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Weakly activated signaling cascades can be modeled as linear systems. The input-to-output transfer function
and the internal gain of a linear system provide natural measures for the propagation of the input signal down
the cascade and for the characterization of the final outcome. The most efficient design of a cascade for
generating sharp signals is obtained by choosing all the off rates equal and a “universal” finite optimal length.
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1. Introduction dX,
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Protein kinase cascades are major functional modules used
by cells to translate signals generated by receptor activation into
diverse biochemical and physiological responisesighly and
conserved throughout evolution and across species, the kinase
cascade motif participates in the control of many processes,
including cell cycle regulation, gene expression, cellular me-
tabolism, stress responses, and T cell activation. For this reason,
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control of kinase cascades by therapeutic intervention has
become an attractive area for drug discovery, particularly in
the areas of cancer and inflammattoh.

Some four mitogen-activated protein kinase (MAPK) signal-
ing cascades have been found in yéasnd at least a dozen
MAPK cascades have been identified in mammalian &élllse
intensive study of MAPK pathways has prompted efforts to

characterize these systems theoretically (see, inter alia, refs

6—14). In this paper, we will utilize concepts and methods from
the theory of linear control systems to characterize kinase
signaling cascades, in particular the MAPK pathway, to

understand how the number of kinases in a cascade and their—: = a,R— B,X;

individual enzymatic activities can affect the pathway in its role
as a signal-transducing module. For recent applications of con-
trol theory methods to biological systems, see refs 15 and 16.

Let R denote the input signak;, the inactive (nonphospho-
rylated) form of kinasé and X, the active (phosphorylated)
form of kinasei. The rate constant (or “on” rate) for thth
kinase phosphorylation will be denoted &y and the dephos-
phorylation rate constant (or “off” rate) will be denoted By
The input signaR might represent, for example, the concentra-
tion of activated receptors, and the dynamics of the signal
transduction pathway may be modeled as follows (see ref 10)
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Assuming that the total amount of kinaseemains constant,

that is, Xi + Xi = X, the differential equations (1) can be
rewritten as
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where g

= OiXwotj- Throughout this paper, we will focus on
the case ofveakly actiated pathwaysby which we mean a
low level of kinase phosphorylation, that is

xtot,i

In this case, the equations (2) are simplified to a linear system
of the form

X <Koty =1 - ~1 3

X

H |:2,..

0Xi—y — B s (4)

In section 2, we will describe how to compute the transfer
function and internal gain for this system, and then in section
3, we will define a set of measures for the output signal, which
closely follow those discussed in ref 10. In section 4, we prove
that the most efficient cascade design for generating sharp
signals has equal on rates and a finite length depending only
on the cascade’s internal gain. In section 5, positive feedback
from the last activated kinase to the first is added to the cascade,
and the optimal design is re-examined in this new context.
Finally, in section 6, we briefly discuss how to check the

cascade’s stability to random small perturbations.

2. Input-to-Output Transfer Function

We will consider the signaling cascade (4) as a system with
aninput R and anoutputwhich will be some function of the
concentration of the last kinagg. A typical function consists
of the total accumulated concentration Xf or J ™Xy(t') dt'.
From the biological point of view, however, one should also
consider the degradation rate Xf as well as the possibility
that some fraction oX, is not active. We will assume that the
loss of accumulated kinase (due to degradation or inactivation,
for instance) is reflected by a constant rgtand we introduce
the output as a new variabl¥; 1, given by
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(From the control theory point of view, this corresponds to X I X
extending the cascade one more step to include a “leaky” ' B\/ '
integrator.) The variabl¥,1 expresses the effective concentra- ' \
tion of the last kinase. Note that the cdse O recovers the J—
total accumulated kinase, i.66,+1 = J Xy(t') dt’.The model X « X
for a weakly activated signal transduction cascade may then be \
written in the more compact form lx ‘

ax .\ _ _ a,

GO=AXD+BRY) YO=CXO) (5 X Ux

where X = (X, Xz, ..., Xn, Xn+1)' is @ column vector whose
elements are always nonzero, aag RMDx(HD) B ¢ RMHIxL X = output
andC e R¥*(*1) gre the matrices !
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Figure 1. A model of a MAPK cascade.

1

Figure 2. Transfer functions at each step.
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wheres is a complex numbes = se + /o (/ is the imaginary
©) number+/—1) and takes values in an appropriate region of
convergence.
Applying the Laplace transform operator to both sides of eq
4, assuming thaX(0) = 0, and recalling the properties of the
Laplace transform, we have

o

0O 0 0 ..o —f,0

o

@04 @ $%(9) = R ~ A9
It is well known (see refs 17 and 18, or any other book on N N N .

control systems) that, for a system such as 5, the output can be SX(9) = o Xi_4(8) = BiXi(s) 1=2,...,n
computed directly as the convolution between the input signal N ~ A
Rand the impulse response of the system. The impulse response SXy1(8) = Xy(8) — IX14(9)
of the system is the output corresponding to a single input pulse.
If we let G denote the impulse response (and assuming that the
system starts at rest, with initial conditio¢{0) = 0), then

which yields

Y() = (G*R)() =55 ﬁ

The impulse response;, characterizes the action that the and
internal structure of the system will have on any input, such as
the filtering of certain frequency components and the amplifica- " (9 =
tion or dampening of the signal. Biological inputs may take L S+|
many different forms, such as single pulses, slowly decaying
signals, constant stimuli applied for a certain time interval, or
oscillatory signals. Thus, it is appropriate to have a model in
which the output signal is obtained as a convolution of the input .
R (which may take many forms) and the transfer funct®n
(which depends only on the intrinsic kinase activity parameters
and needs to be computed only once). o

A very convenient way to analyze system 5 is to convert it I(s) i=2,..,n
to thefrequency domairby application of the Laplace transform stp
operator. The Laplace transform of the impulse response is call-
ed thetransfer functiorof the system, and it provides a simple
linear relationship between the Laplace transforms of the input .
and the output, as well as also providing a measure of ampli-

R(s) X(s) iﬁ (9 i=2,..,n

X9

In this way, we may view the cascade as a sequenoestdps,
the output of the step — 1 becoming the input to steipFor
eachsmgle stefin the cascade, the input -1 and the output

s X, and they are related by a multiplicative factor, which is
in fact thetransfer function for the step i

For the whole cascade, the inputRsand the output i1,
and it is easy to see that the transfer function for the total system
is the product of the transfer functions at each step

fication/dampening of the input signal. The transfer function is ) ) ) 1 0y -0,
given by a simple formula in terms of the matriggsB, andC G(s) = Gy(9)**G4(9) = T - (8)
as summarized in the Supporting Information. For this cascade s (st ) (st B

system, we will carry out the Laplace transforms in detail so as

to gain some insight into the internal structure of the system. Therefore
The Laplace transform ok will be denoted byX, and is ) A 1 00,
defined as Y(s) = Xpa(S) = R(s)

s+1(s+ ) (s+8)
X@©=[" eXxOd Re= /" e°R)dt . .
1 —o ' —o and the actual output may now be obtained by the inverse
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Laplace transform. Alternatively, even without knowing the
exact form of the output, that is, the functiofft), it is still

possible to further characterize the properties of the system,

through the 2-norm of the functioféandR. Define the 2-norm
of the functionY and the 2-norm of the Laplace transfokiby

VIl =L ) o ™2
||Q||2; — [% f_:o ?(/w) zdwlllz

with similar expressions holding f& andR. (Note: from now

on, we will assume that the signals are defined only for positive

times, that is)Y(t) = 0 fort < 0.) The 2-norm|Y]|, provides a
measure of thetrengthof the signals (in analogy to the energy

J. Phys. Chem. B, Vol. 108, No. 39, 20045313

The norm||G| is often called thénternal gain of the system
which, through expression 9, provides a useful and easy way
to compute the input-to-output strength relation. For example,
if a MAPK cascade has a “5-fold amplification”, then its internal
gain is||G||» = 5. .

Note that, in the case whele= 0, the internal gain|G||. is
infinite, meaning that in at least one stefy, (~ Xn+1) there is
no degradation term. Then the estimate 9 contains no useful
information. However, fot = 0, we have

V() = Xopa) = f3 Xo(t) ot

and we also have an estimate for the “strength” of the signal
Xn, Since

of a mechanical system.) Indeed, these norms provide a very

convenient way to relate the input and output because, from

Parseval’'s Theorenthe 2-norm of a function equals the 2-norm
of its Laplace transformand therefore

1Y, = 1Yl 1IRI], = [IRI],

without the need to compute inverse transforms (a very helpful

[ Xall2 = IRl

0t tQly, |

By++Pa

3. Signaling Time, Signal Duration, and Signal Amplitude
Some basic quantities which serve to characterize a signal

transduction system are the overall amplification from the input
to the ouput, the duration of the output signal, and the time it

fact, since in general the inverse transforms may not be simple 5o the input signal to traverse the cascade. There are several

to compute).

Another useful measure is thefinity norm of the transfer
function, that selects the least upper bound of the absolute valu
of G

16]1.: = sup|G(w)|

A very useful estimate for characterizing the relative strength

of the input and output signals is (see, for instance, refs 17 and

19)

111, = 1IGI1LIIRII, ©)
where it is immediately apparent that the infinity norm of the
transfer function gives an upper bound for the amplification of
the input signal throughout the cascade. Moreover, the infinity
norm ||Gl|. is in fact the smallest number that satisfies eq 9,
for all input/output pairs (that is, pairk(Y), whereY is the
output corresponding to the inpR).

To compute the infinity norm of the transfer function for the
whole cascade, note that

2 2
<L

18-2

and the equality holds fap = 0. Therefore

2
log| Q;

Jw + B - o+ B}

G, (w) > = for w e (—o0,0)

1 al...an

| BBy

A necessary condition for amplification of the signal to occur
is that||G||» > 1. Moreover, sincéis essentially an independent

1G], =

(10)

parameter, introduced for the purpose of defining a reasonable
measure of the output, we can say that amplification of the input Y

oS

signal occurs only if

0y > fyeefy 11)
Recall thaio = & Xotj, WhereXyt;j is the total concentration of
the ith kinase andd; is the (true) rate of phosphorylation.
Therefore, we still expect that; < i, i = 1, ...,n, as should
be the case for a weakly activated pathway.

[S)

possible definitions and estimates of these quantities; here we
extend the definitions given by ref 10, embedding them in the
context of frequency-domain analysis and generalizing them to
arbitrary inputs.

To be concise, let us identify the cascade 5 by its parameters
and associate with it the following 12+ 1)-tuple

6 =N, 0y, ...y, By s Bp)

where it is assumed thate N ando; andp; are positive real
numbers, foi = 1, ...,n.

We will also introduce the notatio for denoting the set of
inputs.

Definition 3.1. For system 5, with parametersand a leak
factor| > 0, for each inputR, the signaling time 7, and the
output signal durationo, are given by

oo _ dInY o, [dPInY
W(CLR): == =3 (Lo o(CILRY: _( 2

The signaling time to step and thesignal duration at step, ii

12
(S)ELo)

< n, are given by
o dInX o [dPInk, v
W(OR: =~ 55~ O G(OR: =|— 79

To understand the significance of these definitions, recall the
properties of the Laplace transform and compute (Wiih =
Ofort <0)

K0)= [ YO ot %(O)= — [ v e
0)= [ Y1) ot

and thus we recover expressions 4 and 5 of ref 10

[ () dt
S5 Y dt

[Cevmd |7 d)’
Jovmde | v dt

T= o
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Figure 3. An input that satisfie$|R||. = 1 and||Y]|. = 16l |, With

=0.2.
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wheret can be regarded as the expected value (of the time to

traverse the pathway) andas the corresponding variance.
An estimate of the amplitude of the output signal, as given
in eq 6 of ref 10, is the valu& such that 2S= /7 Y(t) dt.

Again, we propose a more generalized notion, suggested by the ||R||, =
input-to-output estimate (eq 9), that takes advantage of the easily
computed internal gain of the system, and also incorporates the

strength of the signal.
Definition 3.2. For system 5, with parameter and a leak
factorl > 0, for each inpuR, thesignal amplitudes given by

G e
o(CI,R)

where G, is the transfer function of eq 8./ may also be
regarded as the amplitude of a constant signal of duratjon
but Definition 3.2 differs from the definition of amplitude given
in 10 in essentially three points:

1. The meaningful quantity for measuring the amplitude is
not the integral/ Y(t) dt (which computes the area under the
curveY(t)) but rather the 2-normy(|Y(t)|2 dt)¥2, which computes
the strength of the signal.

2. The amplitude is proportional to the product of the internal
gain of the system and the 2-norm of the input. This simplifies
calculations since, for each cascade,|tk&| is computed only
once and|R||2 is computed for each input signal.

3. The product|G||«||R/|2 is used as an estimate fgi]|2,
but we know that||G||~ is the least factor that satisfies the
inequality||Y]|2 < [|R]|2. In fact, ref 19 shows how to construct
examples of inputs for which the equality is approximated. For
instance, for any > 0, the input depicted in Figure 3

ACLR): =

IRl (12)

r.
— S

—sin t with r=(a/ )¥2 for t=0 (13)

R(t)=2

has unit norm, i.e.}|R||> = 1, and satisfie$|Y||> ~ ||G||«, for

small enough, as shown in Supporting Information. (One can
also show the existence of positive-valued inputs satisfying
this24)

We remark that these definitions are valid not only for the
special case wheA, B, andC are of the form specified in eqs
6 and 7, but in fact they are valid for any linear system of the

Chaves et al.

LA
o(CIR) = \/ 4y = +qR (15)
Y
whereq(R) = d? In Rlds?[d-o, and
1 (xlooo(xn
AC)R) = [IRIl, (16)
L v g Beh
-t ) —+tadR
§ ;ﬁﬁ

In the casd = 0, the quantities, o, and.¢ may be computed
for Y = X,. The expressions are very similar, except that all
the terms inl vanish.

Example 3.3.A typical input is a decaying exponentig(t)
= Ry e, with

R
2

Ro
s+ 41

dInR

R(s) = s

©=-7 aR=";

A “peak’-like input may be represented IR(t) = Rt e 4,
with

Ro

R dInR
IRl =—3
4,

C(s+4)3? ds

2

12

R(s) 0)= —% aR) =

For a constant signal, of magnituég, applied for an interval
of time To, we have

. 1—¢°P

IRl =RoyTo RS =Ry=——
A 2
dinR, .\ _ 10 _'o

4. Cascade Design Optimization

From the analysis of the quantitieso, and . ¢, defined in
section 3, we can explore the signaling efficiency of kinase
cascades. The definition of an “efficient” response may depend
on the particular biological context, but it typically involves
the relationship between the length of the cascade, the amplitude
of the signal, and its duration. A question posed in ref 10 is
whether cascades can respond with sharp signals, i.e., simul-
taneously of short duration and high amplitude. Our model
provides a definite answer to this question.

As we have seen, our linear model has a gain that depends
on the length of the cascade and the values of the on/off rate
constants but does not depend on the input. As a starting point,
we may think of the family of cascades that have the same value
for the internal gain, say, and examine their length, the
distribution of the “on/off” rates, and signal amplitude and
duration. The problem we would like to study is then:

(P) For each fixed internal gaifiG||» = K, find the optimal
combination of the on/off rates and the length of the cascade
that maximizes the signal amplitude(, for any inputR.

form 5. For instance, in section 5, we compute these quantities 10 formulate this problem, first define the family of cascades
for the case when there is positive feedback from the last to the that have the same internal gain

first kinase. We next explicitly compute these quantities for the
special case wheA, B, andC are of the forms of eqs 6 and 7
andl =0

dInR

ds

- (14)
4,

1
(GLR) = I_ + 0

aloocan

- = K
|By:+B, }

For each inputR, and each leak factdl, define the set of

“optimal” cascades, that is, those cascades which exhibit
maximal signal amplitude

Cy: = { G=(N, Ay, ..., O B, - Br):
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ChadllR): ={0eCy;: ACILR = AC'|R) for M = MO+ o,
¢ €Cyil wheredw € [0,1), define the functioV:(—c,0) — N, which

Then define the function is plotted in Figure 4

noq 1, M=1
oo(NBp-B): =S — W(M)={ M0 M > 1, anddy, < f (IMD)
=182 MO M > 1, andd,, > f (IMD)
and observe that it satisfies This is a step function where the “jump” between steps always
) occurs in an interval between two integers, kandk + 1, at
St 12 a point that depends on the numbern particular, since the
ClLR) = (= + 0o(nBy,... 5, + AR p P p :
ol ) (|2 o) )) functionf is strictly increasing and takes values in the interval

(2 In2—1,%,) (see Supporting Information), it follows that in
Finally, define the set of cascades that minimigever the some cases only the fractional part of the numyeaffects the
family C location of the “jump” discontinuity

C.(lR: ={Ce Cy): gg(nfy,...5,) < oo(n',By,...8;) for 0<oy<2In2—-1 ¥M)=IMO
0 € Cy}
’ 1
i _ =<0y <1 ¥YM)=mMO
Our first result states that in fact the s&¢(,R) andCnax(l,R) 2
are equal or, in other words, that an optimal cascade will
simultaneously maximize the signal amplitude and minimize the
signal duration
Lemma 4.1.In the notation defined abov€nadl,R) = C--
(I,R), for all inputsR € 7/ and leak factor$ > 0.
The proof is provided in the Supporting Information. An
immediate conclusion from this Lemma is that

while for the other cases, 2 In2 1 < du < 0.5, the choice
depends also on the integral parthf

Theorem 1.LetK > 0 andl > 0 be fixed real numbers. Let
Ck, be the set of all cascades (eq 5) with internal g&jras
defined above. Then:

1. For each fixedn = N € N, the elements¢ =
(N,ag,...0N,S1,--PN) € C+(I, R) satisfyp; = g, foralli =1, ...,
maximize.((G}|,R) overCy, N, where

< minimize oy(nfy,...3,) overCy (al---aN)lfN

ﬁ =

so that, for any fixed internal gain, maximal amplitude is Kl
achieved simultaneously with minimal signal duration. Thisis 2 (a). Any element¢ € C+(I,R) of the form ¢ =
consistent with the notion that the most efficient cascade would (n o, ... o, 1,... 8,) satisfies
respond with sharp (high-peaked and fast) output signals. In
the limit, this notion can be regarded as an “instantaneous _ _ a1\l
response” ¢ ~ 0) coupled with “in%inite signal amplitude” n=W@2InkKl) and f=p= O‘(ﬁ)
~ o), which is, of course, not biologically viable. A realistic
solution to problem (P) does exist and is stated in Theorem 1. 2 (b). Any element¢” € C«(IR) of the form ¢ =

Since the signal duration depends only on the cascade lengtHN.0... @n,B1,...4n) € C+(I,R) with az-++an = o satisfies
and the “off” ratesf3;, (besides the input term), we expect the o\t
“on” rates,a;, to play a small role in maximizing the efficiency n= q;(z In ﬁl) and 8,=p= (_P)
of the output response. So, for addressing the problem (P), we a, KI
will consider two different assumptions on the available
knowledge ofw: either (a) all thex; have an equal, fixed value, — Before presenting the proof of the Theorem, some remarks on
o; or (b) the product of they is known, at some fixedwp. We the interpretation of points 1, 2a, and 2b. The first part of the
will also assume that the “leak” factdris fixed, since this result is consistent with the observation that the ordering of the

parameter was added artificially and may be adjusted indepen-amplification or dampening single steps within the cascade does

dently. not influence the final output signal (also observed in ref 10).
Before stating the main Theorem, we need to introduce some  The second part of the Theorem shows that indefinitely
notation. Define the functiofi(1, ©) — (0, ) to be increasing the cascade’s length will not increase amplification.
In fact, there is an optimal length for the cascade that provides

(k) = kz[(l—i-l) In(l—i—l) 1 both maximum signal amplitude and minimum duration. A

Kk kI Kk similar observation was mentioned in ref 10, and our Lemma

4.1 and Theorem 1 characterize the conditions for achieving
Some properties of this function are stated in the Supporting this optimization. For each gakiand leak factot, this optimal
Information. For any real numbeédl = 1, define length is easily read out from Figure 4. For instance, a cascade
with a 6-9-fold gain (andl = 1) is seen to have an optimal
length of 4 steps. Figure 5 illustrates Theorem 1, for an 8-fold

[MO= least integer greater than cascade gain. The Figure shows the results of two simulations

of system 5, both with inpuR(t) = 5t e 2! but different lengths
which are also known as, respectively, the “floor” and “ceiling” of the cascade. The various curves repregenhe concentra-
functions ofM. Observing that any real numbkf > 1 can be tions of each kinas;, i = 1, ...,n, and the outpuXn;1. It is
written as the sum of its integral and fractional parts clear that, for the nonoptimal = 7, the output’s amplitude

(M= largest integer less than or equaMo
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Figure 4. Left: the function®(M). Right: the function¥(2 In Kl). Note that, for a given gaiK and leak factot, the optimal length is given by
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Figure 5. Signal transduction cascade wit) = 5t e %, with K =8, = 1, a; = 1.2. The horizontal lines represent. Left (optimal case):n
=4,5 ~0.714,i = 1, ...,n, .{ = 0.409, andsp = 3.059. Right: n = 7, i ~ 0.892,i = 1, ...,n, .¢ = 0.389, andso = 3.210.

decreases and the signal duration increases. Note that the outputor simplicity, rescale the values & = 1/ﬁi2, and observe
curveXg is more spread out across time and its maximum value that
is lower, than for the optimal case.
Theorem 1 can be proved by successively solving the two 1 o [Q17ray 2
optimization problems: BB, (Brr=Br)” = Kl
(P1) For each fixedh, minimize oo, over all possible choices
of B1, ..., Bn € (0,®), subject to||G||. = K, and
(P2) Minimizeoy, over all possible choices ofe IN andf,

Then, the problem consists of minimizing the function

.oy Bn € (0,), subject td|G||. = K. Recall that we are assuming _ Q

that either (a) all they have an equal, fixed value, or (b) the F(By, . Byy) =By o + By g BB,
product of then; value is known, at some fixedp. The solution

of (P1) is equal for both cases, but the solution of (P2) is slightly over all possible choices & > 0,i =1, ...,n — 1, where

different for a or b. Thus, problem (P1) is part 1 and (P2) is the
part 2 of the Theorem. As we will see, the solution of (P1)
greatly simplifies the proof of (P2).

4.1. Solving (P1): Proof of Part 1 of Theorem 1Given a
cascade of length, this problem consists of finding a set iof
parametgrﬁl, Bn such that the functiong attains a minimum
value atpi, i = 1, ...,n, i.e.

_ KI )2
=5

In the Supporting Information, we show that the solution to
this optimization problem is

B=Q™ i=1,.,n—-1
S I S I . -
B> B2 Bl BE B By’ which also implies
for everypy, ..., Bn such thatl|G|l. = K = _Q __ QU

Q 1-1n)

t=K e KIpB, — e, =0 So, the choice of the “off” rate constants that minimizgds

Bn t0 havepy = B = =+ = B, = B, with

16, =7 5

1 alno-a
1...
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_ 1 0o\ (@ As shown in the example of Figure 6, evaluationogfat
B= VB ki n*(M) yields a value which is actually quite close to the “true”
" oo(M, S(M)).

as we wanted to show.

4.2. Solving (P2): Proof of Part 2 of Theorem 1To solve
the more general problem, we first show how its statement can In this section, we investigate the behavior of cascades under
be simplified. Given the value af (respectivelyap), suppose positive feedback (for a computational study of feedback effects
that we have found a solution of (P2), i.e., an integleand a see, for instance, ref 6). Assume that the last kinxgealso
set of constantg;, i = 1, ..., n* satisfying contributes to the activation of the first kinase; then the

differential equation foK; includes one more term and becomes

5. Cascades with Positive Feedback

oo, B, Brv) = 0o(NPBy, .. Br) (17)
1 e —
for any other cascadé’ = (n, ay, ..., o, B, ..., Bn) With aj = at R + X, = X
o, i =1, ..,n (respectivelyoy---a, = op).
We have already showed that We will assume that is small enough
0%, B*,... ) < oo(N*,BE,... B5) (18) BrPn> apeay
with This guarantees that the cascade is stable with respect to small
perturbations (that is, all the eigenvalues of the system’s matrix
_ 0" \ M) A have negative real parts, see section 6).
B = We can compute the transfer function for the system with
Kl
feedback ( > 0), just as we did in section 2, for a given cascade
and we know this choice yields the unique minimunogffor ¢'= (n,a,...0n,01,...4n) and any inpuR and leak factor > 0.
a fixed lengthn. So, it follows that the solution of (P2) must We obtain
also satisfy
‘B =g 69 =55 ——— 21)
pr=p* i=1..n stHI(s+B)(5+h,) — oy,

This observation allows us to simplify the statement of problem The infinity norm is again obtained for the case= 0 (s =
P2 and look only for solutions where &| values are equal: _/w) (see below, at the end of this section)
(P2) Minimize ao(n,B,...8) = n/?, overn € N andf € (0,»),
subject to @/B)" = KI.

From the constraint|G||. = K, we have

al- . .an

2 1
Gll, =~
Gl |ﬂ1"'ﬁn_ Ayt o0y

Case 2a: Computing the signaling timer) and the signal durations}

1 ;
(9)” =Kleg= a(i)( " _, o,(n,B(N) = aiz n(KI)@" and amplitude .(/), we have

B K

Case 2h: BBy, E
% _ g (ap)(lfm B (Kl)(zm) 1 S dinR
o=l oo(np(m) =n{_ - T(GLR) =+ v (22)

In either case, to solve the problem, it is enough to minimize (CIR) =
the function Inpo(n,A(n))] v

n 1 1 1/2
_ 1 B> —+ e,y —
F(nM)=Inn+ =M 1 =182 ; Bib;
-+ + q(R) (23)
overn € N, whereM is a positive constant with value either 12 By B — oLz---oLn)2
1 al...an
M = 2 In Kl, for case 2a (29) A (CI,R) = , R 24
/fb( 4 ) O'(()),l,R) ﬂl'"ﬂn _ az'"an || ||2 ( )
_ Kl
M=2In _P’ for case 2b (20) Comparison of these quantities for the models with and without
feedback leads to the following conclusions:
For a fixedM, let the minimizer ofF(n,M) overn €N be 1. The system with feedback exhibits higher internal gain.
2. The system with feedback exhibits larger signaling time
n“(M): ={neN:F(nhM) < F(n',M) for n"eN} and signal durationy, > 7 andop > 0.

So, for an arbitrary cascade, the existence of a positive

which is given by (see the Supporting Information for a proof) feedback leads to a less sharp output signal: the signal

(M) = W(M) transduction down the cascade takes a longer time, and the

output signal has greater duration.
Thus, for part 2a of the Theorem, we have= n*(2 In Kl) On the other hand, the existence of feedback may be used to
= W(2 InKI), and for part 2b, we have= W(2 In Kl/op). The great advantage in the design of an optimal cascade: positive

value is given according to part 1. feedback (at a constant rafeallows the cascade to be of shorter
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Figure 6. The functionag(n,3(n)), for KI = 8 anda. = 1.2, and the pointsM,o0(M,3(M))) (circle) and (*, ao(n*, S(n*))) (star).

length and still have the same maximal amplitude/minimal

for everyw €R, where the equality holds if and onlydf = 0.

duration. The results in Theorem 1 are valid just as before, with Thus
suitable adjustments to some of the constants. Thus, we now

have

(o + Koy o
- K

n

1G]], = K= By+B,

and now, similarly to the proof in section 4.1, we set

Kl 2
(o, + KDay-ay,

bez(

which leads to the optimal value f@ = B, i = 1, ...,n

B ((0.1 + Kl)az---an)(l’“)
B K

b

To find the optimal length of the cascade with feedback, note
that

o,(n,B(n)) = nME  with
Kl (2/n)
(o, + Khay-a,,

My =2 In(

Since My < M, then alsong (M) < n*(M). Therefore, we
conclude that, for the cascade with feedback:

3. For each fixedh, the value of the off rates that maximizes
A (minimizesop) over C+(1,R) is larger,Bwm, > .

4. The length of the cascade that maximizégminimizes
og) over C«(I,R) is smaller,ni, < n*.

These results agree with what would be expected from a
signaling pathway: indeed, the existence of positive feedback

[denG())| = I[By++B, — 0 +a,] = denG(0)) > 0

where the last inequality follows from the assumptjéy-fn
> 0g ++on. Therefore, if the expressiddenG(w))| is mini-
mized atw = 0, then the functionG(w)| is maximized at» =
0, as we wanted to show.

6. Stability of Cascades

A signaling pathway is consideratiable(see ref 10) if small
and random perturbations (those that do not consist of biologi-
cally relevant inputs) are not amplified. So, in the presence of
small perturbations, the amount of phosphorylated kinases
should not be allowed to grow very large and should return to
the stable state, witlk; ~ 0, for alli = 1, ..., n. Thus, the
behavior of a signaling pathway in the absence of a relevant
input always satisfies expression 3, that{s=<< X for each
i =1, ...,n, and hence its stability may be established by analysis
of model 5.

In the absence of an inpuR(t) = 0), the point K1, X», ...,
Xnt+1) = (0, O, ..., 0): = Ois an equilibrium point of system 5,
and the stability of this equilibrium determines the stability of
the pathway. The equilibrium poind is stable if all the
eigenvalues of the matriA have negative real parts. This is
indeed the case for the system described by eq 5. We know
that, after a perturbation, the system will always returrd.to
Moreover, we can estimate that a small perturbation will also
generate a small response, since

¥pedl2 = 1R o2

enhances the activation at each step, so a larger amount of th&vhere is a constant, equal t9G|.

phosphorylated kinase will be produced; to keep this amount

For signaling cascades that exhibit a lower degree of kinase

at a “weak” level, the phosphatases should increase their activity. Specificity, the problem of stability of the cascade (see ref 10)
On the other hand, since the amount of phosphorylated kinase?ecomes significant. If a kinas¢ affects both the downstream
increased, a smaller number of steps is required to produce thekinases and some upstream kinase, then the eigenvalues of

same signal amplitude as in the cascade with no feedback.

To compute the infinity norm|GJ|., we first note that the
denominator ofG(w), which we will denote by deig(w)),
satisfies (by the triangle inequality)

[denG())| = Jw + [Jw + Byl=shw + Bl = 0peat]
Also

Jo + Bl + Bl =
(@® + B+ (@* + B = BB,

change, and stability is not guaranteed. Allowing for kinase non-
specificity, a resulting matriXA could be of the form

—B1 12 O 0 = O

@ —f,0 0 0 O

g _ﬂ3 -0 O 0

A = O~4 0 O 0
e 0 —ﬁn 0

0 0 0O -0 1 |
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and the signaling pathway is stable if all the eigenvalues of A Other issues, such delay at each phosphorylation step, and
have negative real parts. the stability of the signaling pathway when there is a high degree
Some relevant easy-to-compute examples are: of nonspecificity among the kinases, are also naturally examined
(1) Suppose that each kinaisis only allowed to activate its ~ within this framework. We have seen that the stability of the
downstream kinasesig = 0, 12 =10, and = 0); in this case, zero steady-state of the cascade with respect to small perturba-
it is not surprising that stability is not affected at all, because tions is established by checking that the eigenvalues of the
this situation corresponds to a lower triangular matrix, again matrix A all have negative real parts. Supposing that, at each
with eigenvalues- f;; step, there is a delay; in the transmission of the signal the
(2) Suppose that there exists feedback from the last activateddynamics at step becomes (¥i(t)/dt) = aiXi-a(t — di-1) —
kinase to the first kinase {, = o, 12=0, and = 0); in this BiXi(t — 6;). The Laplace transform ofi(t — &) is e X so

case, if o satisfies that the transfer function becomes
By By : 1 Gy g
oo > 0,0, < < — G(S) = e 1 () ntl
By bn> o0y 0 " grear, s+l (s+ By (s+5y)

then the eigenvalues of the matfixall have negative real parts ~ But, for animaginary numbem, |e7°| = 1, so the norm|Gl|..
and the new cascade is stable. To prove this, suppose that ther# Unchanged, and since = 1 when evaluated at= 0, the

exists an eigenvalue ok with positive real part, that is, a signa_l QUration and a_lmplit_ude are also unchanged. This is not
complex numbe#. such that surprising, because in a linear system, delay simply causes a

temporal translation of the signal, by a fixed amount, without
>0 (25) affecting amplitudes.

Our analysis has been entirely linear, since we considered
only the weakly activated case. The key tool for our analysis
was the H,, norm” ||G||. of the transfer function of the system.

_ n _ Defined in this fashion, this notion only makes sense for linear
deth — AN = (DA + )@ + o) = 0] =0 systems. However, an equivalent definition||&] .. is obtained
(26) (see Supporting Information) by considering the smallest
constantc > 0 such that||Y||2 = c||R||2, that is to say, the
induced operatoy? norm of the system. This latter characteriza-
tion is valid for arbitrary nonlinear systems. Recall that we have

A= j‘re —t_/ﬂ*im A

re

and

Then eq 25 impliesl + gi| = B, fori =1, ...,n and so

|2+ B (A + Br) — o0yt the following set of equations
Z [(A+B) A+l — o0y dX, R(l XI‘) 5
—_— a — — —_

z Py = 0ty > 0 dt ' Ko, v

; : f) :
which contradicts eq 26. d_t| _ aixi—l(l _ xt_l) —BX =2, ..n
7. Discussion and Conclusions o

By modeling weakly activated signal transduction cascades dX i1 — X —IX
as linear systems and applying techniques from control systems dg ~ ’m nt+l

theory, one can identify the cascade’s input-to-output transfer

function and internal gain. On the basis of these properties, theand we had simplified (changing notations to ugefor future
concepts of signal duration, signaling time, and signal amplitude reference) in the case of weakly activated pathways to
may be defined in an intuitive and general form for any input

signal. d—Y1=(xR—ﬁY
Our analysis shows that, for linear cascades, signal amplitude dt 1 1
and duration are, respectively, maximized and minimized
simultaneously. So, a cascade can respond with signals that are dy; _ .
both fast and exhibit high amplification. To achieve the highest at oY =AY, i=2,..n
amplification and the shortest duration response, the cascade
should have all off rates equal to some vafiie dY, .,
We also show that, for each fixed internal gain, there are Tdt =Y, Yoiq

finite valuesfor the length of the cascade and the off constants

that simultaneously maximize (minimize) the signal amplitude From the form of the equations, it is clear thatR{t) > 0 for

(signal duration). To achieve these optimal conditions, the all t and if initial conditions are nonnegative, then solutions of

optimal length should be given by the well-defined step function both systems remain nonnegative.

W. This functionW depends only on, and increases logarithmi-  Lemma 7.1.Pick any non-negative input functidi(t) and

cally with, the internal gain of the system. The off constants consider any solution of th&-system with a nonnegative initial

should all have the same val@eThis optimal valug? depends condition X(0) and the solution of th¥ system with the same

on the internal gain and the length of the system. initial condition Y(0) = X(0). Then,Xi(t) < Yi(t) forallt = 0
In addition, our analysis shows that a positive feedback term and alli.

on the cascade enhances the optimal design, by allowing the Proof. By induction oni, it is enough to show the following

same signal amplitude and duration to be achieved with a shorterfact: if p is a non-negative constant and<Ou(t) < »(t) for all

length and higher off rates. t = 0, then the solution of
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dx _ _
i au(l — px) — px
y_

with any initial conditionsx(0) = y(0) > 0 satisfiesx(t) < y(t)
for all t = 0. Let us prove this next. We observe that

%(5 ou(l — px) — X = o — X = o — BX
because-pux< 0 andu < ». The standard comparison lemma
(see, e.qg., ref 20, Lemma 2.5) for scalar differential equations
says that ify is a solution of a differential equationyfdit =
f(t,y) and if x satisfies a/dt < f (t,x(t)) andx(0) < y(0), then
x(t) < y(t) for all t; we simply apply this comparison lemma
with f(t, @) = av — fa.

Remark 7.2.Instead of using induction on the cascade, the

same result could be proved as a consequence of comparison

theorems for “monotone” systems with inpéts.
As a corollary of the Lemma, we conclude that, for zero initial
conditions on theX; values, the/2 norm of X+, satisfies

[ Xntallz = 1Ynaall2 = [IGllIRI,

as well. In other words, unless further information is provided
regarding the total amounk.:;, the calculated gain is also the
best possible estimate of the gain for the fully nonlinear system.
Of course, if one knows the value ¥fy;, then the calculation
of the exactvalue of the induced? gain (smaller than the
estimate given by the linearized system) is a harder problem.
Another papet* deals with that study, based upon techniques
from “nonlinearH.,” theory?? and more generally, input to state
stability theory?3

To give a specific example, consider the simplest case of a
one step cascade

Py R(l ! ) B.X
bt S PRGN I
dt ! Xtot,l v
dX,
E = Xl - |X2

For inputs of the formR(t) = Ryfor0 <t < T, andR(t) = 0
fort > T, one can compute the exact value of tfegain, for
which we will try to produce a suitable lower bound. Some
algebra shows that

[1X5115 _1 01 X011
I B1Xot1 T 4Ry

The largest value of this quotient is obtained for snkgllThe
limiting value asRy — 0 provides a lower bound for th& gain

lim
T [|R]],

104
C=~+—
| By

On the other hand, the upper boundwis, using Lemma 7.1,
[IGll = a4/(I81) (as may be recalled from eq 10). Therefore,
we conclude that for theonlinearone-step cascade, thégain

Chaves et al.

is still ||G||. The generalization to a cascade of lengtimay

be found in ref 24.
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1 Proof of the equality C,... (¢,R) = C.({,R)

Fix any ¢ > 0, and any R € U. Recall the notation C = (n,a1,...,an,01,...,0,). Given any
C,C' € Cg,,, the following equivalences hold:

00 n 517 7ﬁn) < O-O(n,aﬁiv"wﬁ;z)a
5+ oo Bl B5) + a(R).

& \/ +oo(n, Br,...,0n) +q(R) < 2
< oC,4LR) < O'(C/ (,R) (1)

and also
KRz o K [R]l2
o(C,¢,R) — o(C',¢,R)
<  AC,4,R) > A(C’,E, R). (2)

o(C,t,R) < o(C' l,R)

Therefore, (1) and (2) imply that, for any two cascades C,C’ € Cg_,,
ao(n,B1,--.,0n) < oo(n,B1,...,8) & A(C,¢,R) > A(C', ¢, R). (3)
To show that C. (¢, R) is contained in C,,,,(¢, R), pick any C € C,(¢, R). Then
ao(n, Br,...,0n) <oo(n',B1,...,0,), for all C' € Cy,.

By (3), this is equivalent to A(C, ¢, R) > A(C',¢, R), for all C' € Cg,,, and so C € C,..(¢, R).
Conversely, we need to show that C,..(¢, R) is contained in C,(¢, R). So, pick any C €
C.ax(f, R). It satisfies:

A(C, 4, R) > A(C', ¢, R), forall C' € Cy,,.
Again by (3), this is equivalent to og(n, f1,...,0s) < oo(n/,B],...,3,) for all " € Ck ,. We
conclude that C € C, (¢, R), as we wanted to show. |

2 Properties of function f(k)

The function f : (1,00) — (0, 00)

flk) = K? [(1—%%) In <1+%> —a

has the following properties:



1. f is strictly increasing;
2. f(1) =2In2 -1~ 0.386 and limj_,o f(k) = 1/2.

To prove property 1, notice that another expression for f is f(k) = k[(k+1)In (k+1)/k — 1],
and compute the first and second derivatives:

df k+1
T (2k+1) I ST 9

dk @k+1) In —

d? f E+1  2k+1
T 2k+1) 1 .
ar? @k+1) I ==+

It is clear that the second derivative is always positive, and hence the first derivative is strictly
increasing. Since df /dk(1) = 3In2 — 1 > 0, it follows that the first derivative is also always
positive and therefore the function f is strictly increasing.

To prove property 2, the value f(1) is straightfoward, and for the limit as k — oo, it is
easier to consider z = 1/k and compute:

14+2z)n(l+z)—2 0

QT = Jig 71/ = g 7 0

This indeterminacy can be solved by twice applying L’Hopital’s rule:

In(1+z)+1+2z)— —1
...first time: ( )+ )Hx —

2z

ol o

, asx —0

1

. 142 1
...second time: L2 asz — 0.

2 2
0.5
0.45f

=
0.4r
2In2-1
035 : ; ; : ; :
0 5 10 15 20 25 30 35

k

Figure 1: The function f(k).

3 Minimization of o

)n—l N

Let @ be a positive real number and n > 2 an integer. Consider the function F' : (0, co
(0, 00) given by

F(By,. . Bypa) =Bit 4 Boa+ p——p—



Lemma 3.1 The choice of B; > 0,7 =1, ...,n—1 that minimizes the function F is: B; = Q/™,
i=1,...,n—1.

Proof. First, we claim that the search for a point (By,..., B,_1) where F' is minimized can be
constrained to the compact set:

-1

L ogim ngun] (4)

nn—l

To justify the upper bound of the interval, observe that

FQV",....Q"") =nQ"" (5)

and that, forany j =1,...,n—1,
Bj>nQY" = F(By,...,B,1)>nQY" (6)
So, it is enough to look for a minimum of F in the region B; < n QY™ i=1,...,n—1 (because

inside this region there is at least one point — equation (5) — where F' has a lower value than
anywhere outside of this region).

To justify the lower bound, suppose that B; < nnl_lQl/”, for some j =1,...,n — 1. Then
using the already established upper bounds

Q« Q
By---Bj---Bp_1 ~ nnl—l Ql/n [n Ql/n]an

F(B1,...,Bp1) > =n Q" (7)

and similarly we conclude that it is enough to look for a minimum of F' in the region B; >
nnl_lQl/", fori=1,...,n—1.

The function F' is continuous, in fact differentiable, in the compact set (4), and so F' has
(absolute) maximum and minimum values in this set. The maximum and minimum may be
attained either at a critical point of F', or at the boundary points of (4). Equations (6) and (7)
show that the minimum is not attained at any of the boundary points. So the minimum will
be attained at an interior point of the set (4), which must also be a critical point of F. The
critical points of F' are given by:

dF 1 Q
— =0 & 1-— =1,.. —1
dB] ‘B‘7 B1 Bn—l’ J ) y T )
or, equivalently,
Q .
B; = =B, j=1,...,n—1,
" By Bp J
where B, satisfies
1 Q 1
1_B_*Bf_1:0 = B*:Q/".

Thus, there exists a unique critical point of F', (By,..., Bs), which indeed belongs to the
compact set (4). By the discussion above, this point must be the minimizer of F', as we wanted
to show. E



4 Minimization of F(n, M)

For a fixed M, let the minimizer of F'(n, M) over n € N be
n*(M):={neN: F(n,M) < F(n',M), forevery n’ € N},

Lemma 4.1 Let M be any fixed real number. Then n*(M) = ¥(M).

Proof. Since n*(M) is the minimizer of F(n, M) over the (positive) natural numbers, we start
by computing the derivative of F'(n, M):

dF 1 1 1

o M)== -~ M= — [n— M)

dn (n, M) n  n? n? In ]

We consider two distinct cases:
o Case M <0
aF
—(n,M) >0, foralln>1,
dn
so F(-, M) is a strictly increasing function and thus its minimizer over N is the smallest
natural number, i.e., n*(M) = 1.
e Case M >0
dF
%(H,M) =0 & n=M,

and the derivative is negative for n < M and positive for n > M: in other words, the
function F' has indeed a minimum at n = M. However, in general, M is not an integer,
so it cannot be a solution to our minimization problem. We should choose

1 M<1
n (M) =14 |M], M>1, and F([M],M) > F(|M], M)
[M], M >1, and F([M],M) < F(|M],M).

Note that we pick n* = 1 whenever M < 1, since a cascade of length zero is meaningless.
To further analyze this condition, observe that we can write, for M > 1,
M=k+o, | M|=k, [M]=k+1

where k& > 1 is the integral part of M and § € [0, 1) is the fractional part of M. Now, the point
9 for which n* “jumps” from |M ] to [M] can be found by setting

0 = F([M|,M)-F(|M|,M)=F(k+1,k+08)— F(k,k+9)
= 1n(k+1)+L(k:+5)—lnk:—%(/wrd).

k+1
Simplifying this equation we obtain:
k+1 k+o E+1
1 — = 0=k(k+1)In—— —k
T i) R (k1) In—p

k+1_ k+1 1
_ 1.2 _ -
&0 k[k In k: k]

& 5:/&[(14%) 1n(1+%>—ﬂ = f(k).



Analysis of this function (see Appendix 2), shows that f is positive and strictly increasing, so
we have

F([M],M) - F([M],M) >0 < f([M])—-42=0.
Therefore, we should choose

1, M<1
n*(M)=< |M|, M>1, and 0 < f(|M])
[M], M >1, and § > f(|M]).

This proves the Lemma. u

5 Dictionary: Laplace transforms and transfer functions

For further details about these topics see, for instance, [2] and [1], [3], [4].

Laplace transforms

For a function X : (—00,00) — R™ (with [X(t)| < cekt, for all ¢, for some positive constants c,
k), the Laplace transform is another function X : R — C™ defined as

. oo

X(s) = / e S X (t)dt

—00

where R C C is the region of convergence of the integral. For example, if X (t) = e3¢, for t > 0
and X (t) = 0 otherwise, then X(s) = 1/(s +3), and R = {5 = syc + 5im : Sre > —3} (7 is the
imaginary number /—1).

Some of its properties are:

1. For any constant matrix A € R™*"

Z)\((s) = A X(s);

2. The Laplace transform of the derivative of X is

Cii—):(s) =X(0)+s /Z e SLX (t)dt = X (0) + s X (s) ;

3. If X(t+0)=: W(t) is a translation of X, then

W(s)=e*X(s);

4. The inverse Laplace transform is

1 Sre+J00 R
X(t)=— e X (s)ds
21y

Sre—]00

with s = spe + JSim, Where s, is chosen so that s;e + j8;m is in the region of convergence
R.



Transfer function

Let A € R"™", B € R™™ and C' € RP*" be matrices, and let X € R", Y € R™, R € R, and
consider the n-dimensional linear system with m inputs and p outputs:

dX
— = AX+B

o +BR, (8)
Y = CX. (9)

Applying the Laplace transform operator on both sides of the linear system (8)-(9) yields an
algebraic equation relating the new functions X (s), Y (s) and R(s):

sX(s) = AX(s)+ B R(s)
Y(s) = CX(s).

Moreover, for every s for which the matrix s/ — A is invertible (/ is the identity matrix),
(sI —A) X(s) =B R(s) = X(s)=(sI—A)"'BR(s)
and thus, one can solve immediately for the output
Y(s)=C(sI — A)"'B R(s). (10)
The transfer function of the system (8) is
G(s) :=C(sI — A)7'B,
and depends only on the internal structure of the system (i.e., A, B and C).

Impulse response

A useful case is that of the impulse response:

and therefore:

Y(s)=G(s) & Y(t)=G(t),

so that the transfer function of the system is the output corresponding to a single pulse of
input.

The gain ||G||s

We have

. 1 [ . . 1 . oo
718 = - [ 160 RGP < o sup |G [ i)

which is equivalent to

IYl2 < 1GllclBllz & 1Y ]l2 < [GlloclRll2.



So, the infinity norm of the transfer function is an upper bound on the strength of the output.
To see that it is indeed the least upper bound, see for instance [3]: we can always choose a
frequency wp so that

1Glloo = |G(gwo)]-
In our case, this is wg = 0. Then choose a control such that

X o iflw<e
|R(yw)| = { 0, otherwise, Y

where ¢ > 0 and 7 should be such that R has unit 2-norm, for instance r = \/m/e. For very

small € > 0, |R(yw)| is zero, except on a very small neighborhood of wy = 0 and we may
approximate:

1 oo N N 1 € ~
o | GOIPIRG)? do =~ o= [ 1? |Glwo)[* dw
(o0} 1 AE 2 . 2
= —|G(wo)] / r* dw
27 e
= |Gl

where the last equality follows from the definitions of wg and r. Therefore

L[~ 2| 1 2 : A
IYle= |5r [ IGODPIRGAP do|* =[Gl
™ — 0o

As an example of an input that (approximately) satisfies (11), consider R(t) = 2.;sinet
(for ¢ > 0), the input plotted in main text. Computation of the Laplace transform yields
R(s) = = [7r — 2Arctan§], where the function Arctan is the principal branch of the complex
inverse tangent function. It is possible to show that, for sufficiently small €, the function R
approximately satisfies condition (11), except at the discontinuity points w = +e.

More generally, in a system with m inputs and p outputs, one defines the internal gain of
the system ||G|oo as the induced £2 operator norm of the map from the inputs to the outputs.
It is possible to prove that

|Gls0 = sup 6[G(w)]
weR

where 6 denotes the largest singular value of the matrix G‘( Jw).

Stability of the transfer function

As remarked above, expression (10) is valid if and only if the matrix sI — A is invertible, or
equivalently

s# A, for every eigenvalue, A, of A.

If A\, = max{Re(\) : X is an eigenvalue of A}, then the region of definition of the transfer
function is included in the set R = {s = Sye + 1Sim : Sre > Am}-

If all the eigenvalues of the matrix A have negative real parts, then the transfer function is
said to be stable. This is case for the matrix of the signaling cascade dX/dt(t) = AX (t)+BR(t),
Y (t) = CX(t), whose eigenvalues are: —f1,...,—[3,, so the transfer function é(s) is stable and
well defined on R = {s = Sye + JSim : Spe > —min [;}.
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