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Abstract: We provide a formula for a stabilizing feedback law 
using a bounded control, under the assumption that an ap- 
propriate control-Lyapunov function is known. Such a feed- 
back. smooth away from the origin and continuous every- 
where, is known to exist via Artstein's Theorem. As in the 
unbounded-control  case treated in a previous note, we provide 
an explicit and 'universal '  formula given by an algebraic func- 
tion of Lie derivatives. In particular, we extend to the bounded 
case the result that the feedback can be chosen analytic if the 
Lyapunov function and the vector fields defining the system 
are analytic. 

Kevwords: Smooth stabilization; Artstein's theorem. 

in some Euclidean space R m. Suppose that there is 
a feedback law 

k : ~ n - - * ~ , , ,  (2) 

which stabilizes the system (1), that is, so that the 
differential equation 

2 = f ( x ) + G ( x ) k ( x )  (3) 

is globally asymptotically stable about x = 0, and 
k is regular enough so that the right hand side of 
(3) is continuous for x ~ 0. Then, converse 
Lyapunov theorems guarantee the existence of a 
positive definite (i.e., V(0) = 0 and V(x)  > 0 for 
x ~ 0,) and proper (i.e., V(x)  ---, oc as I[ x I[ ~ oc) 
smooth function 

V : N n ~ N  

such that 

1. Introduction 

This paper represents a continuation of a line 
of work started in [4]. The goal is to provide 
explicit feedback control laws that stabilize a given 
nonlinear system, under the assumption that a 
'control Lyapunov function' is known. (For more 
details on the origin of this problem, and refer- 
ences to previous work, see the above reference, as 
well as the survey paper [5].) 

Consider the following control system on R n: 

2 = / ( x )  + G ( x ) u ,  (1) 

where all entries of the vector f and the n × m 
matrix G are smooth functions on Rn and f (0)  = 
0. Controls take values in the open unit ball 

,~, ,= { u ~ n "  I I l u l l Z = u 2 +  . . .  +u2 < 1 }  

* This research was supported in part by US Air Force Grant  
AFOSR-88-0235. 

inf { a ( x ) + B ( x ) u }  < 0  (4) 

for each x va 0, where we use from now on the 
notations 

a ( x )  := ~ T V ( x ) f ( x )  

and 

B ( x )  = ( b l ( x )  . . . . .  b o , ( x ) )  := vV(x)G( ) 

(that is, a, b 1 . . . . .  bm are the Lie derivatives of V 
with respect to the vector fields defining the sys- 
tem). To prove that such a V exists, simply find a 
Lyapunov function for (3) and now use u = k ( x )  
in the infimum. A proper and positive definite 
smooth function satisfying (4) will be said to be a 
control Lyapunov function ( clf ) [with respect to the 
system (1) with controls in Mm]' 

Moreover, if k is continuous at the origin, then 
this function has the additional small controlprop- 
erty (scp) [with respect to (1)]: For each ~ > 0 
there is an e > 0 such that, if x 4= 0 satisfies [I x [1 
< e, then there is some u with It u [I < 8  such that 
a ( x ) +  B ( x ) u < O .  
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A particular case of a theorem of Artstein (see 
[1]) provides an elegant converse to these facts, 
namely: if there is a clf V, then there is a feedback 
law (2) which globally stabilizes the system, and k 
is smooth on R " -  {0}. If in addition V satisfies 
the scp, then k can be chosen to be what we call 
almost smooth on R ~, meaning not only smooth 
away from the origin, but also continuous on all 
of A n. Thus Lyapunov functions with scp com- 
pletely characterize almost-smooth stabilizability. 
(See also [2,6,7], and references there, for related 
work.) 

The proof in [1] is based on partitions of unity 
and is highly nonconstructive. In [4] we showed 
how to obtain a simple formula for k that is 
explicitly given in terms of a and B, valid in the 
case of systems with unbounded controls (i.e. u is 
allowed to take arbitrary values in condition (4), 
but the feedback law is not guaranteed to take 
values in ~m)- The formula given there is not 
appropriate for the bounded control case. In this 
note, we give the following formula for bounded 
controls: 

2 t 

k(x)  = II B(x)II )B(x) (5) 

(prime indicates transpose, and l] B(x)I[  is the 
Euclidean norm of the row vector B(x) ) ,  where 
is the scalar-valued function defined for (a ,  b) 
R 2, b > O b y  

o a +  

if b > O ,  
K(a,  b ) : =  b(1 + ~ - + b )  

if b = O .  

(6) 

the system (1) with controls in ~, ,]  then the feed- 
back (5) is almost smooth on R", takes values in 
~m, and globally stabilizes the system. Moreover, if 
the right-hand side of the system is analytic in x and 
V is analytic, then k is analytic on R" - {0}. 

To close this introduction, note that the case of 
controls with values in the closed unit ball offers 
no difficulty, as it is true that if (4) holds with 
such controls then by continuity it also holds with 
u ~ ~'m" Thus, the Lyapunov condition holding 
with the closed constraint set implies the existence 
of a feedback taking values in the open ball (and 
hence in particular in its closure). 

The next section develops some needed techni- 
cal facts, and we then prove the main result. 

2. An analytic function 

Let a (a ,  b) be as in Equation (7). 

Lemma 2.1. Assume that a, b, 6 are three real 
numbers such that a < 8 ] b [ and 0 < 8 <~ 1. Then, 

l a ( a , b ) [ < m i n { 2 8 +  I b [ , 1 } .  

Proof. If b = 0 then a(a,  b ) =  0 and the result is 
trivial; hence we assume from now on that b ~ 0. 
Moreover, since l a(a,  - b)[ = [a(a, b) [, we also 
will assume, without loss of generality, that b > 0; 
thus, a < ~b. 

Consider first the case a < 0. From 

The new formula is a bit more complicated than 
the one given in [4], (based on using just ~ := - ( a  

+ ~/a 2 + b 2 ) /b) .  For instance, in the particular 
case of scalar-valued controls, and denoting b = b 1, 
the resulting bounded feedback law is k ( x ) =  
a (a (x ) ,  b(x)) ,  where 

o a +  

if b ¢ O ,  
a ( a ,  b ) : =  b(1 + V/1 + b2) 

if b = O .  

(7) 

Our main result here will be: 

0<a+ +b 4 < . + ( l a l + b : ) = b  2 

we get 

l a ( a ,  b) l ~< 
b 

< min{ b, 1}. 
1 + v/1 + b 2 

which is as desired. If instead a > 0, then from 

0 ~< a + Ca 2 + b g < 8b + ¢¢~2b2 + b 4 

=b(8+v +b 2) 

we have an estimate 

Theorem 1. I f  V is a control Lyapunov function 
satisfying the small control property [with respect to 

l a ( a ,  b)[  < 
1 + ~  ' 

(8) 
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Note  that the r ight-hand side of  (8) is bounded  by 
one, because 3 ~< 1, and it is also bounded  by  its 
numera to r  

a + ~/~2+ b 2 < 3 + ( 3 + b ) = 2 3 + b ,  

as desired. [] 

Let ~ G R 2 denote  the open set 

~ : = ( ( a ,  b ) l a <  Ib I, a ,  b ~ R } .  (9) 

Definit ion 2.2. A function ~ : ~ ~ R will be  said 
to be K-continuous if the following proper ty  holds: 
For  each e > 0, there is a 3 > 0 such that  

[ I b l < 3 a n d a < 3 l b l ]  ~ I~ (a ,b )  l<e  

for all (a ,  b) ~ 9 .  
This condit ion means that  ~ must  become  small 

when approaching  zero f rom the left half-plane or 
when approaching  f rom the right through a curve 
asymptot ic  to the vertical axis; see Figure 1 (the 
' K '  shape justifies the name).  

F rom now on, we consider c~, defined in (7), as 
a function ~@-+ R. On this set, we also define 
fi(a, b):= a ( a ,  b)/b if b 4= 0 and ]~(a, 0) := 0. 

[ , emma 2.3. The following properties hold: 
(a) /~ ( and  hence also c 0 is real analytic; 
(b) eff a, b) is K-continuous, in the sense of 

Definition 2.2; 
(c) I cffa, b) I < 1 for all (a, b) ~ 9 ;  
(d) a + bcffa, b) < 0 for all (a ,  b) ~ 9 .  

b 

8 

/ 
2 

Fig. 1. Region where function must be small. 

, a  

plies that  a must  be  negative, so the proper ty  
holds. Otherwise,  write 

m/1 + b ~ - ~ + b  4 
a + ~(a, b)b = (10) 

1 + V/1 + b 2 

When  a ~< 0 this expression is obviously negative. 
If  instead a > 0, then a < I b I implies that  a 2 < b 2, 

and therefore 

l / a  2 q- b 4 = ~/a 2 + b2b  2 

> g/a 2 q- a 2 b  2 = av/1 + b 2 , 

and again the expression is negative. [] 

3. Proof  of  the main result 

Proof .  Analytici ty follows by the results in [4], 
since fl is obta ined  by dividing the function 

a + ~ + b  4 

b 2 

(zero at b = 0), shown in that reference - via an 
implici t -funct ion a rgument  - to be analytic, by  

the nonzero analytic funct ion 1 + ~/1 + b 2 . To  
prove  the second property ,  we can apply  L e m m a  
2.1: If the pair  (a ,  b ) ~ - @  satisfies Ibl  < 3  and 
a < 3 I b l ,  where 3 ~< 1, then the es t imate  
l a ( a ,  b ) [ <  33 holds; this establishes that  a is 

K-cont inuous.  Proper ty  (c)  follows f rom the same 
lemma,  applied with 3 = 1. 

We now prove (d). If  b = 0 then a < l b l  im- 

Note  first that  p rope r ty  (4) is equivalent  to 
a(x) < II B(x)II, and that  the existence of an u as 
in the definit ion of the small control  p roper ty  is 
equivalent  to the inequali ty 

a(x )  < ,~ II B ( x )  ll- (11) 

In bo th  cases, necessi ty  follows f rom the 
C a u c h y - S c h w a r t z  inequality,  and sufficiency fol- 
lows f rom the fact that,  for any row vector  v and 
number  3, we can write 6 II v II = vu, where the 
vector  u := ( 3 / [  I v II)v'  (if v 4= 0; otherwise pick 
u := 0) has n o r m  3. 

Assume that  V is a clf satisfying the scp. F r o m  
the above remark,  it follows that  the pairs 
(a(x), II B(x)II) are in ~@, for all nonzero states 
x; we will apply  L e m m a  2.3 to these pairs. 
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Observe that, f rom the definit ions (5) and (6), it 
follows that  

it k (x ) l i  = i , , ( ~ ( x ) ,  it ~(x)Li  ")t tL B(x)tt 
= t ~ ( a ( x ) ,  ii B ( x ) i l ) t  

and also 

a(x)+B(x)k(x) 

= a ( x )  + II B ( x ) I I ' ~ ( a ( x ) ,  II B(x)11)- 

Thus, using the same Lyapunov  funct ion V, prop-  
erty (d) in the L e m m a  implies that  V has a 
negative derivative away f rom the origin, along all 
trajectories of (3), and k has values in ~m be- 
cause of p roper ty  (c). 

Smoothness  for x ¢ 0, and analytici ty if the 
da ta  is analytic, follow f rom proper ty  (a), since 

! 

k(x) = f l ( a ( x ) ,  II B ( x ) I I ) B ( x ) .  

It only remains to prove that  k is cont inuous at 
the origin. We must  show that for each e > 0 there 
is some e' so that, if 0 < II x II < e' then 

IRk(x)  11 = l a ( a ( x ) ,  I IB(x) l l ) l  <e. 

This follows f rom the fact that  a is K-cont inuous.  
Indeed,  let 3 be  as in the definit ion of K-cont inu-  
ous, for the given e. As V is positive definite, its 
gradient  vanishes at the origin, so B ( 0 ) =  0, and 
by cont inui ty of B there is some e' so that  ][ x II 
< e' implies l a ( x )  [ < 3 and II B(x)II < & By the 
scp, we can choose e' so that  also a(x )<  
8 II B(x)II (cf. Equat ion  (11)). This completes  the 
proof  of the result. 

4. Remarks  

To close, we compare  here certain propert ies  of 
the solution for bounded  controls given in this 
paper  with the solution in the unbounded  case 
obta ined in [4]. 

As a first example,  take the trivial case of  the 
system 2 = u with n = rn = 1. The control  law in 
[4], when using the clf V(x) = ½x 2, is precisely the 
obvious feedback control  k (x )  = - x .  When 
applying instead the formula  in this paper ,  we get 
instead 

k ( x ) -  
1 + ¢ ~ - + x  2 

As another  example,  again with n = m = 1, con- 
sider the system with equat ions  

x 2 
2 -  - - + u .  

l + x  2 

Take  again V ( x )  = 1 ~x-.  As 

x 2 

b 1 + x 2  

is small for x near  zero, and is always less than 
one, V is a clf with respect  to controls  in ( - 1, 1), 
and it has the scp. We are interested in the expres- 
sion a + bk for the derivative of  V along the 
trajectories of  the closed-loop system. For  the 
control  law in [4], this derivative is 

_ ~ + b  4 X2 
1 + x 2 ¢X4 -/- 3x 2 + 1 , (12)  

while for the law in this pape r  it is ( f rom Equat ion 
(10)): 

x 2 ( x  q- x 3 -  V/1 q- 3x 2 q- x 4 ~/1 + x 2 

(1 + x2)3 /2(1  if- d q- x 2 ) 
(13) 

Observe that  the limit of the expression in (12) is 
- m  as Ix ]  ~ m ,  while the limit in (13) is zero 
when x--* + ~c. This  means  that  an input  per-  
turbat ion (or equivalently,  an error in implement -  
ing the control  law) will be tolerated in the first 
case (in the sense that  trajectories will remain  
bounded;  see [3]), but  for large x the second 
control  law will be destabil ized even by very small 
controls.  

The  fact that  the control  law given in the 
unbounded  case is always ' robus t '  in this sense, 
under  weak assumpt ions ,  can be proved as fol- 
lows. (Note  that  in the last section of [4] it is 
shown how to modi fy  the control  law, using the 
results in [3], to achieve this extra behavior;  what  
follows shows that  the modif ica t ion was, after  all, 
not  necessary.)  

Consider  a feedback law u = k (x )  + v, where v 
is an unknown input  and 

k ( x )  = - ( a  + ~ + b 4 ) / b ,  

and we are considering for simplicity just  scalar- 
input  systems (but  n is arbitrary).  Calculate the 
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derivative of V along the trajectories of the 
closed-loop system: 

- ~ + b  4 + b v ~ - ½ ( l a l + b 2 ) + b v  

= -  (21a I + b  2) + (by  - ¼b 2 ) 

<~ - ¼ ( 2 l a l  +b2) + v 2, 

where the last inequality holds because b y -  ¼b 2 
has a maximum value of v 2 when seen as a 
function of b. Thus, if one assumes, as in the last 
section of [4], that a 2 +  b 2 is proper, then it fol- 
lows that for each number Q there exists some q 
so that, if the state x has norm larger than q and 
the disturbance input v is always less than Q in 
magnitude, then the above derivative is negative. 
This implies bounded-input bounded-state stabil- 
ity, as in [3]. 
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