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1. Introduction 

There has been considerable interest lately in 
questions dealing with the solution of synthesis 
problems for linear systems depending on parame- 
ters; see for instance [1,4-8], and the references 
there. Typically, the questions asked involve a 
loca l -g iobal  passage: if a given problem is solva- 
ble for each value of the parameter(s), does there 
also exist a similarly parametrized family of solu- 
tions? Take for instance a family 

±(t )  = Axx( t  ) + bxu(t),  (1.1) 

where Ax, bx are matrices (n × n and n × 1 respec- 
tively) whose entries are functions of X = (A t . . . . .  
X,) ~ ~ "  (we restrict attention here to scalar-input 
systems), and consider the stabilization problem: 
to find a parametrized control  law u( t )= kxx(t)  
such that, for each X, all solutions of 

5c(t) = (A x + bxkx )x ( t )  (1.2) 

converge asymptotical ly to zero. The problem be- 
comes interesting when an algebra of functions ~¢ 
is specified, with all entries of A and b belonging 
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t o . ~ ,  and it is required that the solution kx again 
have entries over.~ ' .  

In this note, we shall be especially interested in 
the case 

= [xt . . . . .  xr],  

although our results will also apply to many other 
algebras ~¢. Besides being mathematically natural, 
this problem has in principle a computat ional  
interest: once the 'off-l ine '  computat ion of k x has 
been carried out, it is only necessary to store its 
coefficients, the calculation of the precise kx being 
essentially trivial when a part icular  X is given. (If a 
good polynomial  approximation to a given family 
can be found, this kind of approach provides an 
alternative to conventional gain-scheduling meth- 
ods.) 

2. Some algebras of functions 

Consider the set ~¢ [A ,~ ]  of all continuous 
maps A ---, ~ ,  where A is a fixed connected topo- 
logical space. If f ,  g are in ~'[A, .~], f >  g will 
mean that f (X)  > g (~ )  for every X, and f>_ g that 
f ( X )  >_ g(X) for each X; 0, 1 will be used to denote 
the functions constantly equal to 0, 1 respectively. 
Thus ~ [ A ,  8 ]  is an algebra with identity 1. 

All  results will refer to a fixed but arbitrary 
subalgebra ~ o f  Cg[A, 8 ]  which satisfies the fol- 
lowing property:  

g ~ z d ,  g>O ~ ( ] k ~ ) k g >  l. (*)  

Typically, A c ~ r  for some r; .ulmay then be a set 
of real-analytic, or smooth, or rational, or just  
continuous functions, in which cases the inequality 
can be satisfied exactly, with k ,= g-1 _ and our 
results will be basically trivial in that case. Our 
interest lies however in the case 

o, . . . . .  X,]. 

These also satisfy (*):  by the reelnullstellensatz 
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(see [2,3]), g real polynomial  > 0 implies that there 
exists a real polynomial  k such that kg  = 1 + Eu 2, 
for some real rat ional  funct ions u i, and  this im- 
plies ( * ). 

It is clear that (* )  should be the desired prop-  
erty in the context  of stabil ization:  the one-d imen-  
sional system 

~ = x + g u  (g#=O) 

is stabil izable with u = k ,  if and  only if 1 + gk < O, 
i.e. if ( - k ) g  > 1. Existence of such a stabilizer for 
every one-d imens ional  reachable system then im- 
plies (*).  

2.1. Lemma. Assume that c, b,_ 1 . . . . . .  b o are in .~¢, 
with c > O. There exists then a ~P > 0 in .~¢ such that, 
whenever b, >__ c and ~ >__ ~P, 

E ' b,q, >_ 1. (2.2) 

Proof.  Consider  first the case n = 1. Let c, b 0 be 
given. Pick k E .~ ' such  that kc > 1, and  let 

~ =  [(1 - bo)Z+ 1 ] k > O .  (2.3) 

Take now any b~ >__ c and any 1/, >_ ~. Since 

kOb l > _ @ c > _ ( l + b 0 )  2 + 1 > _ 1 - b o ,  

it follows that qJb~ + b o >_ 1, as required. The proof 
is completed by induc t ion  on n. Let c, bk_~ . . . . .  
b o be given, and assume the lemma true for n _< 
k - 1. By the case n = k - 1 applied to the subse- 
quence c, bk_ a . . . . .  , b~, there exists a ' /"  > 0 in.~¢ 
such that 

bkqJ k-1 - bk _ l~  ~-2 + , . .  + b, >_ 1 (2.4) 

whenever  b k >__ c and  ~k > q". Consider  now the 
case n = 1 applied to the data  1, b0: there is then a 
q "  > 0 in .aCsuch that 

ff, d + b 0 >_ 1 (2.5) 

whenever ~p > q '"  and  d > 1. Let g'  ,= "P' + g'".  If 
~b > ~/,, (2.5) holds with d = the left term of (2.4), 
and  the proof is completed• [] 

3. Hurwitz polynomials 

A polynomial  

p = p x ( s ) = b , s "  + b , _ , s " - '  + . "  + b o ~ [ s  ] 

will be said to be a Hurwitz  polynomial  if b, > 0 
and,  for each h ~ A, the po lynomia l  

b , ( X ) s " +  . . .  + b0(), ) 

has all its roots with negative real parts. Given  any 
elements  b. . . . . .  b 0 in aCwe consider  the n Hurwitz  
minors  cor responding  to the p lynomia l  p = Z.b, si: 

H i ( b . ,  b ._ ,  . . . . .  bo) 

b n - I  

0 

= 0 

0 

0 

h a -  3 

b.,-2 

b,,_~ 

b,, 
0 

" " " b n  --  i 

(3.1) 

where bj ,= 0 i f j  < 0, i = 1 . . . . .  n. The e lements  H~ 
are in .~¢. (Strictly speaking, we should include 
explicitly the order  n in the no ta t ion  for Hi; we 
omit  it for no ta t iona l  simplicity.) By the Hurwi tz  
stabil i ty test, a po lynomia l  p as above, with b, > 0, 
is Hurwitz  if and only  if 

H i ( b  ~ . . . . .  b 0 ) > 0  for a l l i = l  . . . . .  n. 

The  following l emma is suggested by classical 
root-locus techniques:  

3.2. Lemma. Let p ,  q ~.~¢[s], with q Hurwi tz  and 
d e g ( p )  < deg(q)  = n - 1. Then, there exists a ~P > 0 
in . ~  such that s" + p + q,q is Hurwi tz  whenever 

4,>_'1". 

Proof.  Let 

p =  ~ a,s  i, q =  ~ b,s'. 
i < . n - - 1  i ~ n - - I  

Fix any  i = 1 . . . . .  n. The main  observat ion is that 
there exist e lements  d) i) ~a~ ¢, j = 0 . . . . .  i - 1, such 
that, for each ~/, 

H i ( l ,  a . _ l  + ~kb._, . . . . .  ao + ~bo )  

= b . _ , H , _ , ( b ~ _ l ,  b,,-2 . . . . .  b o ) ~ ' +  E d) ' )~  j '  
j < i  

(3.3) 

(We denote  H 0,-- 1.) To  establish the result, we 
need to prove that all the expressions in (3,3) can 
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be made simultaneously positive for large ~k. Since 
Eb, s i is Hurwitz, b,_ 1 > 0, so also 

c '= b , _ , H i _ , ( b , _ ,  . . . . .  bo) > 0 

for each i. Applying Lemma 2.1 to each set of data  
(c i, d~')l . . . . .  do(')), we obtain g,l . . . . .  g,,, all > 0 
and in a / ,  such that, for each i, 

c~q~ + 2~ (o~;  > d) . 0 (3.4) 
j<i 

whenever 4' > ~ .  Let now g, be the sum of all the 
g',.; this satisfies all the requirements. [] 

4. Stabilization 

Let A ~ a / " × " ,  b ~ a / " × ~ .  The pair  ( A , b )  is 
aaC-stabilizable with arbitrary convergence rates if for 
each ~ ~..~ there exists a k ~ a / ~ × "  such that, for 
each h ~ A ,  Ax + bxkx has all its eigenvalues with 
real part  < a. The pair (A, b) is pointwise control- 
lable iff (A x, bx) is controllable for each X c A .  
The main result is: 

4.1. Theorem. (A, b) is a/-stabilizable with arbitrary 
convergence rates i f  and only i f  it is pointwise con- 
trollable. 

Necessity follows by elementary system theory. 
The sufficiency proof  will involve a sequence of 
simplifying arguments. First  note that it is enough 
to prove stabil izabil i ty with a = 0. Indeed, given 
any a, assume that the result is known for the case 
a = 0. Let A'  ,=A - a I .  Since (A' ,  b) is again con- 
trollable, there is a k ~ a / s u c h  that all eigenvalues 
of C a ,=A~, + baka have negative real parts (i.e. 
Xc '= d e t ( s I -  C)  is Hurwitz). Then, all eigenval- 
ues of 

Ax + bxk~ = Cx + a I  

have real par t  < a, as required. 
For  two pairs of the same dimension n, denote 

(A,  b) < (A' ,  b') iff there exists a matrix T ~ a / " × "  
such that A T = TA', b = Tb', and det(T x) ~: 0 for 
all h c A. 

4.2. Lemma. Assume that (A,  b) < (A' ,  b') and that 
there exists a k ~a /1  ×, such that XA+bk is Hurwitz. 
Then, the same conclusion holds for ( A', b'). 

Prool .  Let k '  ,= k T ~ a ¢ l × n .  Since T is pointwise 
invertible, A + bk and A ' +  b'k'  have the same 

characteristic polynomial  for each h, and a fortri- 
ori as elements of a / .  O. 

4.3. Lemma. For any pointwise reachable ( A', b'), 
there exists an (A,  b) < (A',  b') of  the particular 
form 

i 0 0 I 0 1 . . .  0 
a ~ " 

0 0 1 

. . . . . . . . .  ~ n -  1 

(4.4) 

with 

A := det( b', A'b', . . . .  (A ' )  '~-1 b ' ) .  

Assume for a moment that Lemma 4.3 has been 
proved. By Lemma 4.2, it is then enough to prove 
the theorem for (A, b) of the form (4.4). By reach- 
ability, A x =~ 0 for all h. Since A : A ~ .~ is con- 
tinuous, either A > 0 or A < 0. The problem is then 
reduced to proving that, for any a , _  1 . . . . .  a0 in d ,  
and /1 as above, there exist k o , . . . , k , _ ~  in a / s u c h  
that 

s" +(a , ,_ ,  + A k , , _ , ) s " - l  + . . .  + ( a 0 + A k 0 )  

(4.5) 

is Hurwitz. Without  loss of generality, we may 
assume that A > 0. Let g ~ a / b e  such that gA _> 1. 
Now pick any Hurwitz polynomial  

b._~s "-~ + ' "  + b0 ~ d [ s ] .  

Apply  Lemma 3.2 to obtain a g '  c a / s u c h  that the 
property there is satisfied. Since g ' ,=  g a g , >  g, 
this means that (4.5) cna be made to be Hurwitz 
with the choice k i ,= gg,b. [] 

Thus we are only left to prove Lemma 4.3. But 
this is basically what results when one tries to 
reduce (A' ,  b') pointwise to the controllabili ty 
canonical form, with care not to perform any of 
the required inversions. More precisely, assume 
that A'  has characteristic polynomial  s n -  ~ai  si. 
Now let S be the matrix whose i-th column, i = 
1 , . . . , n ,  is 

- a i b '  - ai+lA'b' - . . .  

- a ,  1 A " - i - l b '  + A'"- ib  '. (4.6) 
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For each fixed h, Sx is invertible. (However, in 
general S is not invertible over.~¢, unless (A', b') is 
ring reachable.) Arguing pointwise as usual, 

S~IA'xSx=Ax and b ' = S ~ ( 0  . . . . .  0 ,1 )  T 

for all )~, where .,4 is as in (4..4). Let T' be the 
cofactor matrix of S, and let T ,= ( - 1)~T ' if n = 2k 
or n = 2 k + l .  Then, A T = T A '  and b = T b ' ,  as 
desired. [] 

5. Remarks 

this is reachable for all real )~ but is not polynomi- 
ally stabilizable. (For no possible polynomial k x is 
1 + (~2 + 1)kx less than 1 for all ~..) 

.Another possible assumption on (A x, Bx) if 
stabilization with arbitrary convergence rates is not 
required, is simply stabilizability pointwise. By the 
results in [5,6] the dynamic version of this problem 
is equivalent to the right invertibility of the matrix 
[ s l - A  x, B~] with respect to the ring of stable 
transfer functions over ~'[h].  When r =  1, this 
property is equivalent to pointwise stabilizability 
(see [8]), but the problem is open in general. For 
stabilization over other algebras, see [7]. 

We now describe the relation between the prob- 
lem studied here and analogous ones considered in 
the references. 

For polynomial families, the main difference 
lies in the controllability assumptions made on 
(A n, bx). If this would be ring reachable, i.e. 
(Ax, bx) is reachable for every complex value ~ 
C r, then one can achieve arbitrary characteristic 
polynomials for A x + bxk ~ (clear from the above 
arguments: A is a unit). In fact, more interesting 
results are known for that case, even in the multi- 
input problem (b is an n × m matrix, m > 1): if 
r = 1 one has arbitrary pole assignment [9]; if r > 1 
this is still true, but one must employ dynamic 
feedback (see [5], and [6] for the dual, somewhat 
easier, observer problem). All these results apply 
also to discrete time systems 

x( t + 1) = A x x ( t  ) + Bxx( t ), 

since the conclusions permit placing poles inside 
the unit circle. The result in this note, however, 
does not generalize to the discrete case: consider 
the example 

A ? , = I ,  B x = ~ ? + I  ( n = m = l ) ;  
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