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Abstract

Interactions between genes and gene products give rise to complex circuits that enable cells to process information and respond to

external signals. Theoretical studies often describe these interactions using continuous, stochastic, or logical approaches. We

propose a new modeling framework for gene regulatory networks, that combines the intuitive appeal of a qualitative description of

gene states with a high flexibility in incorporating stochasticity in the duration of cellular processes. We apply our methods to the

regulatory network of the segment polarity genes, thus gaining novel insights into the development of gene expression patterns. For

example, we show that very short synthesis and decay times can perturb the wild-type pattern. On the other hand, separation of

time-scales between pre- and post-translational processes and a minimal prepattern ensure convergence to the wild-type expression

pattern regardless of fluctuations.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding how genetic information is translated
into proteins to produce various cell types remains a
major challenge in contemporary biology (Wolpert et
al., 1998). Gene products often regulate the synthesis of
mRNAs and proteins, forming complex networks of
regulatory interactions. Concurrently with experimental
progress in gene control networks (Davidson and et al.,
2002), several alternative modeling frameworks have
been proposed. In the continuous-state approach, the
concentrations of cellular components are assumed to be
continuous functions of time, governed by differential
equations with mass-action (or more general) kinetics
(Reinitz and Sharp, 1995; von Dassow et al., 2000;
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Gursky et al., 2001). Stochastic models address the
deviations from population homogeneity by transform-
ing reaction rates into probabilities and concentrations
into numbers of molecules (Rao et al., 2002). Finally, in
the discrete approach, each component is assumed to
have a small number of qualitative states, and the
regulatory interactions are described by logical func-
tions (Mendoza et al., 1999; Sánchez and Thieffry, 2001;
Yuh et al., 2001; Kauffman et al., 2003; Ghysen and
Thomas, 2003; Bodnar, 1997; Albert and Othmer, 2003;
Espinosa-Soto et al., 2004).
The kinetic details of protein–protein or protein–D-

NA interactions are rarely known, but there is increas-
ing evidence that the input–output curves of regulatory
relationships are strongly sigmoidal and can be well
approximated by step functions (Yuh et al., 2001;
Thomas, 1973). Moreover, both models and experi-
ments suggest that regulatory networks are remarkably
robust, that is, they maintain their function even when
faced with fluctuations in components and reaction rates
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(von Dassow et al., 2000; Alon et al., 1999; Eldar et al.,
2002; Carlson and Doyle, 2002; Conant and Wagner,
2004; Espinosa-Soto et al., 2004). These observations
lend support to the assumption of discrete states for
genetic network components and of combinatorial rules
for the effects of transcription factors (Glass and
Kauffman, 1973; de Jong et al., 2004). The extreme of
discretization, Boolean models, consider only two states
(expressed or not), closely mimicking the inference
methods used in genetics (Kauffman et al., 2003;
Thomas, 1973; Kauffman, 1993). It is straightforward
to study the effect of knock-out mutations or changes in
initial conditions in this framework, and the agreement
between a real system and a Boolean model of it is a
strong indication of the robustness of the system to
changes in kinetic details (Albert and Othmer, 2003).
In discrete models the decision whether a network

node (component) will be affected by a synthesis or
decay process is determined by the state of effector
nodes (nodes that interact with it). Typical time-
dependent Boolean models use synchronous updating
rules (Kauffman et al., 2003; Albert and Othmer, 2003;
Bodnar, 1997; Kauffman, 1993), assuming that the time-
scales of the processes taking place in the system are
similar. In reality the time-scales of transcription,
translation, and degradation can vary widely from gene
to gene and can be anywhere from minutes to hours.
Logical models following the formalism introduced by
René Thomas (Thomas, 1973) allow asynchronism by
associating two variables to each gene: a state variable
describing the level of its protein, and an image variable
that is the output of the logical rule whose inputs are the
state variables of effector nodes. Whether the future
state variable of a gene equals the image or current state
variable depends on the update order and, in the
absence of temporal information, the Thomas formal-
ism focuses on determining the steady states, where the
state and image variables coincide (Mendoza et al.,
1999; Sánchez and Thieffry, 2001; Ghysen and Thomas,
2003; Bernot et al., 2004). The effect of asynchronous
updates on the dynamics of the system, however, has not
been explored yet.
In this paper, we present a methodology for testing

the robustness of Boolean models with respect to
stochasticity in the order of updates. Through this, we
are also probing the system itself: will individual
variations lead to unexpected gene expression patterns?
In the asynchronous method, the synthesis/decay
decision is made at different time-points for each node,
allowing individual variability in each process’ duration,
but more importantly, it allows for decision reversal if
the dynamics of effector nodes changes. It becomes
possible to reproduce, e.g., the overturning of mRNA
decay when its transcriptional activator is synthesized, a
process that synchronous update cannot capture. Thus,
replacing synchronous with asynchronous updates is not
merely a technical detail, but rather a fundamental
paradigm shift from pointwise in time to potentially
continuous communication between nodes. Indeed, the
effective synthesis or decay times for a certain node are
determined by the time interval between the latest
update of its effector nodes and its current update time,
and can be any positive fraction of the unit time interval.
We propose three algorithms, with varying freedom in
the relative duration of cellular processes, and find that
very short transcription or decay times have the
potential to derail the wild-type development process.
The steady states of a Boolean model will remain the

same regardless of the mechanism of update, but its
dynamical behavior can be drastically altered due to the
stochastic nature of the updates; for instance, the same
initial state may lead to different steady states or limit
cycles. Since the duration of synthesis and decay
processes is not known, we randomly explore the space
of all possible time-scales and update orders, and derive
the probability of different outcomes. Our methods offer
a systematic way of exploring generic behavior of gene
regulatory networks and comparing it to experimentally
observed outcomes. To present a concrete example, we
generalize a previously introduced Boolean model of the
Drosophila segment polarity genes (Albert and Othmer,
2003). This model reproduces the wild-type steady state
pattern of the segment polarity genes as well as the gene
patterns of mutants, but its dynamic behavior is not
directly comparable to that of the real system. Here we
show that asynchronous update leads to a much more
realistic model that gives further insights into the
robustness of the gene regulatory network.
2. The segment polarity gene network in Drosophila

The Drosophila melanogaster segment polarity genes
represent the last step in the hierarchical cascade of gene
families initiating the segmented body of the fruit fly.
While the preceding genes act transiently, the segment
polarity genes are expressed throughout the life of the
fly, and their periodic spatial pattern is maintained for at
least 3 h of embryonic development (Wolpert et al.,
1998). The regulatory roles of the previously expressed
genes such as the pair-rule genes fushi tarazu, runt, even-

skipped are incorporated in the prepattern (initial state)
of the segment polarity genes. The stable maintenance of
the segment polarity gene expression is due to the
interactions between these genes (see Fig. 1), and it is a
crucial requirement in the development and stability of
the parasegmental furrows. The best characterized
segment polarity genes include engrailed (en), wingless

(wg), hedgehog (hh), patched (ptc), cubitus interruptus (ci)
and sloppy paired (slp), encoding for diverse proteins
including transcription factors as well as secreted and
receptor proteins.
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Fig. 1. The network of interactions between the segment polarity

genes. The gray background layers illustrate two neighboring cells,

indicating that some interactions in this network are inter-cellular. The

shape of the nodes indicates whether the corresponding substances are

mRNAs (ellipses) or proteins (rectangles). The edges of the network

signify either biochemical reactions (e.g. translation, protein interac-

tions) or regulatory interactions (e.g. transcriptional activation). The

edges are classified as activating ð!Þ or inhibiting ðaÞ: Figure adapted
from Albert and Othmer (2003).

1A notable exception includes the refinement of the ptc pattern.
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The pair-rule gene sloppy paired (slp) is activated
before the segment polarity genes and expressed
constitutively thereafter (Grossniklaus et al., 1992;
Cadigan et al., 1994). slp encodes two forkhead domain
transcription factors with similar functions that activate
wg transcription and repress en transcription, and since
they are co-expressed we designate them both SLP. The
wg gene encodes a glycoprotein that is secreted from the
cells that synthesize it (Hooper and Scott, 1992; Pfeiffer
and Vincent, 1999), and can bind to the Frizzled
receptor on neighboring cells, initiating a signaling
cascade leading to the transcription of engrailed (en)
(Cadigan and Nusse, 1997). EN, the homeodomain-
containing product of the en gene, promotes the
transcription of the hedgehog gene (hh) (Tabata et al.,
1992). In addition to the homeodomain, EN contains a
separate repression domain that affects the transcription
of ci (Eaton and Kornberg, 1990) and possibly ptc

(Hidalgo and Ingham, 1990; Taylor et al., 1993). The
hedgehog protein (HH) is tethered to the cell membrane
by a cholesterol linkage that is severed by the dispatched
protein, freeing it to bind to the HH receptor PTC on a
neighboring cell (Ingham and McMahon, 2001) . The
intracellular domain of PTC forms a complex with
smoothened (SMO) in which SMO is inactivated by a
post-translational conformation change (Ingham, 1998).
Binding of HH to PTC removes the inhibition of SMO,
and activates a pathway that results in the modification
of CI (Ingham, 1998). The CI protein can be converted
into one of two transcription factors, depending on the
PTC–HH interactions. In the absence of HH signaling
CI is cleaved to form CIR, a transcriptional repressor
that represses wg, ptc and hh transcription (Aza-Blanc
and Kornberg, 1999). When secreted HH binds to PTC
and frees SMO, CI is converted to a transcriptional
activator, CIA, that promotes the transcription of wg

and ptc (Aza-Blanc and Kornberg, 1999; Ohlmeyer and
Kalderon, 1998).
The initial state of the Drosophila segment polarity

genes includes two-cell-wide SLP stripes followed by
two-cell-wide stripes not expressing SLP (Cadigan et al.,
1994), single-cell-wide wg, en and hh stripes followed by
three cells not expressing them, and three-cell-wide
stripes for ci and ptc (Hooper and Scott, 1992; Wolpert
et al., 1998): This pattern is maintained almost
unmodified for 3 h1 (see Fig. 2a), during which time
the embryo is divided into 14 parasegments by furrows
positioned between the wg and en-expressing cells
(Hooper and Scott, 1992).
The first model of the segment polarity gene network

was proposed by von Dassow and collaborators (von
Dassow et al., 2000), and is a continuous-state model of
13 equations and 48 unknown kinetic parameters. The
main conclusion of the (von Dassow et al., 2000) article
is that the gene patterns are robust with respect to
variations in the kinetic constants in the rate laws, thus
the essential feature of this network is its topology, i.e.
the existence and signature (activating or inhibiting) of
the interactions. The idea of the network topology
determining its dynamics was further explored by Albert
and Othmer (2003), who used a slightly different
network reconstruction and assumed synchronous
Boolean regulation among nodes. In the Albert and
Othmer (2003) model each mRNA and protein is
represented by a node of a network, and the state of
each node is 1 or 0, according to whether the
corresponding substance is present or not. The states
of the nodes are updated synchronously, and the future
state of node i is determined by a Boolean function of its
current state and the current states of those nodes that
have edges incident on it. The updating functions are
based on the experimental information and on the
following dynamical assumptions: (i) the synthesis of
mRNAs/proteins has the duration of one time step; (ii)
the effect of transcriptional activators and inhibitors is
never additive, but rather, inhibitors are dominant; (iii)
mRNAs decay in one time step if not transcribed; (iv)
transcription factors and proteins undergoing post-
translational modification decay in one time step if their
mRNA is not present; (v) protein–protein binding, such
as in the formation of the Patched-Hedgehog complex,
is assumed to be instantaneous. In summary, the Albert
and Othmer (2003) model assumes that gene transcrip-
tion, protein translation, mRNA and protein decay all
happen on a similar time-scale, while protein complex
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Fig. 2. (a) Top: Illustration of the gene expression pattern of wingless on a gastrulating (stage 9) embryo. Other segment polarity genes have similar

periodic patterns that are maintained for around 3 h of embryonic development. The parasegmental furrows form at the posterior border of the wg-

expressing cells (Wolpert et al., 1998). Bottom: Synthesis of the wild-type expression patterns of the segment polarity genes (see also text) (Hooper

and Scott, 1992; Wolpert et al., 1998). Left corresponds to anterior and right to posterior in each parasegment. Horizontal rows correspond to the

pattern of individual nodes—specified at the left side of the row—over two full and two partial parasegments. Each parasegment is assumed to be

four cells wide. A black (gray) box denotes a node that is (is not) expressed. (b) Top: wingless expression pattern in a patched knock-out mutant

embryo at stage 11 (Tabata et al., 1992). The wingless stripes broaden, and secondary furrows appear at the middle of the parasegment, indicating a

new en– wg boundary. Bottom: Broad striped steady-state of the Boolean model, obtained when patched is kept off (with the change that ptc and PTC

are not expressed), or when wg, en, hh are initiated in every cell (Albert and Othmer, 2003). This steady-state agrees with all experimental

observations on ptc mutants and heat-shocked genes (Tabata et al., 1992; Gallet et al., 2000; Martinez-Arias et al., 1988; Schwartz et al., 1995;

DiNardo et al., 1988; Ingham et al., 1991; Bejsovec and Wieschaus, 1993). (c) Top: wingless expression pattern in an engrailed knock-out mutant

embryo at stage 11 (Tabata et al., 1992). The initial periodic pattern is disappearing, and gives rise to a non-segmented, embryonic lethal phenotype.

Bottom: Non-segmented steady-state of the Boolean model, obtained when wg, en or hh are kept off, or cell-to-cell signaling is disrupted (Albert and

Othmer, 2003). This steady-state agrees with all experimental observations on wg, en, hhmutants (Tabata et al., 1992; DiNardo et al., 1988; Schwartz

et al., 1995; Hidalgo and Ingham, 1990; Gallet et al., 2000). Gene expression images obtained from http://www.fruitfly.org (a) and Tabata et al.

(1992) (b,c).

2The only difference between the ptc mutant and heat-shock pattern

is that the former does not express ptc and PTC.
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formation is instantaneous compared to this common
time-scale.
The von Dassow et al. (2000) and Albert and Othmer

(2003) models agree in their conclusions regarding the
robustness of the segment polarity gene network. The
simplicity of the Boolean rules in the latter also allows
for the exploration of knock-out mutations and changes
in the prepattern of the segment polarity genes. Starting
from the known initial state of en, wg, hh, ptc, ci and
SLP, and assuming the null(off) state for all other nodes
the Albert and Othmer (2003) model leads to a time-
invariant spatial pattern (see Fig. 2a) that coincides with
the experimentally observed wild-type expression of the
segment polarity genes during stages 9–11. Indeed, wg

and WG are expressed in the most posterior cell of each
parasegment, while en, EN, hh and HH are expressed in
the most anterior cell of each parasegment, as is
observed experimentally (Ingham, 1998; Tabata et al.,
1992), ptc is expressed in two stripes of cells, one stripe
on each side of the en-expressing cells, the anterior one
coinciding with the wg stripe (Hidalgo and Ingham,
1990; Hooper and Scott, 1992). ci is expressed almost
ubiquitously, with the exception of the cells expressing
en (Eaton and Kornberg, 1990). CIA is expressed in the
neighbors of the HH-expressing cells, while CIR is
expressed far from the HH-expressing cells (Aza-Blanc
and Kornberg, 1999). The model indicates that knock-
out mutations in en, wg, hh cause the non-segmented
gene pattern shown on Fig. 2c, which agrees with
experimental observations. Indeed, the hh expression in
en null embryos starts normally, but disappears before
stage 10 (Tabata et al., 1992). In wg null embryos, en is
initiated normally but fades away by stage 9, as
observed by DiNardo et al. (1988), while ci is
ubiquitously expressed (Schwartz et al., 1995). In hh

mutant embryos the wg expression disappears by stage
10 (Hidalgo and Ingham, 1990), as does the expression
of ptc, and there is no segmentation (Gallet et al., 2000).
On the other hand, ptc knockout mutations or over-
expressed initial states lead to the broad-striped pattern
of Fig. 2b.2 Indeed,experimental results indicate
broad en, wg and hh stripes (Tabata et al., 1992;
Gallet et al., 2000; Martinez-Arias et al., 1988) and
Gallet et al. (2000) find that a new ectopic groove forms
at the second en2wg interface at the middle of the

http://www.fruitflyorg
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Table 1

Regulatory functions governing the states of segment polarity gene

products in the model

Node Boolean updating function in the asynchronous algorithm

SLPi

SLPiðtÞ ¼
0 if i 2 f1; 2g

1 if i 2 f3; 4g

(

wgi wgiðtÞ ¼ ðCIAiðtCIAÞ and SLPiðtSLPÞ and not CIRiðtCIRÞÞ

or ½wgiðtwgÞ and ðCIAiðtCIAÞ or SLPiðtSLPÞÞ

and not CIRiðtCIRÞ

WGi WGiðtÞ ¼ wgiðtwgÞ

eni eniðtÞ ¼ ðWGi�1ðtWG1Þ or WGiþ1ðtWG2ÞÞ

and not SLPiðtSLPÞ

ENi ENiðtÞ ¼ eniðtenÞ

hhi hhiðtÞ ¼ ENiðtEN Þ and not CIRiðtCIRÞ

HHi HHiðtÞ ¼ hhiðthhÞ

ptci ptciðtÞ ¼ CIAiðtCIAÞ

and not ENiðtEN Þ and not CIRiðtCIRÞ

PTCi PTCiðtÞ ¼ ptciðtptcÞ or ðPTCiðtPTC Þ and not HHi�1ðtHH1Þ

and not HHiþ1ðtHH2ÞÞ

cii ciiðtÞ ¼ not ENiðtEN Þ

CIi CIiðtÞ ¼ ciiðtciÞ

CIAi CIAiðtÞ ¼ CIiðtCI Þ and [not PTCiðtPTCÞ or HHi�1ðtHH1Þ

or HHiþ1ðtHH2Þ or hhi�1ðthh1Þ or hhiþ1ðthh2Þ]

CIRi CIRiðtÞ ¼ CIiðtCI Þ and PTCiðtPTCÞ and not HHi�1ðtHH1Þ

and not HHiþ1ðtHH2Þ

and not hhi�1ðthh1Þ and not hhiþ1ðthh2Þ

Each node is labeled by its biochemical symbol and subscripts signify

cell number. The times tj signify the last time node j was updated

before t.

Table 2

Complete characterization of the model’s steady states

Steady state Expressed nodes

Wild-type wg4; WG4; en1; EN1; hh1; HH1;
ptc2;4; PTC2;3;4; ci2;3;4; CI2;3;4; CIA2;4; CIR3

Broad stripes wg3;4; WG3;4; en1;2; EN1;2; hh1;2; HH1;2;

ptc3;4; PTC3;4; ci3;4; CI3;4; CIA3;4

No segmentation ci1;2;3;4; CI1;2;3;4; PTC1;2;3;4; CIR1;2;3;4

Wild-type variant wg4; WG4; en1; EN1; hh1; HH1;
ptc2;4; PTC1;2;3;4; ci2;3;4; CI2;3;4; CIA2;4; CIR3

Ectopic wg3; WG3; en2; EN2; hh2; HH2;
ptc1;3;PTC1;3;4; ci1;3;4; CI1;3;4; CIA1;3; CIR4

Ectopic variant wg3; WG3; en2; EN2; hh2; HH2;
ptc1;3; PTC1;2;3;4; ci1;3;4; CI1;3;4; CIA1;3; CIR4
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parasegment. Also, ci is not expressed at this ectopic
groove (Schwartz et al., 1995). In heat-shock experi-
ments the wg and ptc stripes expand anteriorly when hh

or en are ubiquitously induced (Gallet et al., 2000), while
narrower ci stripes emerge after a transient decay of ci

(Schwartz et al., 1995). Intriguingly, the Albert and
Othmer (2003) model finds that a knock-out mutation of
ci does not change the en, wg, hh patterns but disrupts
ptc expression; experiments indicate that the segmental
grooves are present and wg is expressed until stage 11,
but ptc expression decays (Gallet et al., 2000). In
summary, the simple synchronous Boolean model
(Albert and Othmer, 2003) captures perfectly the wild-
type and mutant expression patterns of the segment
polarity genes, and thus serves as a good starting point
for a more realistic model that relaxes the assumption of
synchronicity.
We focus our attention on a single parasegment of

four cells, thus the total number of nodes we consider is
4� 13 ¼ 52: We use the same interaction topology and
logical rules as the synchronous model (Albert and
Othmer, 2003), but instead of assuming that the states of
all nodes are updated simultaneously, we update the
state of each node individually (see Table 1). To
maintain the highest generality, we incorporate possible
cell-to-cell variations in synthesis and decay processes.3

Throughout the text, the notation ‘‘wgt
1’’ or ‘‘wg1ðtÞ’’

represent the state of wingless mRNA in the first cell of
the parasegment at time t. Similar notations apply for
other mRNAs and proteins. There are 4 cells in each
parasegment, and we adopted periodic boundary con-
ditions, meaning that: node4þ1 ¼ node1 and node1�1 ¼

node4: The wild-type initial state corresponds to:

wg04 ¼ 1; en01 ¼ 1; hh01 ¼ 1; ptc02;3;4 ¼ 1; ci02;3;4 ¼ 1

(1)

and the remaining nodes are zero. The asynchronous
model represented in Table 1 exhibits the same steady
states as the synchronous model developed in Albert
and Othmer (2003). Note that three of the four main
steady states agree perfectly with experimentally ob-
served states corresponding to wild-type, en, wg or hh

mutant and ptc mutant embryonic patterns (Tabata et
al., 1992; DiNardo et al., 1988; Schwartz et al., 1995;
Hidalgo and Ingham, 1990; Gallet et al., 2000;
Martinez-Arias et al., 1988; Bejsovec and Wieschaus,
1993; Ingham et al., 1991; Hooper and Scott, 1992;
Wolpert et al., 1998). A summary is presented in
Table 2.
3We follow the Albert and Othmer (2003) model in assuming very

short time-scales for PTC–HH binding and SMO activation, and

consequently in Fig. 1 and in the regulatory rules we connect the CI

post-translational modifications to HH signaling. We have verified

that this assumption can be relaxed without any qualitative changes in

the results.
3. Randomly perturbed time-scales

As in the context of parallel computation systems, the
fundamental difference between synchronous and asyn-
chronous updates is at the level of task coordination and
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results as a synchronous update, demonstrating the fundamental

difference between synchronous and asynchronous models.
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data communication among nodes in a network
(Bertsekas and Tsitsiklis, 1989). Synchronous algo-
rithms are highly coordinated: at pre-determined in-
stants, all the nodes ‘‘stop’’ and exchange the current
information among themselves. For instance, suppose
there are N nodes, where each node i ‘‘computes’’ the
state of variable xi; according to a function
f iðx1;x2; . . . ;xN Þ ði ¼ 1; . . . ;NÞ: When all the N nodes
have finished phase k, they exchange their current states,
xk

i ; and then proceed to phase k þ 1; that is

xkþ1
i ¼ f iðx

k
1 ;x

k
2 ; . . . ; x

k
NÞ.

Asynchronous algorithms, on the other hand, admit a
greater flexibility at the level of process coordination.
Each node is allowed to have its own ‘‘computation
rate’’, that is, during any time interval ½ta; tb; node i may
be updated only once, while node j may be updated ‘41
times. In this case, communication delays between nodes
may occur, and some possibly outdated information
may be used: for instance, node j uses the same value
xiðtaÞ throughout its ‘ updates in the interval ½ta; tb:
However, an overall gain in efficiency in achieving the
final result may be expected. For instance, in our
example, the wild-type steady state is reached in less
than 4 steps with the asynchronous algorithms (see
Sections 4, 5), while with the synchronous algorithm 6
steps are needed (Albert and Othmer, 2003).
In general, we may say that node i updates its state at

times:

T1i ;T
2
i ; . . . ;T

k
i ; . . . ; k 2 N0

and the local variables, xi; are updated according to

xi½T
k
i  ¼ f iðx1½t

k
1i; . . . ;xN ½tk

NiÞ, (2)

where tk
ji is defined as

tk
ji ¼ the latest available communication to node i,

from node j.

There is usually a distinction between totally or partially

asynchronous algorithms: the latter impose an updating
constraint (every variable is updated at least once in any
interval of a fixed length), while the former simply
ensure that a variable is updated infinitely many times.
In a first numerical experiment we consider a totally

asynchronous algorithm, with the highest degree of
individual variability in each process’ duration. The time
unit of the synchronous model is randomly perturbed,
so that the set of updating times for each node i

ð1pipNÞ is of the form

Tkþ1
i ¼ Tk

i þ 1þ erk
i ; k 2 N,

where rk
i are random numbers generated at each

iteration, out of a uniform distribution in the interval
½�1; 1: The value e 2 ½0; 1Þ is the magnitude of the
perturbation (the case e ¼ 0 coincides with the synchro-
nous algorithm). At any given time t, the next node(s) to
be updated is(are) j such that T ‘

j ¼ mini;kfT
k
i Xtg; for

some ‘: Since the duration of synthesis and decay
processes is not known, through this algorithm one may
randomly explore the space of all possible time-scales
and update orders, and derive the probability of
different outcomes. The set of updating times fTk

i ; k 2

N0g may vary with each execution of the algorithm, so
an element of stochasticity is naturally introduced.
Always starting from the wild-type initial condition

(1), this experiment was conducted over a wide range of
perturbations ð10�12pep0:65Þ; and 30 000 trials were
executed for each e: The results (see Fig. 3) show that all
of the model’s steady states may occur with a certain
frequency: the wild-type pattern with only 57%,
followed by the broad-striped pattern (24%) observed
in heat-shock experiments and ptc mutants (Gallet et al.,
2000) and by the pattern with no segmentation (15%)
observed in en, hh or wg mutants (Tabata et al., 1992),
the latter two corresponding to embryonic lethal
phenotypes (Gallet et al., 2000).
We observe that each of the steady state patterns occurs

with a frequency which is independent of the value of e; for

eo0:15: This may indicate that it is the order in which the
protein and mRNA nodes are updated that determines the
steady state pattern. In order to test this hypothesis, we
designed a second experiment assuming that
(A1)
 Every node is updated exactly once during each
unit time interval ðk; k þ 1 ðk ¼ 0; 1; 2; . . .Þ; ac-
cording to a given order fk:
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Table 3

The frequencies of the six steady states observed in the partially

asynchronous model confirm those observed for the totally asynchro-

nous model

Steady state Incidence[%]

Wild-type 56

Broad stripes 24

No segmentation 15

Wild-type variant 4.2

Ectopic 0.98

Ectopic variant 0.68

The frequencies are computed from 30 000 executions.
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This order fk is a permutation of f1; . . . ;Ng; chosen
randomly (again out of a uniform distribution over the
set of all N! possible permutations) at the beginning of
the time unit k. Then we have

Tk
i ¼ Nðk � 1Þ þ fk

ðiÞ; k 2 N,

so that fk
ðjÞofk

ðiÞ implies Tk
j oTk

i ; and node j is
updated before node i. The partially asynchronous
algorithm leads to the same patterns, with incidence
rates very similar to those observed with the totally
asynchronous algorithm (see Table 3).
These results indicate the fragility of the wild-type

gene pattern with respect to changes in the time-scales of
synthesis and decay processes. While more than half of
the random time-scale combinations still lead to the
expected outcome, a considerable percentage results in
loss of the prepattern and an inviable final state.

3.1. Imbalance between CIA and CIR

Further analysis shows that the divergence from wild-
type can be attributed to an imbalance between the two
opposing Cubitus Interruptus transcription factors (CIA,
CIR) in the posterior half of the parasegment. Indeed, the
expression of CIA and CIR in both the broad stripes and
the no segmentation patterns is clearly distinct from that
in the wild-type pattern. In the next set of numerical
experiments, we explore the effects of CIA/CIR expres-
sion in the formation of the final pattern.
In wild-type, the two Cubitus Interruptus proteins,

CIA and CIR, are expressed in different cells of the
posterior part of the parasegments, namely,

CIA3 ¼ 0; CIA4 ¼ 1,

CIR3 ¼ 1; CIR4 ¼ 0

and the maintenance of these complementary ON/OFF
states is essential in the wild-type pattern. To investigate
the effect of an imbalance between the two Cubitus
Interruptus proteins, we considered two disruptive
cases: the (transient) overexpression of CIR, or the
(transient) overexpression of CIA and absence of CIR in
both posterior cells.
More precisely, in the totally asynchronous algorithm

(choosing e ¼ 0:1), we transiently imposed an expression
pattern for the Cubitus proteins as follows:
(a)
 CIAt
3;4 ¼ 1 and CIRt

3;4 ¼ 0 for t 2 ½3; 3þ t;

(b)
 CIRt

3;4 ¼ 1 for t 2 ½3; 3þ t;
where t is the duration of the transient. The over-
expression starts after three unit time steps. The
duration of the transient was

t 2 f0; 0:3; 0:75; 1:5; 2:75; 3g,

so when t ¼ 0 the results of the general totally
asynchronous algorithm are recovered.
Our results show that even a small transient

imbalance between CIA and CIR causes a clear bias
towards a mutant state: the broad stripes mutant in case
(a), or the no segmentation mutant in case (b) (see
Fig. 4a and b, respectively). Thus any perturbation that
leads to such an imbalance has as severe effects as a
mutation in ptc (causing the broad striped pattern) or
either of en, wg or hh (causing the non-segmented
pattern).
These numerical experiments also open the way to

many other questions: are there particular sequences
that lead to a given steady-state? How is the evolution
from the initial to steady-state? How robust is the
asynchronous model with respect to initial conditions?
4. Time-scale separation uncovers robustness of the

model

In both of the previous algorithms we assumed no
bias towards a preferred protein/mRNA updating
sequence and, as a result, an unrealistic divergence from
the wild-type pattern is observed, with high incidence of
inviable states. Based on the fact that post-translational
processes such as protein conformational changes or
complex formation usually have shorter durations than
transcription, translation or mRNA decay, we introduce
a distinct time-scale separation by choosing to update
proteins first and mRNAs later. This leads to a model
which is very robust, in the sense that the wild-type
pattern occurs with a frequency of 87.5% and only one
other steady-state is observed, the broad striped pattern,
with a frequency of 12.5%. We completely characterize
this model by theoretically showing that only two of the
six steady states are possible (and occur with well-
determined frequencies), and identifying the order of
updates that leads to divergence from wild-type. We also
show that the wild-type state is really an attractor for
the system, while the pathway to the broad stripes state
may show oscillatory cycles.
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Fig. 4. Bias towards mutant states. The x-axis represents the duration

of the transient, t (in unit time steps). The incidence probabilities were
computed over 20 000 trials. (a) The case CIAt

3;4 ¼ 1 and CIRt
3;4 ¼ 0

leads to the broad striped pattern. (b) The case CIRt
3;4 ¼ 1 leads to the

no segmentation pattern.
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Assuming that
(A2)
 All the proteins are updated before all the genes,
the kth iteration of the two-time-scale algorithm
proceeds as follows:
(A3)
 At the beginning of the kth time unit, generate a
random permutation, fk

Prot of f1; . . . ;Lg; and a
random permutation, fk

mRNA of fL þ 1; . . . ;Ng

(using a uniform distribution over, respectively, the
sets of L! and ðN � L þ 1Þ! possible permutations).
Then the N nodes are updated in the order given by
fk

¼ ðfk
Prot;f

k
mRNAÞ; according to Eq. (2), with

tk
ji ¼

Tk�1
j ; fk

ðjÞpfk
ðiÞ;

Tk
j ; fk

ðjÞ4fk
ðiÞ:

8<
:

example, suppose that
As an

N ¼ 5; L ¼ 3; f1Prot ¼ f2; 1; 3g; f1mRNA ¼ f5; 4g.

Then, f1 ¼ f2; 1; 3; 5; 4g; and T11 ¼ 2; T12 ¼ 1; T13 ¼ 3;
T14 ¼ 5; T15 ¼ 4: The nodes are updated as follows:
(for simplicity of notation, we will write xk

i :¼ xi½T
k
i ):

x12 ¼ f 2ðx
0
1; x

0
2; x

0
3; x

0
4;x

0
5Þ,

x11 ¼ f 1ðx
0
1; x

1
2; x

0
3; x

0
4;x

0
5Þ,

x13 ¼ f 3ðx
1
1; x

1
2; x

0
3; x

0
4;x

0
5Þ,

x15 ¼ f 5ðx
1
1; x

1
2; x

1
3; x

0
4;x

0
5Þ,

x14 ¼ f 4ðx
1
1; x

1
2; x

1
3; x

0
4;x

1
5Þ.

Some general inferences about the updating rules can
be made. For example, the translation process only
depends on the presence of the transcript, which is
decided in the previous time unit, thus Prott ¼

mRNAt�1: The beginning of a transcription process
depends on the presence of transcription factors, and
since mRNAs are updated after proteins, mRNAt ¼

Prott: The outcome of post-translational processes
depends on the order of updates, for example the
rule for a binding process will be Complext

¼ Prot
t1
1

and Prot
t2
2 ; where t1 and t2 can be either t � 1 or t (see

Table 4).

4.1. Two steady states

The trajectory of the system is thus defined by a
sequence of permutations (obtained as described in
(A3)), and the corresponding sequence of states:

ffk
g; fxkg for k ¼ 0; 1; 2; . . . . (3)

We will show that for pre-patterns that satisfy wg04 ¼ 1;
ci01 ¼ 0 and ptc01 ¼ 0 (which include the pattern observed
in the wild-type at stage 8), the only possible steady
states for system (3) are the wild-type pattern experi-
mentally observed at stages 9–11, and the pattern with
broad wg stripes. We assume that all the proteins are
absent initially (at T ¼ 0), and that the sloppy pair gene
is maintained at a constant value: SLP1;2 ¼ 0 and
SLP3;4 ¼ 1: This pattern for SLP is responsible for
permanent absence (or expression) of some of the
segment polarity genes, and corresponding proteins, in
certain cells of the parasegment. By direct inspection of
the model, it follows that

wg01;2 ¼ 0) wgT
1;2 ¼ 0; WGT

1;2 ¼ 0 for TX0 (4)

enT
3;4 ¼ 0; ENT

3;4 ¼ 0 for TX0, (5)

hhT
3;4 ¼ 0; HHT

3;4 ¼ 0 for TX0 (6)
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Table 4

Regulatory functions governing the states of segment polarity gene

products in the two-time-scale asynchronous algorithm

Node Boolean updating function in the two-time-scale

algorithm

wgi wgt
i ¼ ðCIAt

i and SLPt
i and not CIRt

i Þ or ½wgt�1
i and ðCIAt

i

or SLPt
i Þ and not CIRt

i 

WGi WGt
i ¼ wgt�1

i

eni ent
i ¼ ðWGt

i�1 or WGt
iþ1Þ and not SLPt

i

ENi ENt
i ¼ ent�1

i

hhi hht
i ¼ ENt

i and not CIRt
i

HHi HHt
i ¼ hht�1

i

ptci ptct
i ¼ CIAt

i and not ENt
i and not CIRt

i

PTCi PTCt
i ¼ ptct�1

i or ðPTCt�1
i and notHH

t1
i�1and notHH

t2
iþ1Þ

cii cit
i ¼ not ENt

i

CIi CIt
i ¼ cit�1

i

CIAi CIAt
i ¼ CI

t3
i and (not PTC

t4
i or HH

t5
i�1 or HH

t6
iþ1 or

hht�1
i�1)

CIRi CIRt
i ¼ CI

t7
i and PTC

t8
i and not HH

t9
i�1 and not HH

t10
iþ1

and not hht�1
i�1

Each node is labeled by its biochemical symbol, subscripts signify cell

number and superscripts signify time step. Although the updating time

of each node varies, each function can be written by using the states of

effector nodes at the previous or current time steps. The individual

times t1 . . . t10 can take the values ft � 1; tg:
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and

ci03;4 ¼ 1) ciT
3;4 ¼ 1 for TX0 and

CIT
3;4 ¼ 1 for TX1, ð7Þ

ci03;4 ¼ 0) ciT
3;4 ¼ 1 for TX1 and

CIT
3;4 ¼ 1 for TX2. ð8Þ

The next statement reflects the fact that the effect of wg4
activating en1 propagates to inhibit ci1 which then
eliminates all forms of CI from the first cell.

Fact 1. Assume that wg04 ¼ 1; ci01 ¼ 0 and ptc01 ¼ 0: For

any TX0; if wgt
4 ¼ 1 for all 0ptpT ; then CIt

1 ¼ 0 for all

3ptpT þ 3 and CIRt
1 ¼ 0 for all 0ptpT þ 3:

Proposition 4.1. Assume wg04 ¼ 1; ci01 ¼ 0 and ptc01 ¼ 0:
Under assumptions (A1)–(A2), wgT

4 ¼ 1; for all TX0:

Proof. We will argue by contradiction. Suppose that
there do exist times tX1 with wgt

4 ¼ 0; and let T be the
minimum of such times, that is,

wgT
4 ¼ 0 and wgt

4 ¼ 1 for all 0ptoT .

From the model’s equations, together with assumptions
(A1)–(A2):

WGt
4 ¼ wgt�1

4 ,

wgt
4 ¼ ðCIAt

4 and not CIRt
4Þ or ðwgt�1

4 and not CIRt
4Þ
for all tX1: So, it follows that

WGt
4 ¼ 1 for all 0ptpT , (9)

CIRt
4 ¼ 0 for all 0ptoT and CIRT

4 ¼ 1. (10)

Now, from Fact 1 it also follows that

CIRt
1 ¼ 0 for all 0ptpT þ 2. (11)

The equation for CIR4 is

CIRt
4 ¼ CI

td
4 and not ½not PTCta

4 or HHtc
3 or HH

tb
1

or hht�1
3 or hht�1

1  ð12Þ

(where ta; . . . ; td 2 ft; t � 1g depend on the permutation
ft). Recall also that

hht
1 ¼ ENt

1 and not CIRt
1, (13)

ENt
1 ¼ ent�1

1 , (14)

ent�1
1 ¼ WGt�1

4 orWGt�1
2 . (15)

From (12):

CIRT
4 ¼ 1) hhT�1

1 ¼ 0

and then from (11) and (13):

hhT�1
1 ¼ 0) ENT�1

1 ¼ 0.

Now by Eqs. (14) and (15):

ENT�1
1 ¼ 0) enT�2

1 ¼ 0) WGT�2
4 ¼ 0 and

WGT�2
2 ¼ 0,

which contradicts Eq. (9). Thus, it must be that wgT
4 ¼ 1

for all times T, as we wanted to show. &

The following are now immediate conclusions from
the model:

Corollary 4.2. CIRT
4 ¼ 0 for all TX0; enT

1 ¼ 1 and

WGT
4 ¼ 1 for all TX1: ENT

1 ¼ 1; ciT
1 ¼ 0 and hhT

1 ¼ 1
for all TX2: CIT

1 ¼ 0 and HHT
1 ¼ 1 for all TX3: And

finally, CIAT
1 ¼ CIRT

1 ¼ 0 for all TX4:

Corollary 4.3. ptcT
1 ¼ 0 and PTCT

1 ¼ 0 for all TX0; and

CIRT
2 ¼ 0 for all TX3:

In conclusion, from Proposition 4.1 it is clear that
neither the no segmentation nor the two ectopic patterns
are steady states of system (3) under assumptions
(A1)–(A2), because all of these states imply wg4 ¼ 0:
In addition, Corollary 4.3 shows that the wild-type
variant, where PTC is ubiquitous, cannot be a steady-
state. Also, any of the states with wg1;2 ¼ 1 is
immediately prevented by the initial condition (4). This
leaves only the ‘‘regular’’ wild-type or the mutant with
broad wg stripes.
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4.2. Divergence from wild-type

Under assumptions (A1)–(A2), divergence from the
wild-type pattern occurs if and only if the first
permutation (in particular f1Prot) is of a particular form.
Thus, convergence (or divergence) to the wild-type
pattern is decided at the first iterate ðT ¼ 1Þ:
Recall that the wild-type pattern requires wingless not

to be expressed in the third cell ðwg3 ¼ 0Þ: The next Fact
(proved in the Appendix) essentially says that a stable
wg3 ¼ 0 induces the absence of both engrailed, hedgehog

in the second cell, as well as the absence of CIA3; and
maintains the expression of PTC3:

Fact 2. Assume ptc03 ¼ 1 and en02 ¼ 0:
(a)
 Let TX1: If wgt
3 ¼ 0 for all 0ptpT ; then

ent
2 ¼ 0; ENt

2 ¼ 0; 0ptpT þ 2,

hht
2 ¼ 0; 1ptpT þ 2,

HHt
2 ¼ 0; 1ptpT þ 3,

PTCt
3 ¼ 1; 1ptpT þ 3; and

CIAt
3 ¼ 0; CIRt

3 ¼ 1; 2ptpT þ 3.
(b)
 Furthermore, if ci03 ¼ 0; then also CIA13 ¼ 0 and part

(a) holds for any TX0:
With the help of this fact, we establish that wg3 may
become expressed only at the first iterate or else it is
never expressed. Thus the two time-scale model provides
a strong natural restriction on the formation of an
inviable state: if wg13 ¼ 0; then wgT

3 ¼ 0 for all TX0;
implying that such trajectories will never converge to the
broad striped pattern.

Proposition 4.4. Assume that the initial condition satisfies

wg03 ¼ 0; ptc03 ¼ 1; hh02;4 ¼ 0; and ci03 ¼ 1: Then wg
T1
3 ¼ 1

and wgT
3 ¼ 0 for all 0pToT1; only if T1 ¼ 1:

Proof. To obtain wgT
3 ¼ 1 with wgT�1

3 ¼ 0 it is neces-
sary that

wgT
3 ¼ CIAT

3 and not CIRT
3

) CIAT
3 ¼ 1 and CIRT

3 ¼ 0.

But, if wgT
3 ¼ 0 for T ¼ 1; then, by Fact 2, the activator

CIA3 is zero for T ¼ 2; 3; 4: Then (by induction on T)
expression of wg3 is prevented at any later time. &

In addition, it is possible to completely characterize
the updating permutation ðf1Þ that leads to wg13 ¼ 1
and, as a consequence, exactly compute the probability
of divergence from (or convergence to) the wild-type
steady state (Section 4.3).
Proposition 4.5. Assume that assumptions (A1) and (A2)
hold. Assume that the initial condition satisfies wg03 ¼ 0;
ptc03 ¼ 1 and hh02;4 ¼ 0:
(a)
 If ci03 ¼ 0; then wg13 ¼ 0:

(b)
 If ci03 ¼ 1; then wg13 ¼ 1 if and only if the permutation

f1 satisfies the following sequence among the proteins

CI, CIA, CIR and PTC:

CIR3 CI3 CIA3 PTC3;

CI3 CIR3 CIA3 PTC3;

CI3 CIA3 CIR3 PTC3;

(16)

while the other proteins may appear in any of the

remaining slots.
Proof. Part (a) follows immediately from Fact 2(b). To
prove part (b), we start by noticing that, because
SLP3 ¼ 1 and wg03 ¼ 0;

wg13 ¼ CIA13 and not CIR13,

so that

wg13 ¼ 1 3 CIA13 ¼ 1 and CIR13 ¼ 0.

Following assumptions (A1)–(A2), the model’s
equations for CIA13 and CIR13 are given by

CIA13 ¼ CIta
3 and ½not PTC

tb
3 or HHtc

2 or

HH
td
4 or hh02 or hh04,

CIR13 ¼ CIsa
3 and not ½not PTC

sb
3 or HHsc

2 or

HH
sd
4 or hh02 or hh04,

where ta; . . . ; sa 2 f0; 1g and depend on the permutation
f1: These expressions may be simplified by observing
that: (a) hh02;4 ¼ 0; and thus also (b) HH0;1

2;4 ¼ 0:
Therefore,

CIA13 ¼ CIta
3 and not PTC

tb
3 ,

CIR13 ¼ CIsa
3 and PTC

sb
3 .

The values for CI0;13 and PTC0;13 are determined by
1.
 CI03 ¼ 0 and CI13 ¼ ci03 ¼ 1;

2.
 PTC03 ¼ 0 and PTC13 ¼ ptc03 or ½� � � ¼ 1;
since ptc03 ¼ 1
and recall that both CIA0i ¼ 0 and CIR0i ¼ 0: Therefore,
it is necessary that CI3 is updated before CIA3 and PTC3
is updated after CIA3; because otherwise CIA13 ¼ 0:
Finally, CIR3 must be updated before PTC3; because
otherwise CIR13 ¼ 1: In other words:

ta ¼ 1; tb ¼ 0; sa 2 f0; 1g; sb ¼ 0.
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It is easy to see that any of sequences (16) is also
sufficient to obtain wg13 ¼ 1: &

Finally, we will show that whenever wg3 becomes
expressed at time T ¼ 1; it is afterwards periodically
expressed, every third step. Such trajectories cannot
converge to the wild-type pattern. In other words, initial
permutations of form (16) are not included in the basin
of attraction of the wild-type pattern.

Proposition 4.6. Assume wg04 ¼ 1; ci01 ¼ 0 and ptc01 ¼ 0:
For any TX1; if wgT

3 ¼ 1; then wgTþ3
3 ¼ 1:

Proof. Recall that, by Proposition 4.1, wgt
4 ¼ 1 for all

tX0: By Corollary 4.3, CIRt
2 ¼ 0 for all tX3:

Now, pick any TX1 and assume that wgT
3 ¼ 1: Then

WGTþ1
3 ¼ 1) enTþ1

2 ¼ 1

) ENTþ2
2 ¼ 1) hhTþ2

2 ¼ wgT
3 ¼ 1,

where the last implication follows from Fact 4(in
Appendix A). Then (using either (7) or (8))

CIATþ3
3 ¼ not PTCta

3 or HH
tb
2 or hhTþ2

2 ,

CIRTþ3
3 ¼ PTCsa

3 and not HH
sb
2 and not hhTþ2

2

(where ta; tb; sa; sb 2 fT þ 2;T þ 3g; and depend on the
permutation fTþ3). So hhTþ2

2 ¼ 1 implies

CIATþ3
3 ¼ 1 and CIRTþ3

3 ¼ 0

and therefore wgTþ3
3 ¼ 1; as we wanted to show. &

Whenever wg3 is not expressed, some other nodes also
stabilize, after the appropriate number of iterations.
These are summarized next.

Corollary 4.7. Assume that wgt
3 ¼ 0 for all tX0: Then

WGt
3 ¼ 0; ent

2 ¼ 0 for all tX1: ENt
2 ¼ 0; hht

2 ¼ 0 and

cit
2 ¼ 1 for all tX2: Finally, HHt

2 ¼ 0 and CIt
2 ¼ 1 for all

tX3:

4.3. Probability of convergence to wild-type

The wild-type pattern is in fact an attractor for the
asynchronous model: every trajectory which is not of
form (16) converges to the wild-type pattern (see
Appendix B). The probability that this happens is
therefore determined by counting all the possible states
of form (16):

Probðwild typeÞ ¼ 1�
# permutations as in Eq: 16

Total # permutations
.

Let L be the number of protein nodes to be updated at
each iterate (there are 7 proteins in each of the four cells
so L ¼ 28). Out of the L proteins, only 4 need to satisfy
one of particular sequences (16) in their relative
positions. So let ML be the number of possible
permutations satisfying any of sequences (16). Then

Probðwild typeÞ ¼ 1�
ML ðL � 4Þ!

L!
.

The next proposition is proved in the Appendix B and
shows that, in fact, this is a constant number,
independent of L. That is,

Probðwild typeÞ ¼ 0:875.

Proposition 4.8. For any LX4;

ML ¼
3!

2

XL

P¼4

P � 1

3

� �
¼
1

2

XL�3
j¼1

jðj þ 1Þðj þ 2Þ

and

ML ðL � 4Þ!

L!
¼
1

8

5. A Markov chain process

As a Boolean model, there are only a finite set, sayS;
of distinct states (in the total state space f0; 1gN )
reachable by the system. Starting from any state Sa 2

S; each permutation f of f1; . . . ;Ng takes the system to
some other state Sb 2 S: It is possible to theoretically
identify all the distinct intermediate and final states of
the system as well as all the possible transitions after one
iteration. Thus the asynchronous algorithm consisting
of the N node functions (2) together with assumptions
(A1)–(A3) may be characterized as a Markov chain
process, by identifying the d distinct states

S ¼ fS1;S2; . . . ;Sdg

and the d � d transition matrix P, where each entry Pij

denotes the probability of a transition from state Si to
state Sj : The probabilities Pij are simply the fraction of
the total number of permutations that (in one iterate)
transform the state Si into state Sj : The matrix P is a
stochastic matrix, since all its rows add up to 1. A state
Sa with the property that all permutations leave the
state unchanged (that is, Paa ¼ 1 and Paj ¼ 0 for ja0) is
called an absorption state of the Markov chain, and it is
also a steady-state of system (2). In the asynchronous
model there are only two absorption states, correspond-
ing to the wild-type and broad wingless stripe mutant
patterns, as described above. Isolating the two rows and
columns that correspond to these absorption states, the
transition matrix may be partitioned as

P ¼
Pa 0

Ra P̄

" #
,

where P̄ is of size ðd � 2Þ � ðd � 2Þ: It is a well know
result(see any standard book on probability theory, for
instance (Feller, 1970)) that I � P̄ is an invertible
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matrix, and

T̄1

T̄2

..

.

T̄d�2

2
666664

3
777775 ¼ ðI � P̄Þ�1

1

1

..

.

1

2
66664

3
77775,

or T̄ i ¼ 1þ
Pd�2

j¼1 pij T̄ j : The values T̄ i provide an
estimated time for absorption when the chain starts
from state Si (if a is an absorption state, then T̄a ¼ 0).
In Fig. 5, a schematic diagram of transitions is shown,
together with probabilities and estimated times for
absorption. This diagram was obtained from a simula-
tion starting with the initial wild-type pattern (observed
at stage 8 of the embrionic development), and following
assumptions (A1)–(A3), as well as the additional
(A4)
 Each protein or gene is updated simultaneously in
the four cells,
meaning that there is no cell-to-cell variation in the
duration of molecular processes. In this case, the total
number of possible permutations is a manageable
7!� 5! ¼ 604800:

F ¼ ff ¼ ðfProt;fmRNAÞ:

fProt is a permutation of f1; 2; 3; 4; 5; 6; 7g;

fmRNA is a permutation of f1; 2; 3; 4; 5gg:

The total number of distinct states of the Markov chain
(under assumptions (A1)–(A4)) is d ¼ 48: The transition
probabilities matrix was computed exactly, by counting
all the 7!� 5! transitions from each of the 48 states.
It is clear from this diagram that the decision between

convergence to the wild-type or the mutant patterns is
indeed decided at the first iteration, in agreement with
Propositions 4.1 and 4.4. Furthermore, the diagram
shows the possibility of periodic oscillations (of period
at least three) in the mutant branch (see also Proposition
4.6). Although in practice the probability of a limit cycle
is very small, this prevents (theoretical) convergence to
the mutant state, and considerably increases the
absorption times to the mutant state. The robustness
of the two-time-scale model is illustrated by the fast
convergence to the wild-type pattern (expected time to
convergence is 4 steps), contrasted with the long and
oscillation-strewn path toward the broad striped pattern
(expected time to convergence is 15 steps).
6. Identifying minimal pre-patterns

A necessary condition for convergence to the wild-
type is that ptc03 ¼ 1: Otherwise the trajectory immedi-
ately fails to enter the basin of attraction of the wild-
type state:

Fact 3. Assume ptc03 ¼ 0: Then wgT
3 ¼ 1; for some T 2

f1; 2; 3g:

Proof. Note that ptc03 ¼ 0 implies PTC13 ¼ 0:Using Eqs.
(6) and (7), (8), the equations for ptc3 and CIA3 simplify
to

CIAt
3 ¼ not CIRt

3 ¼ not PTCta
3 or HH

tb
2 or hht�1

2 ; tXt,

ptct
3 ¼ CIAt

3 and not CIRt
3 ¼ CIAt

3; tX1,

PTCt
3 ¼ ptct�1

3 or ½PTCt�1
3 and not HHta

2 and not hht�1
2 ,

tX1,

where t ¼ 2 (respectively, t ¼ 3), if ci03 ¼ 1 (respectively,
ci03 ¼ 0). Consider first the case ci03 ¼ 1: The activator
protein will be turned on either at the first or second
iterations: CIA3 may become activated at t ¼ 1 because
PTC13 ¼ 0; (if the permutation f1 is such that CI3 is
updated before CIA3). If CIA3 is not actived at t ¼ 1;
then it certainly is actived at t ¼ 2 (because CIA13 ¼ 0
implies ptc13 ¼ 0 and PTC23 ¼ 0). A similar argument
shows that CIR1;23 ¼ 0:
Consider next the case ci03 ¼ 0: we have CIA13 ¼

CIR13 ¼ 0; and CIA3 is turned on at the second or third
iterations, by a similar argument as before. Therefore,
the wingless gene is also expressed after CIA3; at T ¼

1; 2 or 3. &

Another necessary condition for convergence to wild-
type is that

wg04 ¼ 1 or en01 ¼ 1 or ci04 ¼ 1.

Otherwise, the trajectories cannot converge to the wild-
type nor to the mutant steady states, In this case, the
only possible steady-state is a ‘‘lethal’’ state, where
expression of PTC, ci, CIA and CIR is ubiqitous and all
others are absent.

Proposition 6.1. Assume wg03;4 ¼ 0; en01 ¼ 0; ptc03 ¼ 1 and

ci03;4 ¼ 0: Then
(a)
 wg3 ¼ 0 for all tX0:

(b)
 PTCt

1 ¼ 1 for all tX4:

(c)
 wg4 ¼ 0 for infinitely many t.
Proof. Part (a) follows from Fact 2(b), for any TX0:

wgt
3 ¼ 0; tpT ) CIAt

3 ¼ 0; 0otpT þ 3.

Thus, by induction, wgt
3 ¼ 0 for tX0:

Part (a) and Fact 4(Appendix 4) imply hht
2 ¼ 0 and

HHt
2 ¼ 0 for all t40; so that

ptct
1 ¼ CIAt

1 and not CIRt
1 and not ENt

1,



ARTICLE IN PRESS

[12.7]
9

[12.2]  [11.3]
11      13

[12.2]  [11.3]
10      12

18

 26

[13.7]

 20

[13.7]

[12.7]
 30

 32   33   34   35
[6.6]

 36
[6.6]

 39     41
[1.5]

 46
[1.0]

 31
[7.6]

 29
[7.6]

 40     43
[1.75] [7.6]

 37   38   42

15

 27

[13.7][8.6]

 23

1719

 24

[8.6]

 21

 25

[8.6]

16

 22

[8.6]

 45     47
[1.0]

MUTANT

STAGE 8

[4.0]

STAGES 911
WILD TYPE

  1      6
[1.0]

  2      4
[2.0]

8
[1.0]

[14.7]
5

[13.7]
7

14

 28

[13.7]

0.5 0.5

0.5

0.5

0.3333

0.1667 0.1250.50.2084

0.1667 0.2917

0.2083

0.50.50.250.250.5

0.16

0.290.21 0.29 0.21 0.29 0.29 0.050.21

Fig. 5. Robustness of the regulatory network modeled with the two-time-scale algorithm. There are 48 states reachable from the wild-type initial

state. The arrows are labeled by the transition probabilities between states (if unlabeled, the probabilities are 1), and the expected times to absorption

into the corresponding steady-state are indicated between square brackets.

M. Chaves et al. / Journal of Theoretical Biology 235 (2005) 431–449 443
PTCt
1 ¼ ptct�1

1 or PTCt�1
1 ; tX1,

CIAt
1 ¼ CIta

1 and not PTC
tb
1 ; tX1.

If ptc01 ¼ 1; then it is clear that PTCt
1 ¼ 1 for all tX1:

Consider the case ptc01 ¼ 0: Then PTC1 ¼ 0 as long as
ptc1 ¼ 0: Note that ci04 ¼ 0 implies CI14 ¼ 0; CIA14 ¼ 0
and also wg14 ¼ 0: Then wg0;14 ¼ 0 and en0;11 ¼ 0 imply
EN1;2;3

1 ¼ 0 and CI2;3;41 ¼ 1: So, either at T ¼ 2 or T ¼

3; we will have CIAT
1 ¼ 1; and therefore also ptcT

1 ¼ 1
and PTCTþ1

1 ¼ 1: Thus, PTCt
4 ¼ 1 for tX4; proving

part (b).
Finally, to argue by contradiction, suppose that

wgt
4 ¼ 1 for tXTa: Then by Corollary 4.3, PTCt

1 ¼ 0
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for tXTb4Ta; which contradicts part (b). Hence, wg4
cannot become permanently expressed. &

By Proposition 4.1, together with Fact 2(b), a
sufficient condition for convergence to wild-type is

wg04 ¼ 1; ptc03 ¼ 1; ptc01 ¼ 0; ci01;3 ¼ 0.

Another sufficient condition (which allows the presence
of cubitus in the third cell) is

wg04 ¼ 1; ptc03 ¼ 1; PTC03 ¼ 1.

The argument in the proof of Proposition 4.5, shows
that, if PTC03 ¼ 1 then wg13 ¼ 0: Then, by Proposition
4.4, it follows that wgt

3 ¼ 0 for all times.
In conclusion, while the wild-type initial state allows

for an ambiguity in the final states, we find that a
remarkably minimal prepattern, consisting of wg4 and
ptc3; is sufficient to guarantee the convergence to
the wild-type steady-state. In other words, the initiation
of two genes in two cells is enough to compensate
for initiation delays in any and all other genes,
irrespectively of the variations in individual synthesis
and decay processes. This suggests a remarkable error
correcting ability of the segment polarity gene control
network.
7. Conclusions

In summary, we proposed an intuitive and practical
way of introducing stochasticity in qualitative models of
gene regulation. We explored three possible ways of
Table 5

Comparison of synchronous and asynchronous algorithms

Synchronous Totally asynchronous

Assume Nodes are updated The time between

at multiples updates is

of the unit perturbed in a

time interval range ��

Update Tk ¼ k Tk ¼ Tk�1 þ 1þ �rk

Pros Correctly identifies Allows for unlimited

all steady states variability in

Can be solved process durations

analytically

Cons Dynamics is Can have unrealistically sho

unrealistic and translation times

Results Prepattern errors Divergence from the wild-ty

can be corrected Cause: imbalance between t
incorporating the variability of transcription, transla-
tion, post-translational modification and decay pro-
cesses (see Table 5 for a comparison between the
synchronous and three asynchronous algorithms).
Applying our methods on a previously introduced
model of the Drosophila segment polarity genes gave
us new insights into the dynamics and function of the
interactions among the segment polarity genes and,
through it, into the robustness of the embryonic
segmentation process. Our results suggest that unrest-
ricted variability in synthesis/decay/transformation
time-scales can lead to a divergence from the wild-type
development process, with an expected divergence
probability of 45%. On the other hand, if the duration
of post-translational transformations is consistently less
than the duration of transcription, translation and
mRNA/protein half-lives, the wild-type steady-state will
be achieved with a high probability, despite significant
variability in individual process durations. We find that
a remarkably sparse prepattern is sufficient to ensure the
convergence to the wild-type steady state of these genes.
This dual behavior, robustness to changes in the initial
state but fragility with respect to temporal variability, is
reminiscent of Highly Optimized Tolerance, a feature of
highly structured, non-generic complex systems with
robust, yet fragile external dynamics (Carlson and
Doyle, 2002). Similar robust-yet-fragile features have
also been found in the of structure of diverse networks
(Jeong et al., 2000, 2001; Albert et al., 2000).
All our algorithms concur in suggesting that

the divergence from wild-type can be attributed to
an imbalance between the two opposing Cubitus
Random order Two-time-scale

Each node is In each time

updated at a randomly interval proteins are

selected point of the updated first,

unit time interval then mRNAs

Tk ¼ Nðk � 1Þ þ fk Tk ¼ Nðk � 1Þ þ fk
tt

fk-node permutation fk
tt 2 ðfk

Prot;f
k
mRNAÞ

Does not depend Allows separation

on any perturbation of post-translational

parameter � and pre-translational

processes

rt transcription Only useful when

process durations

can be separated

pe process is possible Development is stable if

wo transcription factors PTC is prepatterned
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Interruptus transcription factors (CIA, CIR) in the
posterior half of the parasegment. Thus the comple-
mentary regulation and pattern of these opposing
transcription factors (Aza-Blanc and Kornberg, 1999)
is a vital requirement for the correct functioning of the
segment polarity gene network. The totally asynchro-
nous algorithm predicts that perturbations to the post-
translational modification of Cubitus Interruptus can
have effects as severe as mutations: a transient over-
expression of CIR leads to the pattern with no
segmentation, while transient expression of CIA and
not CIR leads to the broad striped pattern. With the
two-time-scale algorithm we find that the condition for
the divergence from the wild-type pattern is that, in the
third cell of the parasegment, the post-translational
modification of CI precedes the synthesis of the Patched
protein. The biological realization of this condition
appears unlikely, since PTC is documented as being
ubiquitously expressed during cellularization (stage 5)
(Taylor et al., 1993), while the post-translational
modification of CI requires SMO that is only weakly
expressed until stage 8 (Alcedo et al., 2000). Our model
predicts that if for any reason the PTC protein is absent
in the period when the pair-rule proteins decay and the
regulation between the segment polarity genes starts, the
wild-type expression pattern is unreachable.
Our methods combine the benefits of discrete-state

models with a continuum in time-scales. In the absence
of quantitative information, we considered every possi-
ble time-scale or update order, but as the two-time-scale
model demonstrates, existing information can be easily
incorporated. We were able to describe the system in a
rigorous mathematical way, to identify the relatively few
types of behavior possible in the system (the attractors
in state space) and to theoretically prove the conver-
gence toward these states. Our results underscore that
predictive mathematical modeling is possible despite the
scarcity of quantitative information on gene regulatory
processes.
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Appendix A. Additional proofs
Proof of Fact 1. For T ¼ 0; the statement follows
directly from the model’s equations and by using the
assumptions (A1)–(A2) repeatedly:

WG14 ¼ 1; en11 ¼ 1; EN2
1 ¼ 1,

as well as

ci0;21 ¼ 0; CI0;1;31 ¼ 0; CIA0;11 ¼ 0; CIR0;11 ¼ 0,

PTC0;11 ¼ 0.

We have (using (6))

ptct
1 ¼ CIAt

1 and not CIRt
1 and not ENt

1,

PTCt
1 ¼ ptct�1

1 or ½PTC
tb
1 and not HHtc

2 ,

CIRt
1 ¼ CIta

1 and PTC
tb
1 and not HHtc

2 and not hht�1
2 ,

so that we conclude

ptc0;1;21 ¼ 0; PTC2;31 ¼ 0; CIR2;31 ¼ 0.

We next prove the fact by induction. First note that, for
any tX0:

wgt
4 ¼ 1) WGtþ1

4 ¼ 1) entþ1
1 ¼ 1) ENtþ2

1 ¼ 1

and this implies

citþ2
1 ¼ 0) CItþ3

1 ¼ 0. (17)

Now assume that the fact holds for some TX1 and that

wgt
4 ¼ 1; 0ptpT .

By the induction hypothesis, we know that

CIt
1 ¼ 0; 3ptpT þ 2; and CIRt

1 ¼ 0; 0ptpT þ 2,

By (17), wgT
4 ¼ 1 implies CITþ3

1 ¼ 0; and this together
with CITþ2

1 ¼ 0 also guarantees that CIRTþ3
1 ¼ 0; as we

wanted to show. &

Proof of Fact 2. To prove part (a), assume that wgt
3 ¼ 0

for all 0ptoT ; with TX1: Since en02 ¼ 0; then EN0;1
2 ¼

0 and hh12 ¼ 0; HH1;2
2 ¼ 0: For tX3 apply Fact 4 to

obtain the desired value for hh2 and HH2: Note that
ptc03 ¼ 1 implies PTC13 ¼ 1 and, together with HH1;2

2 ¼

0; also PTC23 ¼ 1; then the value of PTC3 follows from
Fact 5. For TX2; and using (6) and (8), we have

CIAt
3 ¼ not PTC

tb
3 or HHtc

2 or hht�1
2 ,

CIRt
3 ¼ PTC

sb
3 and not HHsc

2 and not hht�1
2

so, the values for hh2; HH2 and PTC3; indeed imply that
CIAt

3 ¼ 0 and CIRt
3 ¼ 1; for 2ptpT þ 3:

To prove part (b), note that if ci03 ¼ 0; then also ci0;13 ¼

0 and hence CIA13 ¼ 0: But now CIA13 ¼ 0 together with
wg03 ¼ 0 immediately imply that wg13 ¼ 0; and therefore,
the results in part (a) are valid for all TX0: &

Fact 4.

hhTþ2
2 ¼ HHTþ3

2 ¼ wgT
3 and not CIRTþ2

2 for all TX0.

In particular, if CIRt
2 ¼ 0 for all tX3; then hhTþ2

2 ¼

HHTþ3
2 ¼ wgT

3 ; for all TX1:
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Proof. Given any tX0 it is easy to see that

WGtþ1
3 ¼ wgt

3

entþ1
2 ¼ WGtþ1

1 or WGtþ1
3 � WGtþ1

3 ,

ENtþ2
2 ¼ entþ1

2 ,

hhtþ2
2 ¼ ENtþ2

2 and not CIRtþ2
2 ,

HHtþ3
2 ¼ hhtþ2

2 ,

where the equation for entþ1
2 follows from (4). &

Fact 5. PTCT
3 ¼ 1 and PTCTþ1

3 ¼ 0; for some T40;
only if wgt

3 ¼ 1 for some t 2 fT � 3;T � 2g (chosen

according to the permutation fT�2
Þ:

Proof. To see this, simply notice that

PTCTþ1
3

¼ ptcT
3 or ½PTCT

3 and not HHta
2 and not HH

tb
4 

¼ ptcT
3 or ½PTCT

3 and not HHta
2 

¼ ptcT
3 or ½PTCT

3 ðand not wgta�3
3 or CIRta�1

2 Þ

because from (6) HHT
4 ¼ 0; and by Fact 4. Note that

ta 2 fT ;T þ 1g; depending on the permutation fTþ1: So,
for PTC3 to vanish it is necessary that both ptcT

3 ¼ 0
and wgta�3

3 ¼ 1: &
Appendix B. Attractiveness of the wild-type pattern

Assuming that the trajectory is not of form (16), the
only accessible steady-state is the wild-type. In this case,
to establish convergence of the trajectory, it is enough to
show that each node attains a constant value after a
finite number of iterates. And in fact, from Propositions
4.1, 4.4 and Corollaries 4.2, 4.3, all the nodes become
fixed after at most t iterates, as indicated:

wg1;2 ¼ 0; WG1;2 ¼ 0; tX0; ð4Þ

wg4 ¼ 1; WG4 ¼ 1; tX1; Proposition 4:1

wg3 ¼ 0; WG3 ¼ 0; tX1; Proposition 4:4

en1 ¼ 1; EN1 ¼ 1; tX2; Corollary 4:2

en2 ¼ 0; EN2 ¼ 0; tX2; Corollary 4:7

en3;4 ¼ 0; EN3;4 ¼ 0; tX0; ð5Þ

hh1 ¼ 1; HH1 ¼ 1; tX3; Corollary 4:2

hh2 ¼ 0; HH2 ¼ 0; tX3; Corollary 4:7

hh3;4 ¼ 0; HH3;4 ¼ 0; tX0; ð6Þ

ci1 ¼ 0; CI1 ¼ 0; tX3; Corollary 4:2
ci2 ¼ 1; CI2 ¼ 1; tX3; Corollary 4:7

ci3;4 ¼ 1; CI3;4 ¼ 1; tX2; ð7Þ; ð8Þ

ptc1 ¼ 0; PTC1 ¼ 0; tX0; Corollary 4:3

CIA1 ¼ 0; CIR1 ¼ 0; tX4; Corollary 4:2

CIA3 ¼ 0; CIR3 ¼ 1; tX2; Fact 2

ptc3 ¼ 0; PTC3 ¼ 1; tX1; Fact 2

CIA2 ¼ 1; CIR2 ¼ 0; tX4; from CI2 ¼ 1; hhn ¼ 1

ptc2 ¼ 1; PTC2 ¼ 1; tX5,

from CIA2 ¼ 1; CIR2 ¼ 0; EN2 ¼ 0

CIA2 ¼ 1; CIR2 ¼ 0; EN2 ¼ 0

CIA4 ¼ 1; CIR4 ¼ 0; tX3; wg4 ¼ 1

ptc4 ¼ 1; PTC4 ¼ 1; tX5,

from CIA4 ¼ 1; CIR4 ¼ 0.

CIA4 ¼ 1; CIR4 ¼ 0.

This is indeed a complete characterization of the wild-
type steady-state.

Proof of Proposition 4.8. Let P, A, C and R ðpLÞ

denote the positions of PTC3; CIA3; CI3 and CIR3;
respectively. Then, from Eq. (16) it is easy to see that

P 2 f4; 5; 6; . . . ;Lg; A 2 f2; 3; 4; . . . ;P � 1g,

C 2 f1; 2; 3; . . . ;A � 1g; R 2 f1; . . . ;P � 1gnfP;A;Cg.

To derive a formula for ML; we note that, for each pair
of values P, A, the number of possible combinations of
C and R is:

F F F FA FR F FP : ðA � 1ÞðP � 1� AÞ,

FR F FA F F F FP : ðA � 1ÞðA � 2Þ,

respectively, for sequences of the form CARP (top), or
CRAP and RCAP (bottom). Therefore, summing over
all possible A and P:

ML ¼
XL

P¼4

XP�1
A¼2

½ðA � 1ÞðP � 1� AÞ þ ðA � 1ÞðA � 2Þ

¼
XL

P¼4

XP�1
A¼2

ðA � 1ÞðP � 3Þ

¼
1

2

XL

P¼4

ðP � 3ÞðP � 2ÞðP � 1Þ

¼
1

2

XL�3
j¼1

jðj þ 1Þðj þ 2Þ.
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Now, for L ¼ 4;

ML ðL � 4Þ!

L!
¼
1

2
3!
0!

4!
¼
1

2

1

4
¼
1

8
.

Assume now that the equality is true for L � 1:

ML�1 ðL � 5Þ!

ðL � 1Þ!
¼
1

8
.

Then

ML ¼ ML�1 þ
1

2
ðL � 3ÞðL � 2ÞðL � 1Þ

¼
1

8

ðL � 1Þ!

ðL � 5Þ!
þ

1

2
L � 3

� �
ðL � 2ÞðL � 1Þ

¼
1

8
ðL � 1ÞðL � 2ÞðL � 3ÞðL � 4Þ

þ
1

2
L � 3

� �
ðL � 2ÞðL � 1Þ

¼ ðL � 1ÞðL � 2ÞðL � 3Þ
1

8
ðL � 4Þ þ

1

2

� �

¼ ðL � 1ÞðL � 2ÞðL � 3Þ
1

8
L

� �
¼
1

8

L!

ðL � 4Þ!
,

just as we wanted to show. &
Appendix C. State aggregation in the Markov chain

The tables below show the complete transition
probabilities pij (when not indicated, the transition
probabilities are equal to 1). The states numbered 3

and 44 denote, respectively, the wild-type and the
mutant state. The initial condition was numbered 48.
The first table shows the complete transition probabil-
ities at step 1, from the wild-type initial condition.
Thus the probability shown in the diagram for the

transition from the initial state to the aggregated state
f1 6g was obtained by adding p48;1 þ p48;6 ¼ 0:1667þ
0:0417 ¼ 0:2084: A more complex aggregation formula
was used for the transition

f10 12g ! f16 22g:

1

2
ðp10;16 þ p10;22Þ þ

1

2
ðp12;16 þ p12;22Þ

¼
1

2
ð0:2083þ 0:0417þ 0:3þ 0:0333Þ

¼ 0:29165 � 0:29.

The normalization by 1=2 is justified by the fact that the
transition from 9 and 30 to either 10 or 12 is the same.
From initial wild-type state to:

1 2 3 4 5 6

0.1667 0.357 0.1667 0.125 0.125 0.0417

From 9 to:

10 11 12 13

0.25 0.25 0.25 0.25

7 16 18 20 21 22 25 26

From 10 to: 0.2083 0.2083 0.125 0.0417 0.125 0.0417 0.125 0.125

From 12 to: 0.1167 0.3 0.1167 0.05 0.1333 0.0333 0.2 0.05

14 15 17 19 23 24 27 28

From 11 to: 0.2083 0.125 0.125 0.2083 0.125 0.0417 0.125 0.0417

From 13 to: 0.1167 0.1167 0.1333 0.3 0.2 0.0333 0.05 0.05

From 29 or 31 to:

32 33 34 35

0.25 0.25 0.25 0.25

From 30 to:

10 11 12 13

0.25 0.25 0.25 0.25
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From 36 to:

31 37 38 39 40 41 42 43

0.2083 0.125 0.125 0.2083 0.125 0.125 0.0417 0.0417

From 37 or 38 or 42 to:

32 33 34 35

0.25 0.25 0.25 0.25

From 39 or 41 to:

44 46

0.5 0.5

From 40 or 43 to:

44 45 46 47

0.25 0.25 0.25 0.25
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