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Abstract: For continuous time analytic input/output maps, 
existence of a singular differential equation relating derivatives 
of controls and outputs is shown to be equivalent to bilinear 
realizability. A similar result holds for the problem of immer- 
sion into bilinear systems. The proof is very analogous to that 
of th© corresponding, and previously known, result for discrete 
time. 
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1. Introduction 

Starting with [10] and [11], there have been 
many results relating the existence of i /o  dif- 
ference equations to finite realizability, for dis- 
crete time systems. These results, which provide 
analogues for nonlinear systems of the fact that a 
transfer function can be realized by a finite di- 
mensional linear system if and only if it is ra- 
tional, are useful for instance in the context of 
identification problems (see for instance [7,3]). 
Here we show how the simplest case, dealing with 
state-affine systems, has an analogue in the con- 
tinuous time case. The proof is basically the same 
as in the older discrete case, but seems not to have 
been noticed in the literature (see e.g. [9,2]). 

By an (output-) affine i / o  equation of order k 
we shall mean an equation of the type 

k 
E ai(u(t) ,  u ' ( t ) , . . . ,u tk - l ' ( t ) )Y t ' ) ( t )  
i=0 

=b(u( t ) ,  u ' ( t ) ,  . . . .  utk-1)(t)), (1) 

* Research supported in part by US Air Force Grant 0247. 

where b and each ai is a polynomial and a k is not 
identically zero, satisfied by all pairs of smooth 
controls u and corresponding outputs y. The 
equation is (output-) linear if b is identically zero. 
For instance, transfer function descriptions of lin- 
ear systems correspond in the time domain to 
affine i /o  equations in which all the coefficients 
ai are constants independent of u and b is linear. 
Precise definitions are given below. Note that in 
the nonsingular case when a k is always nonzero, 
(1) implies finite realizability, since the highest 
derivative y¢k) can then be expressed in terms of 
lower order derivatives of outputs and controls. 
However such 'purely recursive' equations do not 
hold in general for nonlinear i /o  maps; one of the 
main objectives of [11] was precisely the study of 
singular equations and how they relate to realiza- 
bility. It is relatively trivial to show that such 
equations must exist if one assumes finite realiza- 
bility, but they will in general not be affine in y; 
this is basically a transcendence degree argument 
[11]. Bilinear realizability and a linear dimension 
argument do imply the existence of an affine 
equation, and our main results will provide a 
converse of this fact. The more general, non-bilin- 
ear case, will probably require techniques from 
algebraic geometry, as done for discrete time in 
[11]; recent work [1] shows how such techniques 
can be applied in a continuous time context. 

Roughly, the main results will say that if an 
equation such as (1) holds for all i / o  pairs arising 
from a (possibly unknown) system, then these are 
the i /o  pairs of a finite dimensional smooth con- 
tinuous time system, in fact a bilinear one. An 
equation (1) is by itself not sufficient to guarantee 
such realizability (an example of this fact is dis- 
cussed latcr); the knowledge that there is some 
'well-posed' system producing the observed be- 
havior is essential. Technically, this hypothesis 
will be slated i~ two different versions, one in 
terms of the existence of a locally convergent 
Volterra type of expansion and the other in terms 
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of the existence of a nonlinear smooth (but not 
necessarily bilinear) realization. The proof will 
rely on the notion of observation space, intro- 
duced by the author and others, whose finite 
dimensionality is equivalent to bilinear realizabil- 
ity. Essentially, an equation such as (1) will insure 
that there is a dense subspace of the observation 
space which is itself finite dimensional, and then a 
continuity argument based on the hypothesis that 
the i / o  behavior is in a sense 'well-posed' will 
provide the desired conclusion. 

2. Immersions 

We shall provide two versions of the main 
result, one stated in terms of i / o  maps and the 
other in terms of immersions [5]. Neither result 
contains the other, since the version for i / o  maps 
will correspond to fixed initial states. We start 
with immersions. Consider an analytic system 

m 

~=f(x)+ ~,u,g,(x), y=h(x), (2) 
i=1  

with states x(t)  evolving on a manifold M, where 
for simplicity we assume that outputs y ( t ) ~  R 
are scalar and that the system is complete. A ~,k 
i /o  pair (u, y) of (2) is a pair of functions defined 
on some interval [0, T], T >  0, such that u:[0, T] 
--* R "  is of class ~ k - i  and y ( t ) = h ( x ( t ) )  is the 
output trajectory corresponding to some initial 
state, that is, x satisfies the equation (2) for the 
given u. Note that then y is necessarily of class 
~¢k. We shall say that (2) satisfies an affine i / o  
equation if there exist an integer k and b, 
ao,. . . ,  a k as above such that (1) is satisfied for 
each ~k i / o  pair of the system, for all 0 < t < T. 
Here b as well as each of the a~ is a polynomial in 
km variables, the coordinates of u and of its first 
k - 1 derivatives. The system satisfies a linear i / o  
equation if the above holds with b = 0. Note that 
if an equation exists for a given k then, differenti- 
ating, there is also a similar equation for each 
k ' >  k; in fact, the same polynomial a k can be 
used for larger k ' .  

We shall say that (2) can be immersed in a 
bilinear system if its observation space is finite 
dimensional. Recall that the (infinitesimal) ob- 

servation space of (2) is the linear span 0 o of the 
functions 

Lx . . . Lx , (h ) :  M--*R, (3) 
l>_O, X i~  ( f ,  g , , . . . , gm} ,  

where Lx(h)  denotes the Lie derivative, Vh- X in 
local coordinates, of the function h with respect to 
the vector field X. It is a basic fact in nonlinear 
system theory that finite dimensionality of O o is 
equivalent to the existence of a finite dimensional 
internally bilinear system 

= A +  ui x ,  y = C x ,  (4) 
i=1  

with x ( t ) E R "  for some n and the A, F~, C 
matrices of appropriate sizes, as well as the ex- 
istence of an analytic map 0: M ~ R", such that 
x 0 and O(Xo) give rise to the same inpu t /ou tpu t  
behavior, for each x0 ~ M. See [8] and especially 
[5] for details, as well as [11] for the analogous 
discrete time concept; the terminology observation 
space was introduced in the latter reference. We 
now state the first of the results to be proved in 
this paper. 

Theorem 1. The system (2) satisfies an affine i /o  
equation if and only if it can be immersed in a 
bilinear system. In that case, it also satisfies a 
linear i /o  equation. 

A somewhat more general result could be given, 
starting with systems which are not necessarily 
linear but polynomial or even rational in controls, 
but the class of systems (2) is probably general 
enough for most applications. A similar result also 
holds in the mu!tiinput case (h : M--) R P, p > 1). 

The following observation will be useful. If 
there exist b, a0 , . . . ,  a k so that 

k 

E . ' (o ) ,  
i = 0  

. . . ,  

= b ( u ( 0 ) ,  ut(O),...,u(k-l)(o)) (5) 
holds for each rgk i / o  pair, then (1) also holds for 
all t. This is because of time-invariance of (2): 
given any t o < T, the pair 

f i ( t ) : = u ( t + t o ) ,  f i ( t ) : = y ( t + t o )  

is also a ~k i / o  pair, defined on [0, T -  to], and 

fi(n(0) = ut'O(to), )Tin(0) =y(O(to) 
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for all derivatives. Thus equation (5) for the pair 
(~, ~) is equivalent to equation (1) for the original 
pair (u, y)  at time t o. 

For any fixed T > 0, we let q/r denote the set 
of all essentially bounded functions 

u: [0, T] ~ n "  

endowed with the L ~ topology (not the L ~ topol- 
ogy). It is a standard fact that for each fixed initial 
state x o of (2) and any fixed T, the mapping 

(6) 

is continuous from q/r into C[0, T] (continuous 
functions with sup norm). 

3. Generating series version 

In order to state the i / o  version ol the result, 
we need to have a notion of analytic i / : ,  mapping 
(6). We choose a presentation in term; of Fliess 
series, but one could also base the approach on 
Volterra expansions with analytic kernels. Let m 
be a fixed integer, and consider noncommuting 
variables To,---, T,,,- A power series in these v~da- 
bles is a formal expression 

c= ~ (c, T,)T, (7) 

where the sum is over all possible sequences of 
indices 

,=  i , ) ,  t >__ 0, (s)  

with each i , ~  {0 , . . . ,m} ,  including the empty 
sequence e (I = 0), and where we denote 

r), := Ti, " '" T,,, (9) 

and T~ := 1. The coefficients (c, T,) are real num- 
bers. The set of all formal power series on 
T0,. . . ,  Tm forms a real vector space under the 
coefficientwise operations 

(rcl + c2, Ti) = r(c, ,  T,) + (c2, T,). 

We shall say that c is convergent if there exist M, 
K > 0 such that, for each sequence t as in (8), 

I(c, T,)I < KMq! .  

For each T, each u ~ qt r,  and each multiindex t as 
above, we define inductively the functions V, = 
V,[u] ~ C[0, T] by V~ - 1 and 

V~, ..... ,,+,(t) = fotUi,('r)V~2 ..... ,,+,(~) dr, (I0) 

where ui(~-) is the i-th coordinate of u(~) for 
i = 1, . . . ,  m and u0(~- ) -- 1. It is easy to prove that 
each operator 

c[0, v,[ .]  

is continuous. Furthermore, if c is a convergent 
series and K, M are as alcove, then for T <  
( M m  + M ) - 1  the series of fLnctions 

F c [ u ] ( t )  - F[ul(t) = Y'. (c, T,>V,(t) (11) 

is absolutely and uniformly convergent for all 
t ~ [ 0 ,  T] and all those u ~ q / r  such that 
sup [ ui(t) [ < 1 for all i; .:ee [6], Chapter III. Thus 
the operator F c is also continuous on the subset of 
q/r satisfying this magnitude constraint. Further, 
c is in turn determined by F c, in the sense that if 
F~ = F d for small enough T then c = d (see [61). If 
T and u are like this and u is of class Wk-~, then 
y : =  F[u] is of class Wk; we call such a pair (u, y) 
a ~k  i /o  pair associated to c. 

We shall say that the convergent series c satis- 
fies an affine i / o  equation (linear if b - 0) if there 
exist an integer k and b, ao , . . . ,  ak as above (a k 
not identically zero) such that that (1) is satisfied 
for each ~,k i//o pair of c and each 0 < t < T. As 
before, if there is an equation of order k, then 
there is also an equation of any order k '  > k. 

For any series c and each monomial a = T,, the 
series a-1c is defined by the formula 

#> "= <c, .#>. 

the operation c ~ a - ' c  is linear, and is a non- 
commutative analogue of a shift. Note that 
a ~ i a ( l c =  (ala2)-lc.  If c is convergent, then a- lc  
is too. In fact, if T is as above, the same T is 
admissible for a-Zc. Indeed, assume first that a is 
one of the variables T~, and take K, M, T as 
above. Pick any ,M > M so that the inequality 

T < ( l~lm ÷ ~.1)-' 

still holds, and le t /~  be such that (! + 1)M I </(1;4 t 
for all nonnegative integers 1. It follows that 

< ( r M) t't! 

for all fl of length l. The general case follows by 
induction on the length of a. 

We associate an observation space ¢o = d~o( c) to 
each power series c; this is the subspace of the 
space of formal power series in the m + 1 varia- 
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b l e s r  h spanned by the set of all a-lc, for all 
monomials c, il c is convergent, then each mem- 
ber of (9o(C) is again convergent ~and the same T 
works). 

The series c is called rational when (9o(C) is 
finite dimensional. For each a, a-~c can be identi- 
fied with the a-th column of the generalized 
Hankel matrix of c, and hence rationality is equiv- 
alen~ to the operator (11) being the inpu t /ou tpu t  
map of a bilinear system (4), for some initial x 0. 
This equivalence is due to Fliess; see [4,6], as well 
as [12] for related facts on partial realizations. The 
second result will be as follows. 

Theorem 2. The convergent series c is rational if 
and only if it satisfies an affine i /o equation. In that 
case, it also satisfies a linear i /o equation. 

Actually, if c is any rational formal power 
series, it is necessarily convergent, and in fact (11) 
is defined for all T > 0, not just small T, and all 
u ~ ~ r .  The observation spaces associated to sys- 
tems and power series are related via realization 
theory, but we shall not need this relation ex- 
plicitly here. 

4. Proof of Theorem 1 

The proof will be easier to understand once 
that we introduce a few more subspaces of the set 
R M of all functions M ~ R. We shall endow R u 
with the topology of pointwise convergence, the 
weak topology. The closure of a set S with respect 
to such a topology will be denoted by clos S. 
Since R u is Hausdorff topological vector space, 
each finite dimensional subspace is closed. 

For each fixed system (2), we let (9 denote the 
space of all (noninfinitesimal) observables. This is 
the subspace of R M generated as follows. To each 
T >__ 0 and each u ~ q/r we associate the observa- 
ble 

h"" M-- .R ,  h"( l~) '=h(x(T)) ,  

where x is the solution of (2) with x(0)---~ and 
control u. For T =  0, this is just h. Then (9 is 
defined as the span of all such h u. (Recall that we 
are assuming completeness; defining this space is 
a more delicate matter otherwise, since the solu- 
tion x may fail to exist.) If we only consider 
analytic controls u, we have the subspace (9'~ _ 0. 

If we restrict to piecewise constant controls, we 
have another subspace 0 pc. Because of the con- 
tinuity of the maps (6) with respect to the L 1 
topology, and the density of piecewise constant as 
well as of analytic controls in such a topology, 

(9,0 c (9_c clos (9'° and (9 PC _.c O ~ clos (9 pc. 

Thus, 

dim (gpc < co ** dim (9'~ < co. (12) 

Finally, note that 

dim (gpc < co ** dim (9o < co, (13) 

where • 0 is the infinitesimal observation space 
introduced earlier. This is because the generators 
(3) of (9o can be obtained as Taylor coefficients of 
the possible elements in (gPc. The argument is 
basically a standard one, but it is worth reviewing 
it carefully. We use the following notation for 
piecewise constant controls: 

u = ( q ,  /z,)(t2, i f2)" ' "  (tk, #k) (14) 

is the control on q/r, T =  Eti, which has the 
constant value pi on the interval 

[t o + "" + ti_ 1, to + "'" + t~] 

where t o : - 0 .  We say that u has k -  1 switches. 
Each generator of (9o appears as a mixed deriva- 
tive with respect to the t~'s and p,j's, as follows. 
For any fixed k and ~j, consider h~(~) as a func- 
tion of t = ( q , . . . ,  tk) and o f / z - - (p~ , . . . , pk ) ,  for 
piecewise constant controls with k -  1 switches. 
Because of  the assumption that (2) is analytic, h u 

is analytic as a function of these. Denoting by Po  
the i-th component of ~j, i --- 1 , . . . ,  m, the follow- 
ing classical formula holds for all mixed partial 
derivatives which are of at most first-order with 
respect to each variable separately: 

0 k J 
Otl " ' "  Otk It 

9." [ 

= L x L x  . . .  Lx~(h)(l~), (as) 
for each 0 < s _< k, each sequence 

1 <Jl <J2 < " '" <Js < k 

and any i l , . . .  , i s ~ {1,. . . ,  m }, where 

Xj,=gi,, l = l , . . . , s ,  
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and X~ = f  for i ~ { .h , . . . ,  Z }. This formula is 
easily established by induction on k. It follows 
from (15) that d? o _ dos  oPc. More general partial 
derivatives of h'(/2) with respect to the compo- 
nents of t and p are finite linear combinations of 
the generators (3) of ¢9 o, so by analyticity we 
conclude the other inclusion OPc~_ clos ¢9 o. Thus 
(13) holds. 

Because of (13) and (12), in order to establish 
Theorem 1 we need only prove that existence of 
an i / o  equation is equivalent to the finite dimen- 
sionality of the space d~ °. In order to do this, we 
introduce one last space of functions. For any 

~ M, u ~ q/r, and t ~ [0, T], we let h~'(~) be 
h(x(t)), where x solves (2) with control u and 
x(O)=li. Note that with this notation, h~.(~)ffi 
h"(~) if u ~ q"r. If u is of class qek-~ then h~'(~) 
is of class qek on t, and application of the chain 
rule shows that its k-th derivative at 0 ,  

akh~'(~) I (16) 

alk It=O' 

is a polynomial on u(0), . . . ,  u(k-l)(O) whose coef- 
ficients are analytic functions of ~2. For any se- 
quence P0,-.-,/ ' tk-1 o f  elements in R m we let 

..... 

be the value of (16), for any c6'k-1 control u for 
which 

ui(0) f/z~, i = O , . . . , k - 1 .  

When k = 0 ,  this is just h(~). For each k >0 ,  
O °'k is the span of all the functions h ~'° ..... m-, 
with 0 < I < k, and ~ '  is the union of all these 
spaces. For analytic controls, h~'(~2) is analytic on 
t, so these spaces are related by Taylor expansions 
and hence 

• ~ __ clos d~ '° and d~ ° c_ clos d~'. 

Thus if either is finite dimensional then both 
spaces are equal. Observe that every G °d` is finite 
dimensional, because each h~o ..... ~,~-1 is poly- 
nomial in the p~'s. Assume now that 

dim O~'-  k < 00. 

Consider formally the elements 

h ~'o ..... ~"-', I = 0 , . . . , k ,  (17) 

as rational functions on nm variables (the compo- 
nents of the p:s) ,  with coefficients on ~ ' .  More 
rigorously, we are looking at these elements as 
belonging to the tensor product 

® 

with each of Po,..., Pk-I now thought of as a set 
of m indeterminates. This is a space of dimension 
k over the rational function field R(/~o,... ,  Pk-~), 
so the elements (17) must be linearly dependent 
over this field. After clearing denominators, there 
results a nontrivial equation 

k 

~., at(t~o,...,pk_i)h~,o ..... ~,,-i = 0 .  (18) 
I=0 

If a k - 0 ,  one may replace this by an equation 
with small k. (If the set {h ao ..... ~,-,, I < k }  is 
linearly dependent over R(po , . . . ,  Pk-l) ,  it is also 
dependent over R(p0, . . .  , Pk-2).) Note that equa- 
tion (18) is the same, with a different notation, as 
equation (5) with b - 0 .  Thus the (easy) suffi- 
ciency part of the theorem is proved. 

We now prove the converse. Assume that an 
i / o  equation holds, with some integer k, and 
hence also for all k '  > k. Because at, is not identi- 
cally zero, equation (5) exhibits each h a° ..... ~-1 as 
a linear combination of the h ~° ..... ~,,-i, i < I, and 
of the constant function 1 (corresponding to the b 
term), generically on the ~tj's. That is, there exist 
(open) dense subsets 

Wi_cR Ira, 

! = k, k + 1, . . . ,  such that 

h~,o ..... m-i ~ t~o.k -1 + span{1 } 

for all (P0 , . . . , / t i -1 )  ~ Wi" 

Since h ~'° ..... ~u-,.(~) is continuous on the p~'s, it 
follows that also every element h ~'° ..... a,-,, 1 >__ k, is 
in the finite dimensional space C ° 'k- 1 + span{1 }, 
and we conclude that t ~  = 0 0̀ is indeed finite 

dimensional. [] 

5. Proof of Theorem 2 

The 'only if' part is a consequence of Theorem 
1. Indeed, rationafity implies that there is a bilin- 
ear realization (4) of the corresponding operator, 
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and an i / o  equation associated to (4) is also an 
equation for c. 

The proof of the converse is structured very 
similarly to that of Theorem 1, so we provide only 
an outline. Fix a convergent series c and a T > 0 
so that the operator F = F~ is defined on the set of 
controls in q/r which satisfy the magnitude con- 
straints s u P l u , ( t )  l <  1. Since there is no risk of 
confusion, we also denote by F the same operator 
(11) acting on controls of length less than T. Pick 
any 0 < T o < T. The objects which we define next 
,viii be in fact independent of the cbosen T 0, but 
this fact is not needed. For each O < T -  T O and 
each v ~ ~p satisfying the magnitude constraints, 
we associate the operator 

O ° : °117"o -" R : w --, F [ w v l ( r ) , 

where wv denotes the concentration of w and v, 
defined on the interval [0, T O + O]. Then ¢ is 
defined as the span of all these operators, g~' as 
the span of the operators corresponding to ana- 
lytic v's, and g~Pc as the span using piecewise 
constant o's. Endowing as earher the space of all 
operators qlro ~ R with the weak topology, we 
again conclude that (12) holds. 

To see that also (13) holds in this case, we 
argue as follows. Let ~o be the subspace spanned 
by all the operators of the form F a, d = a -~c ,  for 
all possible monomials a. Because F a uniquely 
determines d, it follows that this space is isomor- 
phic to d~ 0. The generators of g~0 appear as Taylor 
coefficients of the elements of g~Pc, just as in the 
state-space case. Indeed, if v is as in (14), then 

I I ov wl 
" '"  Otk t=00liid* OItt6j' ~--0 i3t~ 

= F a [ w  1, (19) 

with d = (~'~'2 " " " ~'k)-lC, for each 0 < s _< k, each 
sequence 

1 <Jl <J2 < "'" <Js < k  

and any il, . . . .  i s ~ {1, . . . ,  m }, where 

~'j, = rli,, i = 1 . . . . .  s, 

and ~'i = rio for i ~ { Jl, . . . .  j~ }. This formula can 
be obtained by induction on k. Further,  mixed 
derivatives of higher order are also in d~ o, so the 
proof of (13) is as before. One technical fact that 
should be checked now, however, is that G~'[w] is 

indeed analytic on the components of t and #, at 
the values where these are all zero. In the state- 
space case this was trivial, because of the existence 
of solutions for small negative times; here, one 
must provide an analytic extension in the form of 
a value for the concatenation of a control w with 
a control as in (14) with small negat ive  ti 's. But 
this presents no difficulty when done in terms of 
the iterated integrals (10). 

We are left with showing that existence of an 
i / o  equation implies the finite dimensionality of 
the space d? ~ for every To as above. For any fixed 
such T o , we introduce operators 

G~o ..... /~k-I 

as before, the corresponding spaces Oo,,k, and 
their union ~0. The expressions GV[w] ~- • '° cor-  
respond to evaluations at controls that are ob-  

tained as concatenations u at time T O of arbitrary 
controls w with analytic ones v. Thus in order to 
conclude (18) we need to know that (1) holds at 
time t = T O for all such u. The assumption is 
somewhat different: the equation is only known to 
hold for all ~,k pairs. However, all derivatives 
u " ) ( t )  and y { ~ ( t )  exist and are continuous at 
t--* To + fol the i / o  pairs corresponding to these 
concatenated controls u, and further any u of that 
form can be approximated in ~ r  by smooth con- 
trols which coincide with u for all t > T 0. Thus (1) 
must hold also for the concatenated controls. The 
proof is then completed as before. [] 

6. An e x a m p l e  

Consider the system with M = R and 

= = ( 2 0 )  .~ u, y - . 

Since y '  = x u  and y "  = u 2 = x u ' ,  there results the 
second order affine equation 

u y "  - u ' y '  = u 3. 

Since y '" = 3 u u ' +  x u " ,  there is also the output- 
linear third order equation 

u2y "" - 3 u u ' y "  + [3 (u ' )  2 -  u u " ]  y ' = O .  

It is trivial here to give a bilinear immersion: 

Yq = ux  3, Yc 2 = x l u ,  Yca = O, 

y = x  2, O ( x )  := (x ,  ½x 2, 1). 
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We wish to use this example to emphasize that 
one must allow for 'singular' equations. (This is 
closely related to the fact that the output (20) has 
a singularity at the origin, see [7].) We claim that 
in fact there exists no integer k and no function 
R : R 2k ~ R such that 

y tk) (  t )  = R (  y ( t ) , . . . ,  y t k - l ' (  t ) ,  

u(t),...,utk-l)(t)) 

for all i/o Fairs. Further, this happens even if we 
impose the fixed initial state x(O)- O. To prove 
the claim, it is sufficient to provide for any given 
integer k a time • > 0 and two smooth i/o pairs 
(ul, Yl) and (u 2, Y2) corresponding to x(O)-O 
and defined on an interval containing [0, ,], such 
that u}°(1") ffi u[°(¢) and y } ° ( T ) = y ~ ° ( ¢ )  for all 
i < k  but y } k ) ( ¢ ) ~ y ~ k ) ( ¢ ) .  These pairs can be 
obtained as follows, for an arbitrary ¢ > 0. First 
let u'[0,½¢] ~ R be a smooth function all whose 
derivatives at ½~- as well as its first k -  2 deriva- 
tives at 0 are equal to zero, and which is so that 

utk-l~(0) = - 1  and p : = f f / 2 u ( s )  d s # 0 .  
~'0 

operator, even if its precise form is not known. 
Consider for this the equation 

u ( t ) y ' ( t ) = l .  (21) 

Assume that there would exist some operator F, 
and some T >  0 so that F~ is defined for small 
enough inputs on [0, T]. Let us( t  ) - 8 and Y8 "= 
F~[u,]. Then, there is a constant k (namely, (c, ~) 
in the previous notations) such that 

ys(0) = k 

for all & From this and (21) we conclude that 

y ~ ( T )  = k + 7"/8. 

This diverges as 8 ~ 0, contradicting continuity 
on controls and the fact that Y0 should be defined. 
If one were to restrict attention just to controls 
that never vanish, then there would of course be a 
realization. This suggests a 'local' study, for con- 
trois whose values are restricted; see [7,2] for 
example. 
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