Rn>0, ∀ u ∈ [0, umax]p,

as we wanted to show.

We also have the following Rn>0-completeness result:

Corollary 2.15 Under the assumptions of Proposition 2.13, system (15) is Rn≥0-complete with
input-value set Rp≥0.

Proof. Suppose that u(·) is an Rp≥0-valued input, and first pick any initial condition z(0) ∈ Rn>0.
We already know, from Proposition 2.13, that system (15) is Rn>0-invariant with input-value set
Rp≥0. Suppose that the maximal interval of existence would be [0, tmax) with tmax < +∞. Put
umax = ess. sup .{|u(t)− ū| : 0 ≤ t ≤ tmax}.

From Lemma 2.14 we have that

d

dt
V (z(t)) = ∇V (z) f∗(z, u) ≤ cx̄,umax , ∀t < tmax .

So V (z(t)) ≤ V (z(0))+cx̄,umaxtmax. Since V is proper (property (ii) of Definition 2.4), we conclude
that z(t) belongs to a compact subset of the state space Rn, a contradiction with tmax <∞.

More generally, let z(0) ∈ Rn≥0, and suppose that z(t) is defined on the maximal interval
[0, tmax). Let ξk, k = 1, 2, . . . be a sequence in Rn>0 with ξk → z(0). Denote by zk(t) the solution of
the initial value problem v̇ = f∗(v, u), v(0) = ξk, at time t. For each k, the argument above holds
and so V (zk(t)) ≤ V (ξk) + cx̄,umaxtmax, for all t < tmax. By continuity of solutions of differential
equations on the initial conditions, we have for each t ∈ [0, tmax), V (z(t)) ≤ V (z(0))+ cx̄,umaxtmax.
Therefore, if tmax is finite, we again conclude that z(t) belongs to a compact subset of the state
space Rn, a contradiction.

Proof of Theorem 3: Pick any initial states x(0) ∈ Rn>0 and z(0) ∈ Rn≥0 of the original
system (1) and the observer, respectively. We let w(·) = (x(·), z(·)) be the maximal trajectory of
the composite system

ẋ = f(x)
ż = f(z) + C ′(h(x)− h(z)),

which we also write as ẇ = g(w), with initial condition (x(0), z(0)). We need to show that
w(t) = (x(t), z(t)) is defined for all t > 0, and |z(t)− x(t)| → 0 as t→ +∞.
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Since we know that x(t) is defined for all t ≥ 0 and converges to some equilibrium x̄ as
t → +∞, we must prove that z(t) is also defined for all t ≥ 0 and converges to this same x̄ as
t→ +∞.

Fix θ to be any fixed constant such that 0 < θ < 1 and (since x(t) converges) let T0 be such
that

t ≥ T0 ⇒ |hi(x(t))− hi(x̄)| ≤ θ

2
hi(x̄)

for all i = 1, . . . , p. Let Uθ be the set of vectors u such that |ui − hi(x̄)| ≤ θhi(x̄)/2.
Next, pick T ≥ T0 so large that the convergence x(t)→ x̄ becomes exponential (such T exists,

as shown in [20]). Then, for all t ≥ T , x(t) evolves in a compact set and, letting c0 be a Lipschitz
constant for the function h in this compact,

|h(x(t))− h(x̄)| ≤ c0|x(t)− x̄| ≤ c0c1e
−c2t|x(T )− x̄|

where c1, c2 > 0 are constants that quantify the convergence of x(t).
Corollary 2.15 shows that the solution z(t) exists for all t ≥ 0 and satisfies z(t) ∈ Rn≥0 and,

in particular, by Rn>0-invariance, z(t) ∈ Rn>0 if z(0) ∈ Rn>0.
Claim 1. There exists a constant d > 0 such that for all z(0) ∈ Rn≥0 the trajectory z satisfies

V (z(t)) ≤ V (z(T )) + d, ∀ t ≥ T.

We first take the case z(0) ∈ Rn>0. Observe that the first part of Lemma 2.12 (where we may
pick γ(r) = c3 r

2) and the discussion above imply (with c4 = c3(c0c1|x(T )− x̄|)2)

d

dt
V (z(t)) ≤ c4e

−2c2t

and integrating, V (z(t)) ≤ V (z(T ))+ c4
2c2
e−2c2T for all t ≥ T . We let d = c4

2c2
e−2c2T (which indeed

does not depend on z).
In the general case z(0) ∈ Rn≥0, we let ξk, k = 1, 2, . . . be a sequence in Rn>0 with ξk → z(0).

Denote by zk(t) the solution of the initial value problem v̇ = f∗(v, u), v(0) = ξk, at time t. For
each k, V (zk(t)) ≤ V (ξk) + d, for all t ≥ T . By continuity of solutions of differential equations
on the initial conditions, taking limits we have V (z(t)) ≤ V (z(T )) + d, for all t ≥ T . The claim
holds.
Claim 2. For each trajectory z(·), there exist functions β ∈ KL, ϕ ∈ K∞, such that

|z(t)− x̄| ≤ β(|z(T )− x̄|, t) + ϕ(‖h(x)− h(x̄)‖).

for all t ≥ T .
To see this, pick any trajectory z(·) and put

F = {x : V (x) ≤ ν2(|z(T )|+ 1) + d}

which is a compact set, by properness of V . Pick funtions β = βF and ϕ = ϕF as given by
Definition 2.3.

First take the case z(0) ∈ Rn>0: claim 1 shows that z(t) ∈ F for all t ≥ T . Proposition 2.13,
applied with u(t) = h(x(t+T )) and ū = h(x̄) (note that h(x(t)) ∈ Uθ for all t ≥ T ), immediately
gives the ISS estimate with those functions β, ϕ.

Next take the more general case z(0) ∈ Rn≥0. Let ξk, k = 1, 2, . . . be a sequence in Rn>0 with
ξk → z(0). Denote by zk(t) the solution of the initial value problem v̇ = f∗(v, u), v(0) = ξk,
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at time t. Without loss of generality, by claim 1 we can conclude that zk(t) ∈ F for all k, for
all t ≥ T (because |zk(T )| ≤ |z(T )| + 1, for all k). So for each k, Proposition 2.13 says that
|zk(t)− x̄| ≤ β(|zk(T )− x̄|, t) +ϕ(‖h(x)− h(x̄)‖) holds for all t ≥ T . Taking limits as k → +∞,
shows that the same ISS estimate holds for z(·).

Now, given any ε > 0, let T1 ≥ T be such that

ϕ(‖h(x)− h(x̄)‖T1) <
ε

2
where ‖h(x)− h(x̄)‖T1 = ess. sup .{|h(x(t))− h(x̄)| : t ≥ T1} (such T1 exists because the differ-
ence |h(x(t))− h(x̄)| goes to 0 as t→ +∞).

Next, choose T2 ≥ T1 such that

β(|z(T1)− x̄|, t) < ε

2
, ∀ t ≥ T2.

Then, rechoosing T (if necessary) to be larger than T2 we have that, for all t ≥ T , |z(t)− x̄| ≤ ε.
Therefore, z(t)→ x̄ as t→ +∞ as wanted.

Remark 2.16 The observer (7) can be slightly modified to the form

ż = f(z) + C ′W (h(x)− h(z)) (17)

where W is any positive definite, diagonal p× p matrix. (See more details in [24].)

2.3 A Remark on Observation Noise

The ISS estimate obtained for the observer allows us to conclude that the observer is robust
with respect to small observation noise. We sketch this next. If the input to the observer
is u(t) = h(x(t)) + n(t) instead of h(x(t)), then the same conclusions hold regarding global
existence of trajectories (at least, provided that h(x(t)) + n(t) is nonnegative). In addition, for
large t (so h(x(t)) ≈ h(x̄) = ū), the term ϕ(‖u− ū‖) in the ISS estimate becomes approximately
ϕ(‖n‖); thus one obtains an asymptotic estimate on z(t) which is a K function of the noise level,
and is in particular small when n is small in magnitude.

3 Generalization to Systems with “Multiple Linkage Classes”

We now look at the more general case of a system with vector field of the form (2) but where the
matrix A = diag(A1, . . . , AL) is block diagonal, and each As (of size ms) is itself irreducible and
has nonnegative entries (or, at least, there exists a permutation matrix, P , such that PAP−1 has
that diagonal form). The matrix B is also partitioned into B = [B1 · · ·BL], where each Bs is of
dimension n×ms and, since the assumption that B has full rank is still valid, each Bs itself has
full rank, ms (m1 + · · · + mL = m). The system (1) can be written as ẋ = f1(x) + · · · + fL(x)
where each fs(x) is computed according to formula (2) using As and Bs.

The number L is called the number of “linkage classes” and denotes the (smallest) number
of connected components of the incidence graph G(A). G(A) is the graph whose nodes are the
integers {1, . . . ,m} and for which there is an edge j → i, iff aij > 0.

To each connected component there corresponds a space

Ds = span {bi − bj : bi, bj are columns of Bs}.

The assumptions on the Bs imply that each space Ds has dimension ms − 1,

D = D1 ⊕ · · · ⊕ DL, (18)

(direct sum), and so dimD = (m1 − 1) + · · ·+ (mL − 1) = m− L.

18



Example 3.1 To illustrate this structure, consider a general enzymatic mechanism with un-
competitive inhibitor, consisting of one enzyme E, one substrate S, one product P and an
uncompetitive inhibitor I (Q and R are intermediate complexes):

S + E
k1→ Q, Q

k−1→ S + E,

Q
k2→ P + E, P + E

k−2→ Q,

Q+ I
k3→ R, R

k−3→ Q+ I.

There are two linkage classes, L = 2:
(i) the first class consisting of the complexes S + E, P + E and Q;
(ii) the second class consisting of the complexes Q+ I and R.

For class (i), S + E, P + E and Q are the three nodes of G(A1) and, due to the reversibility of
the reactions, it is possible to “connect” any two of these nodes through a path in the graph.
The same is true for class (ii).

Notice that the same complex, e.g., Q in the above example, may belong to different connected
components (otherwise the problem could be reduced to two completely independent “single
linkage” problems).

In [16] it is shown that this system does not admit boundary equilibria in any positive class.
Let x = (S, P,Q,R,E, I)′. Then B = [B1 B2] and A = diag (A1, A2):

B1 =



1 0 0
0 1 0
0 0 1
0 0 0
1 1 0
0 0 0

 , B2 =



0 0
0 0
1 0
0 1
0 0
1 0


and

A1 =

 0 0 k−1

0 0 k2

k1 k−2 0

 , A2 =
[

0 k−3

k3 0

]
.

The space D is given by D1 +D2:

D1 = span {(1,−1, 0, 0, 0, 0)′, (1, 0,−1, 0, 1, 0)′)}
D2 = span {(0, 0, 1,−1, 0, 1)′}

and the function f is given by f1 + f2:

f1(x) =



k−1Q− k1SE
−k−2PE + k2Q

−k−1Q+ k1SE + k−2PE − k2Q
0

k−1Q− k1SE − k−2PE + k2Q
0

 , f2(x) =



0
0

k−3R− k3QI
−k−3R+ k3QI

0
k−3R− k3QI

 .

For a general “multiple linkage” system we may consider output maps of the same form
as before, i.e., monomials in the state variables, as in (3). These monomials may include any
of the variables “xi”, and they have the same interpretation as before: either representing the
concentration of some of the substances (as in the case of x1), or being proportional to some
reaction rate (as in the case of x3

1x4, etc.).
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The necessary and sufficient detectability condition given in Theorem 2 is still valid (Theo-
rem 1 generalizes, as sketched in [20]). The main fact to verify is that (5) still holds for the general
case. But, from [20], we know that for an interior point x̄, f(x̄) = 0 if and only if fs(x̄) = 0
for each s = 1, . . . , L. (That is, x̄ is an equilibrium of the entire system if and only if it is an
equilibrium of every system ẋ = fs(x); this nontrivial fact follows from the block irreducibility
property.) Then, for each s, (5) says that, if x̄ ∈ E+, then, for any z̄ ∈ Rn>0,

ρ(x̄)− ρ(z̄) ∈ D⊥s ⇐⇒ z̄ ∈ Es+ ,

where Es+ is the set of interior equilibria of ẋ = fs(x) (so E+ = E1
+ ∩ . . . ∩ EL

+). Equivalently, if
x̄ ∈ E+, then, for any z̄ ∈ Rn>0,

ρ(x̄)− ρ(z̄) ∈ D⊥1 ∩ . . . ∩ D⊥L = D⊥ ⇐⇒ z̄ ∈ E+ .

Thus, Equivalence (5) holds for L > 1 as well.

It is also true that E0 = E1
0∩. . .∩EL

0 , since each x ∈ Es
0 is characterized by xb1j1 x

b2j
2 . . . x

bnj
n = 0

for all j such that bj that is a column of Bs, and we have B = [B1 · · · BL].
So, a general system ẋ = f1(x) + · · ·+ fL(x), y = h(x) is detectable if and only if the matrix

C of the (exponents of the) output map satisfies either condition (c) or (d) in Theorem 2 as
well as h(x̄) 6= h(z̄) whenever x̄ ∈ E+ and z̄ ∈ E0. Note that more “linkage classes” mean more
information is needed in order for the system to be detectable. For a n-dimensional system,
the space D has dimension m − L and detectability implies that the matrix C must have rank
p = n− (m−L). As we have seen, a single linkage class requires p = n−m+ 1, whereas multiple
linkage classes require p = n−m+ L.

In the example above, for detectability of ẋ = f1(x) + f2(x), y = h(x), C will need to have
rank 3. The following output would be a suitable choice: h(x) = (S2Q, RI2, E)′.

For a detectable “multiple linkage” system, an observer for ẋ = f1(x) + · · ·+ fL(x) is again
of the form

ż = f1(z) + · · ·+ fL(z) + C ′(h(x)− h(z)). (19)

To prove convergence of the observer, one may use Proposition 2.13, Lemma 2.12 and Corol-
lary 2.15 as before, after checking some points.

The Rn>0-invariance argument is unchanged since the particular forms of A and B still imply
that (16) and the corresponding conclusions hold.

To see that Lemma 2.12 holds, we must analyse the term

∇V (z) f(z) = ∇V (z) f1(z) + · · ·+∇V (z) fL(z).

For each s = 1, . . . , L, estimate (13) holds, so

∇V (z) fs(z) = 〈ρ(z)− ρ(x̄), fs(z)〉 ≤ −κ(As) c(x̄)
∑
i,jaBs

(e−πi − e−πj )2

where i, j a Bs means that only the columns bi, bj of Bs are present in the sum. The right hand
side of this inequality vanishes whenever z ∈ Es+ ∪ Es0. Hence

∇V (z) f(z) ≤ −
L∑
s=1

κ(As) c(x̄)
∑
i,jaBs

(e−πi − e−πj )2,
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where the right hand side vanishes only if z ∈ (E1
+ ∩ · · · ∩ EL

+) ∪ (E1
0 ∩ · · · ∩ EL

0 ), i.e., only if
z ∈ E+∪E0. The rest of the proof of Lemma 2.12 is unchanged, since the form of the observer is
the same as before. Thus, given any compact set F ∈ Rn≥0, the function V satisfies an estimate

∇V (z) f∗(z, u) ≤ −α(|z − x̄|) + c3|u− h(x̄)|2

for every z ∈ F ∩ Rn>0 and u ∈ Uθ, where α ∈ K∞ and the set of inputs Uθ, and the constant c3
are as in the Lemma. Corollary 2.15 is still valid, as follows from this estimate.

Finally, since the trajectory of the original system will still converge exponentially after a
given time, the proof of Theorem 3 is the same as before.

4 Some Simulations

4.1 Robustness of the Observers

To numerically test robustness of our observers, we carried out some simulations to explore their
responses in two cases: existence of noise in the output measurements and unknown inputs acting
in the system we wish to observe.

As a working example we choose ẋ = f(x) to be the network proposed by McKeithan in [14]
and took the output to be h(x) = (x1x

2
2, x1x4)′, as in Example 2.1. The constants were taken to

be: k = 6, k3 = 0.5, k4 = 7, β3 = 1. In all simulations in this section, the initial conditions for
system (1) were x(0) = (1, 3, 3, 2)′ and for the observers we took z(0) = (2, 25, 20, 1)′.

In one simulation, white noise was added to the outputs, so that the equation for the main
observer becomes

ż = f(z) + C ′(h(x(t)) + n(t)− h(z))

and n(t) is an R2-valued vector white noise. In view of the Section 2.3, solutions of this system
exist for all t ≥ 0, provided that h(x(t)) + n(t) is nonnegative; and the observer should provide
estimates close to the true state as long as the magnitude of n(t) is small. Thus we chose x(0)
so that xi(t) ≥ 2 and |n(t)| < 2 for all t and all i.

In Figure 1, left side, we can see that the trajectories of the four coordinates of our main
observer exhibit small magnitude perturbations as a result of the output noise.

In another simulation, the model (1) was perturbed by a disturbance consisting of a periodic
signal and two “delta” functions. The equation for the model is

ẋ = f(x) + d(t)

where d(t) = (d1(t), 0, 0, 0)′ and d1(t) = 0.3 sin(t/4) + 2 [15 < t < 16] − 4 [35 < t < 36] (j(t) =
a [m < t < M ] means that j(t) = a if m < t < M and j(t) = 0 otherwise). The function d1

was chosen so that (for the same initial condition x(0) as above) xi(t) > 0 for all i and all t.
(The observer is still the one for the nominal system, with no disturbance.) Note how our first
observer catches-up after the “delta” disturbance, and also tracks (with a small lag) the limit
cycle into which the observed system trajectories converge (figure 1, at right).

4.2 Comparison with Standard Observers

In the chemical reactor literature, observers are typically constructed using an extended Kalman
filter (EKF), or, less often, a Luenberger type observer (Lbg) for a linearized system. Neither
of these approaches is guaranteed to work for nonlinear systems, but it is often the case that
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Figure 1: Left: the effect of output noise. Right: the effect of an unknown disturbance acting
on the the system. The trajectories of the system (dotted line) and our observer (solid line) are
shown against time.

they perform adequately in specific examples, and hence their practical success. In the second
part of this section, we compare the performance of our main observer with those of an EKF
observer and of a Lbg observer. Our purpose in doing so is to illustrate that, even for very simple
examples, these standard techniqes can fail in a major way, while our observer is, as predicted
by the theory, convergent to the right estimate.

These two standard constructions both have the form

ż = f(z) + L(z)(h(x)− h(z)),

where the gain L(z) is to be found in such a way that (at least locally) |x(t)− z(t)| → 0 as
t→ +∞. Let us briefly review these constructions.

We consider the linearized dynamics of the error e = x− z, around the origin e = 0:

ė
.= [F (z(t))− L(z(t))H(z(t))]e,

where

F (z) = Df(e+ z)|e=0 and H(z) = Dh(e+ z)|e=0

are the Jacobians of f and h evaluated at the point z.
The gain L(z) for a (continuous) extended Kalman filter is given by

L(z(t)) = P (t)H ′(z(t))R−1,

where P is a symmetric positive definite solution to the following Riccati differential equation:

Ṗ = −PH ′R−1HP + FP + PF ′ +Q,

and R and Q are two positive definite cost matrices.
A Luenberger type observer is obtained by finding a constant gain L such that the matrix

F (x̄)− LH(x̄) is Hurwitz. A linearized error equation can also be written as:

ė
.= [F (x(t))− LH(x(t))]e
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(note that the time-dependence of F and H is given in terms of a dependence on the trajectory
of the system itself, instead of on the trajectory of the observer). It can be shown that, for initial
conditions x(0) and z(0) sufficiently close to x̄, this error is asymptotically stable with respect
to the origin. (Note that Luenberger observers, at least in their standard formulation, are not a
reasonable choice for our example, since their design assumes the knowledge of the equilibrium
point around which we are observing. For multi-stable systems such as ours, it makes little sense
to assume that this equilibrium is known – in fact, knowing this equilibrium amounts to solving
the detectability problem. However, we can still study the behavior of a Luenberger observer,
especially since we will show that it does not work even when this additional information is
provided.)

With the same working example as above, and same initial conditions x(0) = (1, 3, 3, 2)′ for
the system, we chose the gain for the Luenberger observer to be the 4 × 2 matrix with entries
l11 = −1, l42 = 1 and all others equal to zero. A computation shows that the matrix F (x̄)−LH(x̄)
is indeed Hurwitz with eigenvalues −9.8±3.7i and −0.48±0.08i. To solve the Ricatti differential
equation, we took R = I2×2 and Q = I4×4 (the identity matrices in R2 and R4, respectively),
and the initial condition P (0) = I4×4.

The simulations show that both EKF and Lbg converge provided that z(0) is in a sufficiently
small neighborhood of x̄, but they may diverge when z(0) is away from x̄. In Figure 2 the behavior
of the three observers is shown, and the performance of EKF and Luenberger are clearly inferior
to that of our observer.
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Figure 2: Comparison with standard observers. The trajectories of the system (dotted line),
our observer (solid line), a Lbg(dashed line) and an EKF (dash-dotted line) are shown against
time. Left: local convergence with z(0) = (2, 6, 7, 1)′. Right: Lbg and EKF diverge for z(0) =
(2, 25, 20, 1)′.

A Appendix

A.1 Some Simple Facts Concerning Invariance

Consider the scalar initial value problem

ẋ = F (t, x) (20)
x(0) = x0
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where the function F is assumed to have domain I × X , where X is an open subset of R and
I = [0,+∞). Let F be locally Lipschitz in x and measurable in t, more precisely,

(i) For each a ∈ X there exists a real number ra and a locally integrable function α : R →
[0,+∞) such that the ball of radius ra centered at a, Bra(a) ⊂ X and

‖F (t, x)− F (t, y)‖ ≤ α(t)‖x− y‖

for each t ∈ R and x, y ∈ Bra(a).
(ii) For each fixed a ∈ X , the function g : I → X given by g(t) := F (t, a) is measurable.
For each x0 ∈ X let J = Jx0 be the maximal interval of existence of solutions of (20) in

forward time. This is an interval of the form [0, tmax) with 0 < tmax ≤ +∞.
Using a standard comparison principle (as done for instance in [20]), we have:

Lemma A.1 Consider system (20) with domain X = R and assume further that,

x = 0 ⇒ F (t, 0) ≥ 0 ∀t ∈ I.

Assume also that the initial condition is positive: x0 > 0. Then x(t) > 0 ∀t ∈ J , i.e., the solution
of (20) remains positive for all times in J .
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