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Abstract

The notions of asymptotic amplitude for signals, and Cauchy gain for input=output systems, and an associated small-gain
principle, are introduced. These concepts allow the consideration of systems with multiple, and possibly feedback-dependent,
steady states. A Lyapunov-like characterization allows the computation of gains for state-space systems, and the formulation
of su3cient conditions insuring the lack of oscillations and chaotic behaviors in a wide variety of cascades and feedback
loops. An application in biology (MAPK signaling) is worked out in detail. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this note, we introduce the notions of asymptotic
amplitude for signals and associated Cauchy gains for
input=output systems. We present a simple small-gain
principle for Cauchy gains, and a Lyapunov-like char-
acterization which allows the estimation of gains for
state-space systems.
The concepts and results given here should be of

general interest in nonlinear stability and control, es-
pecially in those cases in which classical small-gain
theorems cannot be applied because the location of
closed-loop steady-states depends on the precise gain
of the feedback law, or because there are multiple such
states.

� Supported in part by US Air Force Grant F49620-01-1-0063,
National Institutes of Health Grant P20 GM64375, and by funding
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In developing these ideas, we were originally
motivated by the problem of guaranteeing the
non-existence of oscillations in certain biological
inhibitory feedback loops, and speciBcally in a math-
ematical model of mitogen-activated protein kinase
(MAPK) cascades, which represent a “biological
module” or subcircuit which is ubiquitous in eukary-
otic cell signal transduction processes. (We are greatly
indebted to Stas Shvartsman for bringing to our atten-
tion this problem and especially Kholodenko’s paper
[7], which dealt with the onset of oscillations under
high gains.) The general results are illustrated with a
numerical computation involving MAPK cascades.

1.1. Cauchy gains

For any metric space M , we write the distance
dM (a; b) between any two elements a; b∈M , in the
suggestive form “|a− b|” even when M has no linear
structure (so the “−” sign has no meaning, of course),
and deBne the asymptotic amplitude of a function
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! : R¿0 → M , where R¿0 = [0;+∞), as follows:

‖!‖aa := lim sup
s; t→∞

|!(t)− !(s)|

= lim
T→∞

(
sup
t; s¿T

|!(t)− !(s)|
)
∈ [0;∞]:

Observe that the condition “‖!‖aa = 0” amounts to
the Cauchy property for !: for every �¿ 0 there is
some T ¿ 0 such that |!(t)−!(s)|¡� for all t; s¿T .
Thus, when M is a complete metric space (for in-
stance, if, as in all our examples, M ⊆ Rm is any
closed subset of a Euclidean space):

‖!‖aa = 0 ⇔ ∃ lim
t→∞!(t):

If ‖!‖aa = 0, we denote !∞:=limt→∞ !(t).
Let U and Y be two complete metric spaces.

We deBne a behavior with input-value space U
and output-value space Y as a relation R between
time-functions with values in U and Y, respectively:

R ⊆ [R¿0 → U]× [R¿0 → Y]

where [R¿0 → M ] is the set of functions R¿0 → M .
We call any element (!; �)∈R an input=output pair,
and say that ! is an input signal and � is an output
signal of R.
Typical examples of behaviors, to be discussed

in detail later, are those obtained by starting with a
system of diNerential equations with inputs (“forcing
functions” or “controls”) !, and viewing the solu-
tions obtained by solving the system with diNerent
initial states, or some components of these solutions,
as the outputs �. The formalism that we use, based
on abstract relations for the formulation of small-gain
results, dates back to Zames’ original paper [21], and
the term “behavior” is borrowed from Willems’ work
[20].
We use standard terminology for comparison func-

tions: K∞ is the class of continuous, strictly increas-
ing, and unbounded functions � : R¿0 → R¿0 with
�(0) = 0.

De�nition 1.1. A behavior R has Cauchy gain
�∈K∞ if

‖�‖aa6 �(‖!‖aa)
for all (!; �)∈R.

Fig. 1. Feedback interconnection R ∩S−1.

The existence of a Cauchy gain for R implies, in
particular, the following converging input converging
output property for R: if !(t) → Pu as t → ∞, for
some Pu∈U (that is, if ‖!‖aa = 0), and if (!; �)∈R,
then also �(t) → Py as t → ∞, for some Py∈Y.

The interconnection that results when the output of
a system R is fed back to its input under the action
of the system (feedback law) S is pictorially repre-
sented in Fig. 1. The behavioral terminology gives an
easy way to deBne formally the meaning of this inter-
connection: ifR andS are behaviors, then the signals
that appear when the loop is closed are precisely those
pairs (!; �) such that (!; �)∈R and (�; !)∈S. Put
another way, the feedback connection is simply the
behavior R ∩S−1, where, for any behavior S with
input-value spaceY and output-value spaceU, we de-
note by S−1 the inverse behavior, with input-value
space U and output-value space Y, consisting of all
pairs (!; �) such that (�; !)∈S.
With this formalism, the basic “small gain princi-

ple” is trivial to establish. It states that the intercon-
nection of two systems having Cauchy gains whose
composition is a contraction, has the property that the
external signals! and �must always converge to some
value as t → ∞, at least if they are known to have
Bnite asymptotic amplitude:

Lemma 1.2 (Small gain lemma for asymptotic ampli-
tude). Suppose that R andS are two behaviors with
Cauchy gains �1 and �2; respectively; and that the
following condition holds:

�1(�2(r))¡r ∀r ¿ 0: (1)

Then; for all (!; �)∈R∩S−1 for which ‖!‖aa ¡∞;
‖!‖aa = ‖�‖aa = 0.
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Proof. Since (!; �)∈R; ‖�‖aa6 �1(‖!‖aa); and
since also (�; !)∈S; ‖!‖aa6�2(‖�‖aa). If ‖�‖aa 
=0;
then ‖�‖aa6 �1(�2(‖�‖aa))¡ ‖�‖aa ; a contradiction.
Finally; ‖!‖aa6 �2(‖�‖aa)= �2(0)=0 gives that also
‖!‖aa = 0.

Remark 1.3. Note that the condition “‖!‖aa ¡∞”
is equivalent to ultimate boundedness; i.e. there are
a bounded set C ⊆ U and some T¿ 0 such that
!(t)∈C for all t¿T . (Writing |u|:=|u − 0| for
some Bxed element 0∈U: if there are some c; T ¿ 0
so that |!(t)|6 c for all t¿T then ‖!‖aa6 2c;
conversely; if supt; s¿T |!(t) − !(s)|6 c for some T
then |w(t)|6 c+|!(T )| for all t¿T .) In applications
to feedback loops involving diNerential equations;
all signals are continuous; and for them; ultimate
boundedness is equivalent to just boundedness.

The limiting values of the signals ! and �, whose
existence is asserted by Lemma 1.2, need not be
unique; for instance bistable systems give rise to
nonuniqueness. In order to present a condition which
guarantees uniqueness, we introduce a new concept.

De�nition 1.4. A behavior R has incremental limit
gain �∈K∞ if the following property holds:

lim sup
t→∞

|�1(t)− �2(t)|6 �(|!∞
1 − !∞

2 |);

whenever (!i; �i)∈R are any two pairs with the prop-
erties ‖!1‖aa = ‖!2‖aa = 0.

In words, this deBnition says that, if we are given
two input=output pairs for which the inputs converge,
and if the limits of the two inputs are close to each
other, then the outputs become asymptotically close
to each other. If R has an incremental limit gain �,
and if in addition R also admits a Cauchy gain, then
both �∞1 and �∞2 exist whenever ‖!1‖aa = ‖!2‖aa =
0 (converging-input converging-output), and thus the
“limsup” in DeBnition 1.4 is a limit, and the estimate
becomes

|�∞1 − �∞2 |6 �(|!∞
1 − !∞

2 |): (2)

With this concept, we have another obvious observa-
tion:

Lemma 1.5 (Small gain lemma for asymptotic am-
plitude, with uniqueness). Suppose that R and S

are two behaviors with Cauchy gains �1 and �2
respectively; and incremental limit gains �1 and �2;
respectively; and that the following condition holds:

�1(�2(r))¡r ∀r ¿ 0 (3)

in addition to (1). Then; there exist two elements
Pu∈U and Py∈Y such that; for every input=output
pair (!; �)∈R∩S−1 for which ‖!‖aa ¡∞; !∞= Pu
and �∞ = Py.

Proof. If R ∩ S−1 = ∅; there is nothing to prove.
Otherwise; pick an arbitrary (!1; �1)∈R ∩ S−1

for which ‖!1‖aa ¡∞. From Lemma 1.2; there
exist Pu:=!∞

1 and Py:=�∞1 . Pick now any other
(!2; �2)∈R ∩ S−1 for which ‖!2‖aa ¡∞; again
by the lemma; !∞

2 and �∞2 exist. By the incre-
mental limit gain property; in the form (2); both
| Py−�∞2 |6 �1(| Pu−!∞

2 |) and | Pu−!∞
2 |6 �2(| Py−�∞2 |).

From

| Py − �∞2 |6 �1(�2(| Py − �∞2 |))
we conclude that �∞2 = Py; and so also !∞

2 = Pu.

Once the appropriate deBnitions have been given,
the two lemmas are quite obvious. The harder step is,
often, to verify when the lemmas apply. In order to
carry out such an application, one needs to Bnd suf-
Bcient and easy to check conditions which guarantee
the existence of Cauchy and incremental limit gains,
for the systems whose feedback interconnection is be-
ing studied.
We will mainly study behaviors R which can be

built up from cascades of simpler behaviors Ri, each
of which is either deBned by a system of diNeren-
tial equations, by a pure delay, or by a memoryless
nonlinearity. The composition R will represent the
input=output pairs of a large set of delay-diNerential
equations. The Cauchy and incremental limit gains of
the behaviors Ri can be composed, so as to provide
the gains of the complete system R. Section 2 de-
scribes these general ideas. Section 3 shows how to
estimate gains based on contractions of omega-limit
sets of signals, and these types of estimates are used in
order to justify the Lyapunov-like methods described
in Section 4 for state-space systems. Finally, Section
5 specializes the results to a class of inhibitory feed-
back loops, and in particular for the motivating MAPK
example.
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This work is related to other work on “non-
linear gain” small-gain theorems such as [6,9,5],
which in turn was motivated by classical small-gain
theorems as in [1,11,12,21]. Future developments
will include generalizations to estimates which
quantify overshoot, in the ISS (cf. [16])
sense.

2. Simple behaviors and cascades

The delay-� operator D� on U, where �¿ 0, is the
behavior, with Y =U, deBned by: (!; �)∈D� if and
only if �(t)=!(t− �) for all t¿ �. (The value of the
output for t ¡ � is arbitrary; in an abstract dynamical
systems sense, it forms part of the speciBcation of
initial conditions.) It is clear that D� has Cauchy gain
I and incremental limit gain I , where I is the identity
function, I(r) = r.
Given any map  :U → Y, the memoryless be-

havior associated to  , which we denote by M ,
is the behavior consisting of all pairs of functions
(!; �) such that �(t) =  (!(t)) for all t. Suppose
that  is a Lipschitz map: for some �¿ 0; | (u1) −
 (u2)|6 �|u1 − u2| for all u1; u2 ∈U. Then M has
Cauchy gain �I and incremental limit gain �I , where
�I(r) = �r.
Suppose that R ⊆ [R¿0 → U] × [R¿0 → Y] and

S ⊆ [R¿0 → Y] × [R¿0 → Z] are two behav-
iors, with Cauchy gains �1 and �2, respectively, and
consider the cascade combination shown pictorially in
Fig. 2 and deBned formally as

S ◦R := {(!; �) | (∃�∈ [R¿0 → Y])

s:t: (!; �)∈R & (�; �)∈S}:

Then, clearly, S ◦ R has Cauchy gain �2 ◦ �1. Sup-
pose now that also R and S have incremental limit
gains �1 and �2, respectively. Let (!i; �i)∈R and
(�i; �i)∈S; ‖!i‖aa =0, for i=1; 2. We have that �∞1
and �∞2 exist, and (2) holds with � = �1. Similarly,
since S has a Cauchy gain, �∞1 and �∞2 exist, and
|�∞1 − �∞2 |6 �2(|�∞1 − �∞2 |). Therefore

|�∞1 − �∞2 |6 �2(�1(|!∞
1 − !∞

2 |))

Fig. 2. Cascade S ◦R.

and hence S ◦ R has incremental limit gain �2 ◦ �1

(Fig. 2).

2.1. Tighter estimates: relative gains

Tighter estimates of gains for the cascade S ◦ R
can make use of the following observation. Suppose
that the possible output signals of R all tend, as t →
∞, to values in a restricted subset Y of Y. Then the
relevant gains �2; �2 should be the gains of S when
restricted to those signals of the form (�; �)∈S such
that �∈ [R¿0 → Y ]. These gains may well be smaller
than the original ones, so that smaller overall gains
result for the cascade. Let us make this precise.
For any subset U0 ⊆ U, we write “! → U0” if !(t)

converges to U0 as t → ∞, that is, for every �¿ 0
there is some T¿ 0 such that

!(t)∈B�(U0) = {u∈U | (∃u′ ∈U0) |u− u′|6 �}
for every t¿T .

Let U0 ⊆ U and let R ⊆ [R¿0 → U] × [R¿0 →
Y]. We will say that R has a Cauchy gain � on
U0 if ‖�‖aa6 �(‖!‖aa) holds for each input=output
pair (!; �)∈R for which ! → U0. Similarly, we
say that R has incremental limit gain � on U0 if
lim supt→∞|�1(t) − �2(t)|6 �(|!∞

1 − !∞
2 ) holds

whenever (!i; �i)∈R are any two pairs such that !∞
1

and !∞
2 both exist and belong to U0. In the special

case U0 =U, one recovers the deBnitions of Cauchy
and incremental limit gains.
Suppose now that there are two sets U0 ⊆ U and

Y0 ⊆ Y such that:

• R has Cauchy gain �1 on U0.
• S has Cauchy gain �2 on Y0.
• Whenever (!; �)∈R is so that ! → U0, necessar-
ily � → Y0.

Then, clearly, S ◦R has Cauchy gain �2 ◦ �1 on U0.
An analogous conclusion holds for incremental limit
gain on U0.
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3. A su"cient condition

Recall that, for any metric space U and function
! :R¿0 → U, the omega-limit set " = "+[!] is the
set consisting of those points u∈U for which there
exists a convergent sequence !(ti) → u, for some se-
quence {ti} ⊆ R¿0 such that ti → ∞ as i → ∞. The
following properties are elementary (they are usually
only shown for trajectories of autonomous systems,
but they hold for more arbitrary, not even necessarily
continuous, functions): (1) the set " is closed; (2) if
! → U and U is closed, then " ⊆ U , and so " is
compact if U is; (3) provided ! is precompact, that
is to say, if there is some compact subset U ⊆ U
such that !(t)∈U for all t¿ 0, then " is compact,
and ! → " (proof of this last statement: if there is
some �¿ 0 and some sequence ti → ∞ such that
!(ti)∈U \B�(") for all i, then one can pick a subse-
quence of {ti} such that !(tij) → u for some u, and
thus u∈U \ B�=2("), a contradiction since u∈" by
deBnition of "); (4) if ! is precompact and is a con-
tinuous function of t, then " is connected (proof: oth-
erwise, there are two nonempty compact subsets with
"="1 ∪"2 and, for some �¿ 0; dist("1; "2)¿ 3�,
and by (3) some T ¿ 0 such that !(t)∈B=B�(") for
all t¿T ; from "1 ⊆" we know that there is some
t1 ¿T such that !(t1)∈B1 = B�("1) and from "2 ⊆
" that there is a t2 ¿t1 such that !(t2)∈B2=B�("2),
so, noticing that B = B1 ∪ B2 and that B1 ∩ B2 = ∅
by choice of �, and writing I:={!(t); t ∈ [t1; t2]}, we
have that this connected set can be written as a dis-
joint union I = (I ∩ B1) ∪ (I ∩ B2) of nonempty
closed sets, a contradiction).
In general, we denote by |U | the diameter

sup{|u− v| | u; v∈U} of a closed subset U of a met-
ric space U. For each ! : R¿0 → U, it holds that
|"+[!]|6 ‖!‖aa, and, if ! is precompact,

‖!‖aa = |"+[!]|: (4)

Indeed, pick any �¿ 0 and two elements u; v∈"
such that |u − v|¿ |"| − �; then there are two se-
quences !(ti) → u and !(si) → v, so ‖!‖aa =
lim sups; t→∞ |!(t) − !(s)|¿ |u − v|¿ |"| − �. As
this is true for every �¿ 0, we have ‖!‖aa¿ |"|.
Conversely, if |!(ti) − !(si)|¿ ‖!‖aa − � for some
two sequences ti → ∞ and si → ∞, we may extract
Brst a subsequence of {ti} such that !(tij) is con-

vergent (precompactness is used here), and then a
subsequence of {sij}, so that, without loss of gener-
ality we may suppose that !(ti) → u and !(si) → v
for some u; v∈", and thus |"|¿ |u− v|¿ ‖!‖aa− �,
so letting � → 0 gives the other inequality.

We say that a mapping % assigning subsets of one
set to subsets of another is monotonic if U1 ⊆ U2 ⇒
%(U1) ⊆ %(U2).

Lemma 3.1. Suppose given a behaviorR; a compact
subset U0 ⊆ U; a function �∈K∞; and a mapping
% from compact subsets of U0 to subsets of Y; such
that the following properties hold:

(a) For each (!; �)∈R for which "+[!] ⊆ U0; the
output � is precompact.

(b) For each compact subset U ⊆ U0; and each
(!; �)∈R for which "+[!] ⊆ U; it holds that
"+[�] ⊆ %(U ).

(c) For each compact subset U ⊆ U0; it holds that
|%(U )|6 �(|U |).

Then R has Cauchy gain � on U0 and incremental
limit gain � onU0.Moreover; for each compact subset
U ⊆ U0; and each (!; �)∈R for which ! → U; � →
%("+[!]). If % is monotonic; then also � → %(U ).

Proof. Pick any (!; �)∈R and any compactU ⊆ U0;
and suppose that ! → U . By (1) and (2) in the previ-
ous discussion; the set "+[!] is a compact subset of
U . By (a); � is precompact. Therefore ‖�‖aa=|"+[�]|;
and also � → "+[�]. By (b); applied to "+[!] itself;
we know that "+[�] ⊆ %("+[!]); which gives the
conclusion � → %("+[!]). If % is monotonic; then
"+[!] ⊆ U implies that %("+[!]) ⊆ %(U ); so
� → %(U ). In addition; |"+[�]|6 |%("+[!])| to-
gether with (c) give the following inequality:

‖�‖aa = |"+[�]|6|%("+[!])|

6 �(|"+[!]|)6�(‖!‖aa): (5)

When applied in the special case U = U0; this estab-
lishes the Cauchy gain conclusion.
Suppose now that (!i; �i)∈R are any two pairs

such that !∞
1 and !∞

2 both exist and belong to U0. In
particular, !1 → U0 and !2 → U0. So both �∞1 and
�∞2 exist, by the Cauchy gain conclusion. Note that
"+[!i] = {!∞

i } and "+[�i] = {�∞i } for i= 1; 2. We
introduce the two-element set U = {!∞

1 ; !∞
2 } ⊆ U0;

note that |U | = |!∞
1 − !∞

2 |. From "+[!i] ⊆ U and
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(b), we have that "+[�i] ⊆ %(U ), that is, �∞i ∈%(U ),
for i = 1; 2. Therefore

|�∞1 − �∞2 |6 |%(U )|6 �(|U |) = �(|!∞
1 − !∞

2 |);
which proves the incremental limit property.

Remark 3.2. The Cauchy gain (but not the incremen-
tal limit gain) results in Lemma 3.1 can be tightened
provided that one knows that � is continuous; as is
the case when considering behaviors deBned by dif-
ferential equation systems; and even further provided
that ! is continuous; as is the case when dealing with
feedback conBgurations R ∩ S−1; in the latter case
assuming thatU is locally compact (which is automat-
ically satisBed in all Bnite dimensional applications of
the results). To be precise; let us denote by |U |c the
maximal diameter of the connected components of a
set U; that is; the supremum of the quantities |u − v|
taken over all pairs u; v which lie in any given con-
nected component of U . In general; for any continu-
ous and precompact !; and any subset U ⊆ U such
that "+[!] ⊆ U; it holds that ‖!‖aa6 |U |c; because
"+[!] is connected and thus lies entirely in a single
connected component of U . Then:

• if � is continuous for every (!; �)∈R then assump-
tion (c) can be weakened to “|%(U )|c6 �(|U |) for
every compact subset U ⊆U0”;

• if in addition ! is continuous for every (!; �)∈R
and U is locally compact then assumption (c) can
be weakened to “|%(U )|c6 �(|U |) for every com-
pact and connected subset U ⊆ U0”.

Indeed; in the proof of Lemma 3.1 observe that
if � is precompact and continuous then "+[�]
is connected; so "+[�]⊆%("+[!]) implies that
‖�‖aa6 |%("+[!])‖c; and this is all that is needed in
(5). If also U is locally compact and ! is continuous;
then ! → U (compact) implies that ! is precompact;
which together with continuity says that "+[!] is
connected; and therefore in order to prove (5); (c)
only needs to be applied with the connected set
U = "+[!].

4. Systems of di$erential equations

A particular class of behaviors, in fact the main ob-
jects of interest in this note, are obtained as follows.

We consider systems of diNerential equations with in-
puts and outputs ([15]):

ẋ = f(x; u); y = h(x) (6)

for which states x(t) evolve in a subset X of a Eu-
clidean space Rn, inputs take values u(t) in a com-
plete metric space U and outputs take values y(t) in a
complete metric space Y. (Typically in applications,
U and Y are any two closed subsets of Euclidean
spaces.) Technically, we assume that f :X0 × U →
Rn is deBned on an open subset X0 ⊆ Rn which con-
tains X, is continuous, and is locally Lipschitz in x
uniformly on compact subsets of X0 × U; the map
h :X → Y is assumed to be continuous. Furthermore,
X is an invariant and forward complete subset, in the
sense that, for each Lebesgue-measurable precompact
input ! : R¿0 → U, and each initial state x0 ∈X, the
unique solution *(t) = ’(t; x0; !) of the initial value
problem *̇(t)=f(*(t); !(t)); *(0)=x0, is deBned and
satisBes *(t)∈X for all t¿ 0. (The function * is Lip-
schitz, and hence diNerentiable almost everywhere; if
! is continuous, then * is continuously diNerentiable.)
To any given system (6) one associates a behavior
R, with input-value space U and output-value space
Y, deBned by (!; �)∈R if and only if ! is precom-
pact and Lebesgue-measurable, and there exists some
x0 ∈X such that �(t) = h(’(t; x0; !)) for all t ∈R¿0.
We call R the behavior of (6).

Remark 4.1. A minor technicality concerns the
fact that Lebesgue-measurable functions are; strictly
speaking; not functions but equivalence classes of
functions; so one should interpret the “limsup” in
the deBnition of asymptotic amplitude in an “almost
everywhere” manner; similarly; we interpret “pre-
compact” as meaning that there is some ! in the
given equivalence class whose values all remain in a
compact set. From now on; we leave this technical-
ity implicit; in applications to stability of feedback
loops involving systems of diNerential equations;
all the functions considered are continuous—even
diNerentiable—so the issue does not even arise.

We will obtain su3cient conditions for the exis-
tence of the two types of gains, expressed in terms of
Lyapunov-type functions.
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Given a subset U ⊆ U, we will say that a function

V : X → R¿0

is a U -decrease function provided that the following
properties hold:

• V is proper, that is, {x∈X | a6V (x)6 b} is a
compact subset of X, for each a6 b in R¿0;

• V is continuous;
• for each x∈X which does not belong to ZV :=
{x |V (x) = 0}, it holds that V is continuously dif-
ferentiable in a neighborhood of x and

∇V (x) · f(x; u)¡ 0 (7)

for all u∈U .

(We understand continuous diNerentiability in the fol-
lowing sense: there is a neighborhood of x in X0 such
that V extends to this neighborhood as a C1 function.)

Lemma 4.2. Suppose that V is a U -decrease
function; for some compact subset U ⊆ U. Pick any
Lebesgue-measurable precompact ! : R¿0 → U and
any solution * of the system *̇ = f(*; !). Suppose
that either:

(1) there is some T0¿ 0 such that !(t)∈U for all
t¿T0; or

(2) ! → U and * is precompact.

Then * → ZV .

Proof. Given any ! and *; we will Brst let a¿ 0 be
arbitrary and prove that the set Va:={x |V (x)6 a}
has the property that; for some T ∗¿ 0;

*(t)∈Va ∀t¿T ∗: (8)

If the assumption is that ! → U as t → ∞ and
that * is precompact; that is to say; there is some
compact subset C0 of X such that *(t)∈C0 for all
t¿ 0; then we introduce b:=max{V (x); x∈C0} and
the set C:=V−1([a; b]). Note that *(t)∈C whenever
V (*(t))¿ a; by the choice of b. Since; by properness
of V; C is a compact subset of X \ ZV ; by Property
(7) there is some .¿ 0 and some neighborhood Ũ of
U in U so that ∇V (x) · f(x; u)6 − . for all x∈C
and all u∈ Ũ . Since ! → U; there must be some T0

such that !(t)∈ Ũ for all t¿T0. Thus;

∇V (x) · f(x; !(t))6− .¡ 0 ∀x∈C ∀t¿T0:
(9)

If; instead; the assumption is that there is some T0¿ 0
such that !(t)∈U for all t¿T0; we pick T0 to be
any such number; and let C:={x |V (x)¿ a}. So once
more we have that∇V (x)·f(x; !(t))¡ 0 for all x∈C
and all t¿T0.

Claim. Let

T1:= inf{t¿T0 |V (*(t))6a}
(if V (*(t))¿a for all t¿T0; we de;ne T1 = +∞).
Then V (*(t))6V (*(T0)) for all t ∈ [T0; T1) and
V (*(t))6 a for all t¿T1.

Proof. Suppose that *(t)∈C for all t in some interval
(�1; �2) with �1¿T0. Then dV (*(t))=dt=∇V (*(t)) ·
f(*(t); !(t))¡ 0 for almost every t ∈ (�1; �2).
Therefore; V (*(t)) is decreasing on this interval; and
we have that V (*(t))6V (*(�1)) for all t ∈ (�1; �2).
In particular; for each t ∈ (T0; T1); by minimality of
T1 we know that V (*(t))¿a and so *(t)∈C. This
proves the Brst part of the claim: V (*(t))6V (*(T0))
for all t ∈ [T0; T1). If T1 = ∞; there is nothing more
to prove. So assume that T1 ¡∞ and there exists
some S ¿T1 such that V (*(S))¿a. Then there is
some T ∈ [T1; S) such that V (*(T )) = a. We pick
T ′ ∈ [T1; S) to be maximal with this property. It fol-
lows that V (*(t))¿a for all t ∈ (T ′; S]. Applying the
above argument with �1 = T ′ and �2 = S; we have
that V (*(S))6 a= V (*(T ′)); a contradiction. So the
claim holds.

We conclude that V (*(t))6max{a; V (*(0))} for
all t¿T0. Therefore the trajectory * is precompact,
and the Brst case in the lemma is included in the second
case, so we can assume that (9) holds. We claim that
this means that T1 ¡∞, so that (8) holds with T ∗ =
T1. Indeed, if this were not true, then *(t)∈C for all
t¿T0, so dV (*(t))=dt6− . for almost all t, which
gives V (*(t))6V (*(0))− .t for all t¿T0, which is
impossible since V is nonnegative.
To conclude that * → ZV , since * is precompact

we need only show that its omega-limit set "+[*] is
contained in ZV . To see this, we pick any z ∈"+[*]
and a sequence *(ti) → z. So V (*(ti)) → V (z). If
z 
∈ ZV , let a:=V (z)=2 
=0. Then Property (8) gives
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that V (*(ti))6 a for all i large enough, which says
that lim supi V (*(ti))6 a, contradicting V (*(ti)) →
2a. Thus z ∈ZV .

Theorem 1. Suppose given a behavior R of a sys-
tem (6); and for each compact subset U ⊆ U; a
U -decrease function VU . Then:

(1) For each compact subset U ⊆ U and for every
(!; �)∈R satisfying ! → U; holds that � →
h(ZVU ).

(2) If there is a compact subset U0 ⊆ U and there
is some �∈K∞ such that

|h(ZVU )|6 �(|U |) (10)

for every compact U ⊆ U0; then R has Cauchy
gain � on U0 and incremental limit gain � on U0.

(3) If there is some �∈K∞ such that (10) holds for
every compact subsetU ⊆U; thenR has Cauchy
gain � and incremental limit gain �.

Proof. We will Brst show that; for every triple
(!; *; �) with ! precompact and Lebesgue-
measurable; such that *̇(t) = f(*(t); !(t)) and
�(t) = h(*(t)); the following properties hold:

(i) * and � are precompact;
(ii) for each compact U ⊆ U; if ! → U then * →

ZVU and � → h(ZVU ).

(This will prove; in particular; the Brst assertion of the
theorem.) Since ! is precompact; there exists some
compact set; let us call it U ′; such that !(t)∈U ′ for
all t. The Brst case in Lemma 4.2; applied to U ′ and
V ′ =VU with T0 = 0; gives that *(t) → ZV ′ ; so; being
continuous as a function of t; * is precompact. Next
we apply once more Lemma 4.2; using now the second
case with any given compact U and the U -decrease
function V = VU ; to conclude that * → ZV . Since the
set ZV is compact and the mapping h is continuous; it
follows that also �(t) = h(*(t)) → h(ZV ) as t → ∞;
and � is precompact as well.
Next, we pick any compactU0 ⊆ U as in the second

assertion, so that for every compact subsetU ⊆ U0 we
have that |h(ZVU )|6 �(|U |), and let %(U ):=h(ZVU ).
We will apply Lemma 3.1. Property (c) in that lemma
holds by deBnition of %. Also, (a) holds, by (i). To
prove that (b) is true, suppose that "+[!] ⊆ U ⊆ U0.
Since ! is precompact, ! → "+[!], so also ! → U .
By (ii), we know that � → h(ZVU ), and so "+[�] ⊆

h(ZVU )=%(U ), as desired. The lemma then says that
R has Cauchy gain � on U0 and also has incremental
limit gain � on U0.
Finally, given an arbitrary pair (!; �)∈R, we

pick some compact U0 such that !(t)∈U0; then
the just-shown Cauchy property on U0 gives that
‖�‖aa6 �(‖!‖aa), and similarly for the incremental
gain.

5. A class of examples

As an illustration of gain computations and
small-gain stability arguments, we consider systems
which consist of cascades of several subsystems, each
of which can be individually described by some or-
dinary diNerential equation ẋi = f(xi; ui) with input
ui. The input u1 = u to the Brst of the systems in the
cascade is an external one, while the intermediate
inputs ui; i¿ 1, between two stages depend on the
state of the preceding stage. In a biological appli-
cation, xi(t) might represent the amount present, at
any given time t, of the activated form E∗

i of an en-
zyme Ei whose production rate is, in turn, dependent
upon the amount present of the activated form E∗

i−1
of the enzyme Ei−1. We allow transport delays in
between stages. This leads to systems given by sets
of delay-diNerential equations as follows:

ẋ1(t) =f1(x1(t); u(t));

ẋ2(t) =f2(x2(t); x1(t − �1));

...

ẋn(t) =fn(xn(t); xn−1(t − �n−1));

where �1; : : : ; �n−1¿ 0 are the delays among the stages
of the process (the particular case in which there are
no delays is included in this formalism by setting all
�i = 0). See Fig. 3, where x�i (t):=xi(t − �) and we
useRi to denote the behavior associated to the system
ẋ = fi(x; u) with output y = x. One often asks about
such systems, see e.g. [3,10,17,18], whether adding a
feedback loop from the last stage to the Brst, as shown
in Fig. 4, might introduce instabilities, such as oscilla-
tions or even chaotic behavior. SpeciBcally, one may
have, for instance, that the action of u on the Brst sub-
system is inhibited by the Bnal product xn. Assuming
that all the variables xi as well as the external input
u are scalar, and take only nonnegative values (as is
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Fig. 3. Cascade of Ri’s and delays.

Fig. 4. Cascade of Ri’s and delays, with feedback to Brst stage.

for instance the case when variables represent chem-
ical concentrations), a typical model for inhibition is
obtained when the Brst equation becomes

ẋ1(t) = f
(
x1(t);

u(t)
1 + kxn(t − �n)

)

(other expressions for inhibition are also possible, of
course), where the “gain” k¿ 0 serves to parametrize
the feedback strength. Note that we are also allowing
for an additional delay in the feedback. Suppose that
we are interested in analyzing the case in which u(t)
equals a constant value 3, so that the eNective input
being fed to the Brst subsystem is !(t) =  (x�nn (t)) =
 (xn(t − �n)), where  is the following function:

 (x) =
3

1 + kx
(11)

(for some particular values of 3 and k). The
closed-loop system may be viewed as the feedback
interconnection R ∩M−1

 of the memoryless behav-
ior M with the behavior of the forward composite
system with output x�nn , that is, the composition

R=D�n ◦Rn ◦D�n−1 ◦ : : : ◦D�1 ◦R1:

Suppose that each Ri has Cauchy gain �i and also
incremental limit gain �i. Then R has gain � = �n ◦
· · · ◦ �1 of both types. Since  has Lipschitz constant
k3; M has both gains k3I . Therefore, provided that
the small gain condition

�(k3r)¡r ∀r ¿ 0 (12)

holds, one concludes from Lemma 1.5 that there is
some value Pu such that, for every solution of the
closed-loop system, ! → Pu. This means, in turn, be-
cause eachRi has a Cauchy gain, that every state vari-
able xi converges to a unique equilibrium (indepen-
dently of initial conditions).

The problem, therefore, is to estimate gains �i for
the systemsRi. We brieUy discuss one situation, itself
of great interest, in which estimates can be obtained.
We suppose given intervals Xi = [ai; bi] ⊆ R¿0,

and sets Ui ⊆ R¿0; i = 1; : : : ; n, with Ui = R¿0 for
i¿ 1, such that any solution of ẋ=fi(x; u) with initial
conditions in Xi and input with values in Ui remains
inXi. In a typical biological application, one may have
Xi = [0; xmax

i ], where xmax
i is the maximum possible

amount of a substance, such as the activated form of
an enzyme, that may be synthesized. Also, suppose
given, for each i, a strictly increasing and onto function

gi : [ai; bi) → R¿0

with the following properties:

(1) the restriction of g−1
i : R¿0 → [ai; bi) to Ui is

Lipschitz, with Lipschitz constant �i;
(2) x¡g−1

i (u) ⇒ fi(x; u)¿ 0, and x¿g−1
i (u) ⇒

fi(x; u)¡ 0, for every u∈Ui and x∈Xi.

Then, R admits both Cauchy and incremental limit
gain �(r) = �1 : : : �nr, and (12) becomes

k3¡
1

�1 : : : �n
: (13)

This is proved as follows. Fixing any i = 1; : : : ; n, we
drop subscripts and writeX=Xi ; U=Ui ; g=gi; �=
�i. For each compact subset U ⊆ U, we let c:=minU
and d:=maxU , so that U ⊆ [c; d] and |U | = d − c,
and deBne VU : X → R¿0 to be the distance from
any x to the set

g−1([c; d]) = [g−1(c); g−1(d)]

(recall that g−1 is an increasing function). So
ZVU = [g−1(c); g−1(d)], and VU (x) = g−1(c) − x
if g(x)¡c; VU (x) = x − g−1(d) if g(x)¿d. Note
that ZVU has diameter |ZVU |6 �|d − c| = �|U |.
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Furthermore, VU is a U -decrease function, be-
cause VU is continuous, proper, diNerentiable
outside ZVU , and satisBes the decrease condition.
Indeed, pick any x∈X\ZVU and u∈U . There are
two cases: x¡g−1(c) or x¿g−1(d). In the Brst
case, x¡g−1(c)6 g−1(u) (since u∈ [c; d]), so
∇V (x) · f(x; u) = (−1) · f(x; u)¡ 0, and the second
case is similar. Theorem 1 (part 3) then applies, so
the corresponding behavior Ri has both Cauchy and
incremental limit gain �i(r) = �ir, and therefore the
cascade (with arbitrary delays) has both gains equal
to �, as claimed.
The requirement that each g−1

i : Ui → [ai; bi) must
have Lipschitz constant �i can be relaxed to:

the restriction of g−1
i to Ui is Lipschitz with

Lipschitz constant �i (14)

for each i=1; : : : ; n, where we deBne, inductively, the
intervals U1:=U1 and

Ui+1:=ZVUi
= g−1

i (Ui) ⊆ Ui+1

for i = 1; : : : ; n. For each compact subset U ⊆Ui, we
have that |ZVU |6 �i|U |, so, by Theorem 1 (part 2, ap-
plied n times, with U0 =Ui; i=1; : : : ; n) we conclude
that each Ri has Cauchy gain as well as incremen-
tal limit gain �i(r) = �r on Ui. In addition, for each
i = 1; : : : ; n− 1 and every (!; �)∈Ri such that ! →
Ui, Theorem 1 (part 1) insures that � → Ui+1. The
pure delays D�i have identity gains, and of course sat-
isfy ! → Ui+1 ⇒ � → Ui+1. So, arguing (for each
consecutive pair of subsystems in the cascade) as in
Section 2.1, we conclude that R admits both Cauchy
and incremental limit gain �(r) = �1 : : : �nr provided
condition (14) holds.
Let us specialize even further. We assume from now

on that each function fi has the following form:

fi(x; u) =−.i(x) + u6i(x);

where the functions .i and 6i are nonnegative on
X = [ai; bi]; .i is strictly increasing and 6i is strictly
decreasing, and .i(ai)=6i(bi)=0. Since fi(ai; u)¿ 0
and fi(bi; u)¡ 0 for all u∈Ui, the interval Xi =
[ai; bi] is invariant. For each i, we let

gi(x):=
.i(x)
6i(x)

for x∈[ai; bi). Then gi is strictly increasing, be-
cause .i increases and 6i decreases, and it satisBes

gi(ai)=0 and gi(x)→∞ as x→b−, so it is onto R¿0.
Given any x∈[ai; bi) and u∈Ui, if x¡g−1

i (u) then
.i(x)=6i(x)=gi(x)¡u implies fi(x; u)¿0 and simi-
larly x¿g−1

i (u)⇒fi(x; u)¡0. If x=bi then fi(x; u)=
−.i(b)¡0.
In conclusion, the functions gi(x):=.i(x)=6i(x) are

as required for the above computations, and the gains
can be computed in terms of the Lipschitz constants
in (14), computed on the sets Ui.

5.1. MAPK cascades

As an application, and in fact the original motivation
for this study, we pick the case when everyXi=[0; 1]
(for now, we letU1 be arbitrary, but it will be restricted
below), and

.i(x) =
bix

ci + x
and 6i(x) =

di(1− x)
ei + (1− x)

(for some positive constants bi; ci; di; ei). We wish to
study the stability of the inhibitory closed-loop system:

ẋ1 =− b1x1
c1 + x1

+
3

1 + kx�33

d1(1− x1)
e1 + (1− x1)

; (15)

ẋ2 =− b2x2
c2 + x2

+ x�11
d2(1− x2)

e2 + (1− x2)
; (16)

ẋ3 =− b3x3
c3 + x3

+ x�22
d3(1− x3)

e3 + (1− x3)
; (17)

where the �i¿ 0. Such equations arise, for instance,
as follows.
Mitogen-activated protein kinase (MAPK) cas-

cades constitute a type of “biological module” or “sub-
circuit” which is implicated, in several variants, in
a large variety of eukaryotic cell signal transduction
processes, cf. [4,8,19]. This highly conserved signal-
ing cascade processes inputs—themselves triggered,
in turn, by extracellular stimuli—into output signals
responsible for diverse cellular behaviors: prolifera-
tion, growth, and diNerentiation (hence the name), as
well as movement, stress responses, and death. The
basic mechanism is that of a cascade of three subsys-
tems, each of which consists of one or more reversible
enzyme activations.
Subject to conservation laws (stoichiometry rela-

tions), each subsystem is usually described in terms
of one or two diNerential equations, see for instance
[4,7,13,14]. (The models in these references do not
include delays among levels in the cascade, but in our
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formalism, arbitrary delays do not aNect the results,
and they are biologically plausible.) For simplicity,
we pick a model with one equation in each level, as
in [13,14] and the last section of [7]. In general, one
would have allXi=[0; Ei], where Ei is the total amount
of enzyme present (activated plus nonactivated), but
we may take all Xi = [0; 1] after nondimensionaliza-
tion, as was done in [13,14]. These references, and
especially Kholodenko’s work, emphasized the fact
that inhibitory feedback, which seems to be present in
naturally occurring cells, could, theoretically, produce
oscillations. As oscillations in MAPK cascades do not
appear to occur naturally, an interesting mathematical
question is to Bnd conditions on gains insuring lack
of oscillations. We do this next.
We Brst show that the functions g−1

i are always
Lipschitz, and compute an estimate of the constant.
This will prove that stability is preserved under small
enough feedback, but the estimates may be too conser-
vative. After that, we describe a numerical approach
which allows sometimes quite tight estimates. To ob-
tain the general bounds, we compute, for x∈ [0; 1):

g′i(x) =
bi

di

eix2 + ci(x − 1)2 + ciei
(ci + x)2(1− x)2

and use (taking derivatives to minimize) these lower
bounds:

eix2 + ci(x − 1)2¿
ciei

ei + ci
;

(ci + x)(1− x)6 (1=4)(ci + 1)2

so as to obtain the following estimate:

g′i(x)¿ 8i:=16
bi

di

ciei
(ci + 1)4

(
1 +

1
ei + ci

)
¿ 0:

Thus �i = 1=8i are Lipschitz constants as desired.
Since we are ultimately interested in the eNect of

inhibitory feedback given by a function  (*)=3=(1+
k*) as in (11), where * is a (possibly delayed) value of
x3, which ranges over the interval [0; 1], the only inputs
u that must be considered are those in [3=(1 + k); 3],
So, from now, on we suppose that the Brst input set
has the form:

U1 = [u;∞)

for some Pu¿ 0. The appropriate value of Puwill depend
upon assumed prior upper bounds on feedback gains
k and lower bounds on external inputs 3. We let U1 =
U1 and introduce Ui+1 = g−1

i (Ui) for i = 1; 2; 3 as

1.4

1.2
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Fig. 5. The function 9.

done earlier, and compute a Lipschitz constant �i for
the restriction of g−1

i toUi for each i=1; 2; 3 as in (14).
Writing Px0= Pu and Pgi(xi):= Pxi−1 for i=1; 2; 3, we have
that U2 ⊆ [ Px1; 1]; U3 ⊆ [ Px2; 1]; U4 ⊆ [ Px3; 1]. When
applying the small-gain condition (13), the quantity
of interest is the “total gain” � = �1�2�3 of the cas-
cade. An upper bound on each �i can be obtained, for
any given Pu, by maximizing the derivative of g−1

i on
Ui, or equivalently (and most conveniently, as this in-
volves no functional inversion and each gi is a simple
rational function) as �i = 9i( Pu i)−1, where 9i( Pu) is the
minimum of g′i on [ Pxi; 1]. The functions 9i depend,
of course, on the actual parameters bi, etc. DeBning
9( Pu):=91( Pu)92( Pu)93( Pu), we conclude that every solu-
tion of the delay-di=erential system (15)–(17) will
satisfy xi(t) → 0 as t → ∞ provided that the follow-
ing condition holds:

k ¡min
{
9(u)
3

;
3
u
− 1

}
: (18)

The Brst term represents the small gain condition (13)
(since Pu = 1=�), while the second insures that u =
 (x�33 ) = 3(1 + kx�33 )

−1 belongs to the input set U1 =
[ Pu;∞) for all x3 ∈ [0; 1]. Fig. 5 provides a plot (ob-
tained using the “minimize” function in Maple) of the
function 9 for a concrete numerical example which
takes the coe3cients used in [14]:

b1 = c1 = e1 = b2 = 0:1;

c2 = e2 = c3 = e3 = 0:01; b3 = 0:5;

d1 = d2 = d3 = 1: (19)
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Fig. 6. Oscillations when k = 5:2 and 3 = 0:3.

There is a sharp transition at around Pu= 0:055. In or-
der to obtain � small, let us say �¡ 1, it is reason-
able to pick the value Pu = 0:061, for which 9( Pu) ≈
1:39933 and so � = 1=9( Pu) ≈ 0:71463 (picking in-
stead Pu = 0:06 would give � ≈ 1:134). If we now
pick 3 = 0:3, as in [14], constraints (18) become
k ¡min{4:6644; 3:918} = 3:918. In conclusion, any
feedback with gain k ¡ 3:9 is guaranteed to preserve
stability (for external input u(t) ≡ 0:3, and for any
delays).
One may ask how tight is the bound k ¡ 3:9. For

the system with no delays, numerical experimentation
leads to the conclusion that, as the parameter k in-
creases, a Hopf bifurcation occurs at around k = 5:1.
The coordinate x3 of the solution with initial condi-
tions x(0) = 0, and 3=0:3; k =5:2 is oscillatory and
is plotted in Fig. 6. (Linear instability in this con-
text always leads to existence of periodic solutions,
cf. [3,18].) Thus the bound is fairly tight even when
there are no delays.

5.2. Local exponential stability

For systems of the special form being considered,
linearized stability analysis can be employed in order
to determine local exponential stability of the feed-
back system, appealing to classical small-gain theo-
rems as in [1,11,12,21]. (A computational di3culty
when doing this, however, is that feedback laws such
as u=  (x) change equilibria, and the new equilibria
are usually not computable in closed-form.) Given
any system of the form ẋ = f(x; u) =−.(x) + u6(x)
as above, and any Pu, we may compute the linearized

system ż = az + bv at the equilibrium values x=
Px = g−1( Pu) and u = Pu. This has a = @f=@x( Px; Pu) and
b= @f=@u( Px; Pu). From a=b= (−.′( Px) + Pu6′( Px))=6( Px)
and Pu= .( Px)=6( Px) = g( Px), one obtains

∣∣∣a
b

∣∣∣= .′( Px)6( Px)− .( Px)6′( Px)
62( Px)

= g′( Px) =
1

(g−1)′(u)
:

On the other hand, the H∞ gain (induced L2 opera-
tor norm) of the system ż = az + bv is max{b=|i! +
a|; !∈R}= |b=a|. We conclude that (g−1)′( Pu) equals
the H∞ gain of the linearized system. By induction on
the cascade, the linearized cascade system has an H∞
gain equal to �, so the same inequalities on � and 3
insure local exponential stability. (Linearized analysis
cannot by itself guarantee the existence of equilibria
for the closed-loop system; only after equilibria are
known to exist, this linearized small gain argument
can be used.)
The “secant condition” for stability, see [2,7,10,17,

18], is often used for linearized stability analysis
of inhibitory feedback systems such as the ones
considered here. This condition says that a matrix



.1 0 · · · 0 −61

62 .2 · · · 0 −0

...
...

...

0 0 · · · 6n .n




with all .i ¡ 0 and all 6i ¿ 0 is Hurwitz provided that:
∣∣∣∣61 : : : 6n

.1 : : : .n

∣∣∣∣¡
(
sec

<
n

)n
:

For n = 3 as in our example, this means that a
closed-loop gain margin of (sec<=3)3 = 8 can be
tolerated while preserving stability, for the linearized
system (no assertion is made about phase, so no de-
lays are allowed). The condition k6 3= Pu − 1, which
guarantees that u =  (x3) belongs to the input set
[ Pu;∞), must still be satisBed, but the bound (18)
may be relaxed to k ¡min{89( Pu)=3; 3= Pu− 1}. In or-
der to exploit this condition for the above numerical
example, a bit of experimentation leads us to pick
Pu=0:05763 (instead of 0:061), so �=1=9( Pu) ≈ 6:32.
Using again 3 = 0:3, the condition k6 3= Pu − 1 im-
poses a constraint of approximately k6 4:2. For any
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such k, we have that k ·3 ·�¡ 7:9632¡ 8, as wanted.
In other words, the secant rule allows us to conclude
that a feedback gain of k6 4:2 may be tolerated so as
to guarantee linearized stability. This is only a slight
improvement over the estimate k6 3:9 obtained from
the nonlinear small-gain result, and it comes at the
cost of assuming no delays and insuring only local
stability for the original system.
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