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Given a square n-matrix Fand an n-row matrix G, pole-shifting problems consist in obtaining 

more or less arbitrary characteristic polynomials for F+ GK, for suitable (“feedback”) matrices 

K. A review of known facts is given, various partial results are proved, and the case n = 2 is 

studied in some detail. 

Introduction 

Problems that appear in trying to extend linear control results to systems over 

rings R have attracted considerable attention lately. This interest has been due 

mainly to applications-oriented motivations (in particular, dealing with delay- 

differential equations), and partly to a purely algebraic interest. We shall not touch 

here on the (nonalgebraic) motivations- many can be found in the various 

references given-save to note that interest in applications lies not with arbitrary 

rings R but with certain broad classes, such as polynomial rings over R or C (delay 

systems), integers and finite rings (digital systems, coding), rings of suitably smooth 

real or complex functions (parametrized families of systems), and group algebras 

with real or complex coefficients (discretized p.d.e.‘s on certain manifolds). 

In this note, we shall restrict our attention to the problem(s) of modifying the 

characteristic polynomial of a given system through the use of feedback. A system 
(with m inputs, of dimension n, over the commutative ring R) is just a pair of 

matrices (F, G) over R, where F is n by n, and G is n by m. A feedback (matrix) for 

this system is any m by n R-matrix K. The closed-loop system obtained applying 

feedback K to the system (F, G) is by definition the new system (F+ GK, G). We 

shall be interested in the characteristicpolynomial of the system (F, G), meaning just 

the characteristic polynomial of F, ch.p.(F) = det(zl- F). 
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The above terminology originates in the study of vector equations 

(ax)(t) =Fzc(t) + Gu(t), (1.1) 

(where ~(0) is the “state variable” and u( 0) is the “input” or “control” function, 
and where a is either a difference or a differentiation operator), under a state- 
feedback control law 

u(t) =Kx(t) + v(t), (1.2) 

where v is a new input, so that the composite (“closed-loop”) system becomes 

(ax)(t) = (F+ C/+(t) + Gv(t). (1.3) 

An excellent discussion of modern feedback control topics is given in [26], when 
R = real or complex numbers. (Extensions to rings appear for instance when F, G 
are matrices of operators, or when states and inputs are restricted in various ways.) 
The interest in ch.p.(F+GK) is due to the fact that stability and other dynamic 
properties of (1.1) depend on ch.p.(F), and the feedback K is used to change these 
properties for various control purposes. No explicit use will be made here of the 
interpretation (l.l)-( 1.3). A system will be for us just the above-defined algebraic 
object. 

For systems over a field R, the main “pole-shifting” result is: 

Theorem (R = field). Assume that (F, G) is reachable, i.e. that the columns of 
G, FG, F 2G, . . . generate R “. (By Cayley-Hamilton, (G, FG, . . . , F”- ‘G) is enough). 
Then. 

(1.4) For each manic polynomial p(z) in R[z] of degree n, there is some feedback K 
such that ch.p.(F+ GK) =p(z). 

Conversely, if (1.4) is true for a given (F, G), then this system is reachable. 

The proof of the above theorem evolved over many years, (including many 
generalizations dealing with the possible set of invariant factors of F+ GK). A short 
and elegant proof was given by Heymann [8] and we review it below. 

Consider the property given by (1.4). We shall call this the coefficient-assignment 
property. It is easy to prove (see below) that reachability is still necessary for (1.4) to 
hold, over any commutative ring R. In fact, when the number of columns of G 
(“inputs”) is 1, or (obviously) if the dimension n is 1, the reachability condition is 
also sufficient. A CA,,-ring will be one for which, (as over fields), reachability is 
equivalent to (1.4) for every system of dimension In; a CA-ring is a CAn ring for all 
nrl. 

It is not hard to prove that semilocal rings are CA-rings, but the problem of 
deciding if there are any (“nice”) non-CA-rings was open. We shall show below that 
the rational integers and the polynomial rings over R are not CA-rings, but that 
polynomials in one variable over C are (at least) CA2. We leave open the question of 
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existence of an “n-stable range”, i.e. whether there is any s with CAs=CA. 
For many applications, the following weaker property, which we shall call pole- 

assignment, is enough: 

(1.5) For each AI,..., rln in R, there is some feedback K with ch.p.(F+ GK)= 

(t--1)*.*(2--/?). 

(The standard terminology “poles” is motivated by the fact that the eigenvalues of 
F in (1.1) give rise to the poles of the “transfer function” of the system.) It is again 
true that (1.5) implies reachability of (F, G). A PA,,-ring will be one for which reach- 
ability implies (1 S), for each system of dimension at most n; a PA-ring if for all n. 
It is known that principal-ideal domains are PA rings, and an extension of the 
argument for PID’s will show that elementary-divisor-rings (and some others) are 
also PA-rings. This will apply in particular to rings of real-analytic functions and 
others of applied interest. We shall see, however, that polynomial rings over R in 
more than one variable (and other non-Bezout rings) fail to give PA-rings. 

A final class of rings appears in studying the related single-input control or 
feedback-cyclization property: 

(1.6) There exist a u in Rm and a feedback K such that (F+ GK, Gu) is reachable. 

In the present context this property is of interest because it allows reducing a 
coefficient or pole-assignment problem to the (easy) case m = 1. Indeed, if (F, G) is 
reachable and satisfies (1.6), and if p(z) is given, one may first find a (KI, UI) with 
(F+ GKI,GuI) reachable and then, using (1.4) for the new system (now m= l), find 
a K2 withp(t) = ch.p.(F+ GKI + GUIKZ) = ch.p.(F+ G[Kt + u1K2]). An FC,-ring will 
be one for which (1.6) is true for any reachable system of dimension at most n, an 
FC-ring if for all n. Note that then FC,, c CA, c PA”. We shall give a characteri- 
zation of FCz-rings among (almost all) principal-ideal domains. 

2. The semilocal case 

We review the basic results over fields, and a few results over rings given in [23]. 
Unless otherwise noted, R is an arbitrary commutative ring. We shall not distinguish 
between linear maps R*+R’ and matrices in the canonical bases of RS, R’. 

2.1. Lemma. The pole-assignment property (1.5) implies reachability. 

Proof. When R is a field, one simply notes that ch.p.(F+ GK) is always divisible by 
ch.p.(Ft), where Fl is the map induced by F on R”/Reach(F, G); here Reach(F, G) 
denotes the span of the columns of (G,FG, . . . ,F”-‘G). The case of arbitrary R 
follows from this. It must be proved that the map: 

A:=[G,FG,...,F”-‘G]:Rm”+R” (2.2) 
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is onto. But this holds iff A(M) :=A@(R/M) is onto for each maximal ideal M. 
Since, for each M, (F(M), G(M)) satisfies (1.5) over R/M (just lift the Il; to R), it 
follows that A(M) is indeed onto for each M. q 

The single-input case (m = 1) can be attacked in several ways. An interesting 
homological approach is given in [27]. An alternative approach is that used 
classically for R = field, which uses a concept which we shall need later, thefeedback 

group F, m: this is the group, acting on m-input, n-dimensional systems (F,G), 
generated by the following three types of transformations: 

F+T-‘FT. G+T-‘G, Tin GL(n, R), (2.3a) 

F-F+ GK, G+G, Kin Rm**, (2.3b) 

F-F, G+GB, B in GL(m, R). (2.3~) 

A considerable body of system-theoretic literature exists regarding problems 
related to F,, when R is a field. For R a complex polynomial ring, an algebraic- 
geometric study was initiated by Byrnes (31. Two fundamental facts make this group 
relevant here. First, the set of reachable (F, G) is invariant under F,,, (easy) and 
second, (1.4)-(1.5) are also invariant under the group (clear). The following is 
standard for R a field, with exactly the same proof (see for instance [14, Chapter 21): 

2.4. Lemma (Control canonical form). Any single-inpur (m = 1) reachable (F,g) is 
F,,,,,-equivalent to a system of the form 

F= 

In particular, F,, ,,, is transitive on single-input systems, and (1.4), (1.5) are true for 
such systems. 

Proof. The reachability condition means that g,Fg, . . ..F”-‘g give a basis for R”. 
Let 

ch.p.(F)=t”+a,,-Iz”-I+-*.+ao, 

and define a new basis 

v;:=F”-ig+an-~F”-‘-‘g+...+an_;g 

(transformation of type (2.3a) and, in the new basis, apply (transformation of type 
(2.3b)) K:=(ao,...,a,-I). Cl 
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Fields are FC (and hence CA, PA) rings. This is proved as follows. If (F, G) is 
reachable, then, after if necessary reordering the nonzero columns go, . . . ,gr of G, 
rl m, there is a basis 

{g1,&, *-* , F"l - ‘g,, g2, . . . , F”: - ‘g2, . . . , F”l- ‘gr} 

with the property that each F”lg; is dependent on the vectors to its left. Define 
K: R”dRm by; 

K(F’gi)=O if i<nj- 1, 

K(F”I-‘gi)=ei+I if icr, 

(where ei is the ith canonical basis vector), and 

K(F’+‘gJ = arbitrary. 

A simple calculation shows that (F+ GK,gl) is reachable, as wanted. 
A product R of FC-rings R; is again an FC-ring, since finding K, u is equivalent to 

finding corresponding K;, Ui over the Ri. It follows that a semi-local ring R is also an 

FC-ring. Indeed, for any given system (F,G) one may consider the system (F,G) 
obtained reducing modulo the radical of R. Since R/Rad(R) is a product of fields, it 
is an FC-ring. So any (a,~?) for (F, G) lift to a pair (u, K) satisfying (1.6) if (a,R) 
does. This shows that certain rings of interest (e.g., finite R), are FC-rings, and also 
points out the topological aspects of the obstructions to being an FC-ring. A more 
arithmetic aspect will be clear in Section 4. 

3. Pole assignment 

Let F: R”+R” and let S be a submodule of R”. We shall say that 1 is an 
eigenvahe of F module S iff there is a unimodular v in Rm with 

Fv-AvES. (3.1) 

By unimodular we mean that v= (VI, . . . , vn)’ generates a direct summand of R” 

isomorphic to R; denoting by c(v) (the content of v) the ideal generated by the 
entires of the vector (or more generally, a matrix) v, unimodular means that 
c(v) = R. 

We shall use the above for systems (F, G), where S:= G is the image of G, and will 
just say eigenvalue “mod G”. Its utility lies in the fact that A is an eigenvalue of F 

mod G iff A is an eigenvalue (with unimodular eigenvector) of some FI with (FI, GI) 

being Fn,,n-equivalent to (F, G). Indeed, if (3.1) holds with S = G, 

Fv-iv=Gu, 

a projection R”-R on the span of v can be composed with the map 1 +u to give a 

K: R”+R”‘, Kv=u, 

so that (F+ GK)v=Av, as wanted. 



118 R. Bumby. E. D. Sontag. H. J. Sussmann, W. Vasconcelos 

3.2. Remark. The following properties are equivalent for a given R: 
(a) For each reachable (F. G), every L in R is an eigenvalue of F mod G; 
(b) For each reachable (F, G), F- ‘G has some unimodular element. 

Indeed, assume that (b) is true, (F,G) is reachable, and A is given. Consider 
A := F- II. Then (A, G) is again reachable. But v is in A - ‘G iff Fv = Lv mod G. 
Conversely, (b) is the particular case L =0 of (a). 0 

3.3. Proposition. Assume that R is a PAk ring and that rank-one projective R- 
modules are free. Then, for each (F, G) reachable of dimension Sk, there is some 
unimodular element in F- ‘G. 

Proof. Let (F, G) be reachable of dimension n 5 k. Assume rank 1 projectives are 
free. Since R is a PAk-ring, and (F+ I, G) is also reachable, there is a K such that 
A := F+ I+ GK satisfies ch.p.(A) = z.“- ‘(z - 1). By Cayley-Hamilton, A” = A”- I. 
Thus A”-’ is idempotent and L := Im(A”-I) is a summand of R”. Since L is also the 
kernel of A -I, which has (locally) a simple eigenvalue at zero, it follows that L has 
rank 1. Thus L is free, and a generator v of L is in F- ‘G. 0 

Recall that R is a Hermite ring iff stably free modules P (i.e. PO R’ free for some 
r) are necessarily free; R is projective-free iff finitely generated projectives are free. 

3.4. Proposition. Assume that R is a Hermite ring and that F-‘G contains a 
unimodular element whenever (F, G) is reachable and of dimension Sk. Then, for 
each reachable (F, G) of dimension n I k and each I. I, . . . , An in R, there is some 
(F, C) which is F,,,,,,-equivalent to (F, G) and there are unimodular VI, . . . , vn with 

Fvr=hlv;mod (VI ,..., vi-l), i= l,..., n. (3.5) 

In particular, R is a PAk ring. 

Proof. Let (F, G) be reachable, AI, . . . , I, in R. By Remark 3.2, we may assume 
(mod F,,,,) that FVI = AVI for some unimodular VI. Since R is Hermite, the quotient 
R”/( VI > = R”-‘. Further, F induces a map FI on R”-‘, and together with GI (= G 
followed by the projection R” +R"- ’ ) constitutes again a reachable system. By 
induction on n, there are vz, . . . , vn giving (3.5) for FI, and this lifts to Fin R”. 

When (3.5) holds, ch.p.(P)=(z-_I).-. (z-A,). Thus R is a PAk ring. 0 

The above diagonal reduction is in fact one of the direct ways known for 
establishing the pole-shifting result over a field. 

3.6. Corollary. Let R be a projective-free ring. Then R is a PA ring tff F- ‘G has a 
unimodular element whenever (F, G) is reachable. 

The following necessary condition is suggested by Morse’s proof [19] that R[x] is 
a PA-ring: 
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3.7. Proposition. Let R be a Bezout ring such that whenever a matrix A has content 
R, there is a vector v with Av unimodular. Then R is a PA-ring. 

Proof. By reachability of (F, G), c(G) = R. Let g in C be unimodular, L = R”/(g) = 
R”-‘. Let E be the composition of F with the projection onto L. Since R is Bezout, 
the image of E is free and so kerp is a nontrivial summand of R”. Let Y be 
unimodular in kerf? Then v is in F-‘G, and by Corollary 3.6, R is a PA-ring. Cl 

The above condition on matrices of content R holds in particular when every 
matrix A is known to be equivalent to a diagonal matrix, i.e. when for each A, 

with 
A = PBQ, 

0 
-------_-- - 
0 

Here c(A)=c(B) = (dl, . . . , d,) = R implies that A(Q-‘w) is unimodular, where w is 
the column vector (1, 1, . . . , 1)‘. This property implies that R is Bezout, so that R is 
then a PA-ring. A particular case is that of elementary divisor rings, those for which 
a diagonalization as above always exists with d,l d,+ I. i= 1, . . . , r- 1. These rings 
were studied by Yohe [28], Leavitt and Whaples [17], Kaplansky [1.5], and others. 

Remark. The existence of an element v as in Proposition 3.7 such that Av is 
unimodular, for other rings, may also occur if the content of the kth exterior power 
AkA of A is also R. k> Krull dimension of R and projective R-modules are free; see 
[5]. Probably the required property in Proposition 3.7 is satisfied for all Bezout 
rings of dimension one. On the other hand, if R is an affine domain over C of 
dimension one, it can be proved that it is only satisfied if R is a P.I.D. 

3.8. Example. The ring R of real-analytic functions on an open interval I (finite or 
infinite) is an elementary divisor ring, hence a PA-ring. (These rings appear in 
studying single-parameter smooth families of systems, or in the algebraic theory of 
time-varying systems [ 131). Using the criterion given by Helmer (71 (who proved that 
the ring of real entire functions is an EDR), we need to show that R is Bezout and 
that, for each J g in R, there exists a relatively prime part a = RPCf,g) off with 
respect to g, where a divides f and is coprime with g, and such that any nonunit b 
dividing f /a has no common zero with g. But given f, g, let (C;, ni) be the set of 
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common zeroes with their multiplicities. By the Mittag-Leffler theorem there is an 
entire function h having precisely these zeroes. Then a :=f /h is RPGf,g). Also, 
A~:=Cf/h)~+(g/h)~ is always nonzero, so a unit in R; thus 

h= (&-)f+ (&)g. 
and cf,g) = (h). proving that R is also Bezout. 0 

We now give counterexamples showing that R[x,~] and Z[x] are not PA-rings. 
Both examples will have F invertible, so that Corollary 3.6 concludes that both 
F-‘G and G must have a unimodular column combination. 

3.9. Example. Let R = R[x,y]. Consider 

Thus G=Fe, where 

6= y ( Y 
-X -x+ I -x2-y2 > * 

We prove that (F, G) is reachable. Consider the matrix (G, FG) and let d ,; denote the 
minor corresponding to columns (i j). We shall see that d 1s = d 2~ = d 12 = 0 has no 
complex solutions. The equation d 13 = 0 gives x2 + y2 = 0. Calculating mod x2 + y2 = 
0, d24=-2(2x-l), so x=+. But d12=2y mod(x2+y2), so also y=O, and this 
contradicts x2 + y2 = 0, x = +. So (F, G) is reachable. If R were a PA-ring, F being 
invertible, there would exist polynomials P, Q in R with 

unimodular and hence nonzero when (x,y) is in R2. Restrictingf: R*+R’ to the unit 
circle S’, 

f(X,Y) = 4x,Y) 
Y ( > -x ’ 

a nonzero tangent vector. Thus the topological degree of 

f’ :=f/lfl : S’+S’ 

is -+ 1. So f has a zero in the interior of S’, contradicting unimodularity of $ 0 

Remark. The above example shows also that the ring of continuous functions on R2 

is not a PA-ring, since only continuity of P, Q, was used above. Moreover, since 
F+AI has nonzero determinant whenever 1# 1 +fl, the same proof will give 
that no eigenvalues different from 1 f fl can be assigned for this (F, G) under 
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feedback. It is worthwhile to notice that the same example does not provide a 
negative result when the complex ring C[x,Y] is considered instead: here 

(x+1-iY) Y - 
(H 

Y 
-X -x+ 1 -x2-yz 

is unimodular. 

3.10. Example. Another counterexample is provided by R := Z[x]. This is not a PA- 
ring. Indeed, let 

F:=(; f), G:= f:; .:,). 

We claim that (F, G) is reachable. Write 

-;),,G)=(x+’ 1-x -3 ..,>. 
-3 x+2 x-5 x+5 

We prove that no maximal idea1 A4 can contain the minors d 12, A 23, and d X, of A. 

0therwisedtz=x2+5,dtz+d23=3(x+2). andd23_dzd=x(x+17)areagaininM. 
In particular, either 3 or x + 2 are in M. If 3 is in M and x + 2 is in I’M, also 5 = d I -x2 

belongstoMandM=R;butifxisnotinMthenx+17isinMandsoalsox-lis, 
implying that (x2+ 5) -x(x- 1) =x+ 6 would be in M and therefore x is in M. 
Assuming that 3 is not in M and x+ 2 is in M leads similarly to a contradiction. Thus 
(F, G) is reachable. 

We claim that there is no unimodular combination of columns of F-‘G, or 
equivalently, of G. Consider 

R2a R2*coker(G)+0. (3.11) 

If the image of G contains a unimodular element then coker(G) is cyclic. We then 
show that coker(G) cannot be cyclic. Tensoring by 

S := R/det G = Z[l/-=s] 

results in 
coker(G@S) = coker(G)@S=Z cyclic. (3.12) 

But coker(G@S) is (Z[1/--51)2 modulo the relations (m - 2)x1 - 3x2= 0, 
3x1+ (m+ 2)x2= 0, i.e. the ideal Z= (3, p - 2), which is not principal, contra- 
dicting (3.12). Cl 

Remark. An ideal-theoretic obstruction featured in examples such as 3.9 and 3.10 is 
the following. Let (F, G) be a reachable system of dimension two with entries in a 
Noetherian ring R, with F invertible. Assume that the ideal J of R generated by a 
column of G has grade two (see [16]). (If R is a unique factorization domain this 
means that J is not contained in a principal ideal). Let Z be the image of J in the ring 
S = R/(det G). Then: 
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3.13. Lemma. I* is a principal ideal. 

Proof. The “grade” condition implies that I is an invertible ideal of S and easily 
allows its identification with coker G, the R-module (in fact, S-module) obtained as 
the cokernel of R* 2 R*. Since F is invertible, we also have l=coker FG. To 
show I* principal, it suffices to prove that 1@1 can be generated by two elements 
[16]. For that consider the commutative diagram with exact rows: 

O-+R*-+R*@R*- R ” 2 -0 

where the top map, (G + FG)(u@ v) = G(u) + FG(v), is surjective because the system 
is reachable, while the bottom surjection is just ordinary “addition”. By the “snake 
lemma” (see [l, Chapter l]), it follows that I@Z=R*/(imageL), as desired. 0 

The remarks in this section seem to indicate that nonlocal rings of dimension 
greater than one will in general not be PA-rings. In particular, we leave as an 

Open problem. Is C[x,y] a PA-ring? 

4. PA*- and CAprings 

We restrict our attention now to principal-ideal domains. These are always PA- 
rings but will turn out to be in general non CA- or FC-rings. For the rest of this 
paper, R is a PID. We first note: 

4.1. Lemma. Let (F,G) be reachable, of dimension 2. Then (F, G) is equivalent 
mod FL,,, to some (nonunique) (F, G) of the form 

with b, c, coprime. 

(4.2) 

Proof. R being a PA-ring, one may assume that F has eigenvalues 0, 1. Reasoning 
as in Proposition 3.3, we may assume that F is as above. Reachability implies that 
each row of G is now unimodular. And a further transformation of type (2.3~) gives 
the first row of G as displayed. 0 

We then have: 
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4.3. Proposition. Assume that R/(p) has characteristic different from 2 for aN 
irreducibles p. Then R is an FCl-ring iff the following property holds: 

(4.4) For each nonzero nonunit c in R and each irreducible p not dividing c. there is 
a unit E such that &p is a square mod c. 

Proof. To prove sufficiency, note first that if (4.4) holds as stated then it clearly 
holds also for any p = b not necessarily irreducible, as long as (b, c) = 1. By Lemma 
4.1, we restrict our attention to those systems of the form (4.2) with (b, c) = 1. If c is 
a unit or b = 0, then G is invertible, and if c is zero, then F is cyclic with respect to 
the first column of G, so in any of these two cases the result is immediate. We 
assume then that c is nonzero and not a unit, b # 0, and look for (K, u) such that 
F+GK is cyclic with generator Cu. In fact, we shall find (K,u) of the following 
special form: 

K=(-; 3, u=c). (4.5) 

In order that det(Gu,(F+ GK)Gu)=e=unit, or ba2+ca-E =c2y, we need that 
there exist a, E in R, with E a unit, such that 

bcu2 + ca - E = 0 (mod c2). (4.6) 

Since b is a unit mod c2, and since char(R/(c’)) f 2, one can solve (4.6) for a using 
the quadratic formula if c2+4be is a square (mod c2). This is now equivalent to be 
being a square (mod c2), which we have shown to be equivalent to (4.4), since 
(b,c2)= 1. 

To prove that (4.4) is necessary, let p, c be as in (4.4) and take a in R such that 
a =p- ‘(mod c). Consider the system 

F:=c ;), G:=(; ;), 

and assume that there are 

det(Gu, (F+ GK)Gu) = E = unit. 

Calculating mod c, (4.7) becomes 

a(x2=e (mod c), 

so also 

a2=.zp (mod c), 

as wanted. 0 

(4.7) 
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4.8. Corollary. If R/(q) has for all q irreducible, characteristic #2 and no quadratic 
extensions, R is an FC:-ring. 

Proof. If every element is a square modulo q, it is easy to verify by induction in r 
that every unit (mod q) is a square modulo q’ for all r. By the Chinese Remainder 
Theorem, then, (4.4) holds for any c. •J 

So C[x] is an FC2-ring. For R[x] note that (4.4) implies that p(x) must have 
constant sign at all roots of c; thus p :=x- 1, c :=x(x- 2) show that R[x] is not an 
FCz-ring. It is clear from the proof of Proposition 4.3 that an FCz-ring satisfies 
(4.4) whenever R/(p) has non-two characteristic, even if R/(q) has characteristic 2 
for other q; thus Z is not an FC-ring either (e.g.: c= 15, b=2, 7, or 13). 

4.9. Conjecture. C[x] is an FC-ring. 

Turning to (more general) CAz-rings, the problem now is to find, for a given 
(F, G), and given cz, /I, a K with ch.p.(F+ GK) = z2- az+p, i.e. trace(F+ GK) = a 
and det(F+ GK) =/I. Applying 

we shall use the general form 

F=(; ;), G=(, 0) (4.10) 

rather than the above one. If K is as in (4.7), one needs then 

x+cw+l=a (4.1 la) 

x(1 +cw)-y(b+cv)=/3. (4.11b) 

Solving for x in (4.1 la) and substituting in (4.11 b) results in 

c2w2+c(2-a)w+(l +j?-a)=(-y)(b+cv). (4.12) 

So there will exist a K as desired iff the left side of (4.12) has a solution in w, modulo 
(b + cv). This requires that there be a solution of 

czw2+c(2-a)w+(l +p-a)=O(modp) (4.13) 

for each irreducible factor p of (b+ cv). Standard techniques from elementary 
number theory allow to also recover (4.12) from (4.13) together with additional 
conditions at the primes p with R/(p) of characteristic 2. Since (b, c) = 1, we have 
that @, c) = 1 for the p of (4.13). If also char R/(p) # 2, (4.13) is equivalent to the 
requirement that the discriminant 

c?(2-a)‘-4c2(1 +/I-a)=c2(az-44p) 
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be a square modulo p. We may then construct a counterexample to CA2 by showing 
that each element of the form b + cv has an irreducible factor p for which (a2 - 4/3) is 
not a square modulo p. 

Now consider R = Z. The congruence (4.13) is tested by the Legendre symbol 

a2-4fl 

( > P * 

We can guarantee that (4.13) fails for some p dividing b + cv if we force b + cv to be 
odd and the Jacobi symbol 

02-4P 

( > 

=_I 
b+cv . 

Quadratic reciprocity allows us to express this last condition in terms of the values 
taken on by b+ cv modulo a2- 4/3. (One must also note that the usual quadratic 
reciprocity formulation deals only with positive integers, but that the law may be 
still applied formally if either of these two quantities is positive). 

Thus if we take a2-4/1 odd and positive, and choose c divisible by 02- 4j3 and b 
such that 

then we will have shown that Z is not a CA-ring. In particular, we may take CI := 1, 
/I:=-1. c:=lO, b:=3. 

The above reasoning can be extended to R[x]. For this we note that there is a 
(simple) theory of quadratic reciprocity on R[x], which we now explain. Given 
polynomials f, p, with p irreducible, we have the Legendre symbols 

0 i f := I 
- 1 if p is linear and f< 0 mod p, 

P 

I If 1 otherwise. 

Note that these satisfy 

for polynomials a; and constant 
irreducible, the Jacobi symbols are 

(+I($ 

(4.14) 

\P/\P/’ 
. I 

c. For arbitrary f, g, g=cflq: with the q, 

(4.16) 
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4.17. Lemma. Letf=cnpp, g=6flqT. then 

(4.18) 

Proof. By (4.15) and the definition (4.16), 

($) ($)=(-1) (sgne)(degg) +(sgnd‘)(deg/) fl pi , 0 
rJJ 

4i 

so it is enough to prove the lemma forf, g both manic irreducible. If bothf, g have 
degree 2, there’s nothing to prove. Iff(x) =x- a and degg = 2, then (+) = + 1. But g 
has no real roots and, (being manic), is positive for large x. Thus g(a)>0 and also 
($)= +l. If bothf, g have degree one, g=x-b, then 

( > F =sgn(a-b)=-sgn(b-a)=- $ , 
( > 

as wanted. Cl 

We apply this to show that R[x] is not a CA-ring. Consider (4.10) with b :=x, 
c :=x2- 1, and let (Y :=2x, p := 1. We need to prove that 

a2-44p=4(x2- I), or just xl- 1, 

is not a square mod some prime p dividing x+ (x”- 1)~. In terms of Legendre 
symbols 

(x-(xf-il)v)= (x+.xX:; “‘)(x-x”:; I,,>= -1, 

By Lemma 4.17, 

( x2-1 

x-(x’- 1)v > 
=(_1)2d+Ob+2~sgn6)(_1)=_1, 

where d is the degree of x- (x2-- 1)~. Thus 

for some p dividing x- (x2- l)v, as wanted. 0 

We close this with the statement, for R a PID, of an 

Open problem. Is FC = CA? 
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