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ABSTRACT: This paper studies a computational problem motivated by
the modular response analysis method for reverse engineering of protein
and gene networks. This set-cover problem is hard to solve exactly for
large networks, but efficient approximation algorithms are given and
their complexity is analyzed.
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INTRODUCTION

The reverse engineering problem is, loosely speaking, that of unraveling the
web of interactions among the components of protein and genetic regulatory
networks. A major goal is to map out the direct functional interactions among
components, a problem that is difficult to approach by means of standard statis-
tical and machine-learning approaches, such as clustering into co-expression
patterns. Information on direct functional interactions throws light upon the
possible mechanisms and architecture underlying the observed behavior of
complex molecular networks.

An intrinsic difficulty in capturing such interactions in intact cells by tra-
ditional genetic experiments, RNA interference, hormones, growth factors,
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or pharmacologic interventions, is that any perturbation to a particular gene
or signaling component may rapidly propagate throughout the network, thus
causing global changes which cannot be easily distinguished from direct (lo-
cal) effects. Thus, a central goal is to use the observed global responses (such
as steady-state changes in concentrations of activated activities of proteins,
mRNA levels, or transcription rates) in order to infer the local interactions
between individual nodes.

One potentially very powerful approach to solve the global to local problem
is the modular response analysis (MRA) method originally introduced by
Kholodenko et al.1,2 and further elaborated upon by Andrec et al.3 and Sontag
et al.4 The MRA technique (see Crampin et al.5 and Stark et al.6 for reviews)
was recently employed by Santos et al.7 in order to discover positive and
negative feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal
pheochromocytoma (PC-12) cells. The MRA approach uncovered connectivity
differences, depending on whether the cells are stimulated with epidermal
growth factor or instead with neuronal growth factor. The perturbations used
by Santos et al.7 consisted of downregulating protein levels by means of RNAi.

In this paper, we first describe the MRA method, and then we formulate an
experimental design problem that arises when using the approach. For large
networks, this problem will not scale well, and is computationally hard. This
suggests an interesting computational complexity theoretical problem, closely
related to set-cover questions. We are able to provide an efficient approximate-
solution algorithm. The main ideas are explained intuitively, but details of the
proofs, which may be found in Berman et al.,8 are not given here.

The Idea of the Method

Mathematically, the basic description of the method is as follows. We assume
that there are n quantities xi(t) that can be in principle measured, such as
the levels of activity of selected proteins, or transcription rates of certain
genes. These quantities are thought of as state variables in a dynamical system
described by a set of ordinary differential equations and collected into a time-
dependent vector x(t) = (x1(t), . . ., xn(t)). The dynamical system is described
by a system of differential equations:

ẋ1 = f1(x1, . . . , xn, p1, . . . , pm)
ẋ2 = f2(x1, . . . , xn, p1, . . . , pm)
...
ẋn = fn(x1, . . . , xn, p1, . . . , pm)

(dot indicates time derivative) or, in more convenient vector form, ẋ = f (x, p).
The pi’s are parameters, collected into a vector p = (p1, . . ., pm). These
parameters can be manipulated, but once changed they remain constant for the
duration of the experiment. They represent quantities that can be perturbed,
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perhaps indirectly, such as total levels of proteins whose half-lives are long
compared to the rate at which the variables evolve. A basic assumption (but
see Sontag et al.4 for a time-dependent analysis) is that states converge to
steady-state values, and these are the values used for network identification.
There is a reference value p̄ of p, which represents “wild type” (that is, normal)
conditions, and a corresponding steady state x̄ . Mathematically, f (x̄, p̄) = 0.

We are interested, for all pairs of variables, in obtaining information regard-
ing the signs and relative magnitudes of the partial derivative

∂ fi

∂x j
(x̄, p̄),

which quantifies the direct effect of a variable xj upon another variable xi.
For example, if one determines that ∂ fi/∂xj > 0, this means that xj has a
positive (catalytic) effect upon the rate of formation of xi, while a negative
sign indicates inhibition.

The critical assumption, indeed the main point in References 1, 2, and 4, is
that, while one may not know the algebraic form of the vector field f , often it
is known which parameters pj directly affect which variables xi. For example,
xi may be the level of activity of a particular protein and pj might be the total
amount (active plus inactive) of that protein in a cell.

In order to use this prior information, we summarize it by a binary matrix

C0 = (c0
i j ) ∈ {0, 1}n×m,

where “c0
i j = 0” means that pj does not appear in the equation for ẋi , that

is, ∂ fi/∂ pj ≡ 0. We assume that an experimental protocol has been designed
which allows one to perturb any one of the parameters, let us say the kth
one, while leaving the remaining ones constant. (Generalizations to allow for
the simultaneous perturbation of more than one parameter will be studied in a
future paper.) For the perturbed vector p ≈ p̄, it is assumed that measurements
are available of the perturbed steady-state vector x = �(p), which is assumed
to be unique as a function of p. (To be mathematically precise: we suppose
that for each vector of parameters p in a neighborhood of p̄ there is a unique
steady state �(p) of the system, where � is a differentiable function.) This read-
out might be done through Western blots, microarray methods, etc. When the
parameter pj is perturbed, the n “sensitivities”

bi j = ∂�i

∂p j
( p̄) ≈ 1

p̄ j − p j
(�i ( p̄ + p j e j ) − �i ( p̄)), i = 1, 2, . . . , n,

where ej ∈ Rm is the jth canonical basis vector, can be computed. (As discussed
in Kholodenko et al.,1,2 division by p̄ j − p j , which is numerically undesirable,
is in fact not necessary.) We arrange these numbers into a matrix B = (bij).
Finally, we let A = ∂f /∂x be the Jacobian matrix with respect to state variables,
and let C be the negative of ∂f /∂p, the Jacobian matrix, with respect to the
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parameters, Since f (�(p), p) is identically zero, we may take derivatives with
respect to p, and use the chain rule to obtain that C = AB.

The experimental design question that we wish to address is as follows.
We would like to obtain as much information as possible about the matrix A.
However, each experiment (parameter perturbation) involves an added cost,
which we would like to minimize. We think of these experiments as “queries”
that return a column Bi of B (if the ith parameter is perturbed). Observe that
the matrix C0 tells us which rows of A have zero inner product with which
Bi. We make a general position assumption that all subsets of n columns
of B are linearly independent; this entails no theoretical loss of generality,
since the entries of B correspond to experimental data, although in actual
implementations this may lead to numerical instabilities. (See Ref. 3 for an
analysis of numerical aspects as well as the effect of errors and noise; the
algorithm implemented in Santos et al.7 uses ideas from Andrec et al.3)

We thus are led to the following linear algebra question, which is later
recast as a combinatorial question and shown to be dual to the set multicover
problem. We describe the problem in terms of two matrices: A ∈ Rn×n and B
∈ Rn×m, such that:

• A is unknown;
• B is initially unknown, but each of its columns, denoted as B1, B2, . . .,

Bm, can be retrieved with a unit-cost query;
• the columns of B are in general position, i.e., each subset of l ≤ n

columns of B is linearly independent;
• the zero structure of the matrix C = AB = (cij) is known, i.e., a binary

matrix C0 = (c0
i j ) ∈ {0, 1}n×m is given, and it is known that cij = 0 for

each i,j for which c0
i j = 0.

There is a limit to what can be accomplished: if we multiply each row of A
by some nonzero number, then the zero structure of C is unchanged. Thus the
best that we can hope for is to identify the rows of A up to scalings (in abstract
mathematical terms, as elements of the projective space Pn−1).

A geometric reformulation is as follows. Let Ai denote the ith row of A.
Then the specification of C0 amounts to the specification of orthogonality
relations

Ai · B j = 0

for each pair i,j for which c0
i j = 0. Suppose that we decide to query the columns

of B indexed by

J = { j1, . . . , jl}
Then, the information obtained about A may be summarized by the property:

Ai ∈ H⊥
J,i
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where “⊥” indicates orthogonal complement, and

HJ,i = span{B j , j ∈ Ji }

Ji = { j | j ∈ J and c0
i j = 0}.

Suppose now that the set of indices of selected queries J has the property:

each set Ji , i = 1, . . . , n, has cardinality ≥ n − k, (1)

for some given integer k. Then, because of the general position assumption,
the space HJ ,i has dimension ≥ n − k, and hence the space H⊥

J,i has dimension
at most k.

In particular, when k = 1 one has that

dim H⊥
J,i ≤ 1,

and it follows that each Ai is uniquely determined up to a scalar multiple, which
is the best that could be theoretically achieved. Often, in fact, finding the sign
pattern (such as “(+, +, −, 0, 0, −, . . .)”) for each row of A is the main
experimental goal, corresponding to knowing if the regulatory interactions
affecting each given gene or protein are inhibitory or catalytic.

Suppose that we do not have the degenerate case H⊥
J,i = {0} (which would

force Ai = 0). Then, once that any arbitrary nonzero element v in the line H⊥
J,i

is picked, there are only two sign patterns possible for Ai (the pattern of v and
that of −v). If, in addition, one knows at least one nonzero sign in Ai, then the
sign structure of the whole row will have been uniquely determined. Typically
one such sign is indeed known: for example, the diagonal elements aii, i.e., the
ith element of each Ai are negative if they represent a dilution or degradation
kinetic rate. The problem is, then:

find J of minimal cardinality such that |Ji | = n − 1, i = 1, . . . , n.(Q1)

When queries have variable unit costs, meaning that different experiments
have different associated costs, this problem would have to be modified to that
of minimizing a suitable linear combination of costs, instead of the number of
queries.

The General Case k > 1

More generally, suppose that the queries that we performed satisfy (1), with
k > 1 but still small. It is no longer true that there are only two possible sign
patterns for any given Ai. However, the number of possibilities is still very
small. For simplicity, let us assume that we know that no entry of Ai is zero (if
this is not the case, the number of possibilities may increase, but the argument
is very similar). We wish to prove that the possible number of signs is much
smaller than 2n. Indeed, suppose that the queries have been performed, and
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that we then calculate, based on the obtained Bj’s, a basis {v1, . . ., vk} of H⊥
J,i

(assume dim H⊥
J,i = k; otherwise pick a smaller k). Thus, the vector Ai is

known to have the form
k∑

r=1

�rvr

for some (unknown) real numbers �1, . . ., �k .
We may assume that �1 �= 0 (since, if Ai = ∑k

r=2 �rvr , the vector εv1 +∑k
r=2 �rvr , with small enough ε, has the same sign pattern as Ai, and we

are counting the possible sign patterns). If �1 > 0, we may divide by �1 and
simply count how many sign patterns there are when �1 = 1; we then double
this estimate to include the case �1 < 0. Let vr = col(v1r, . . ., vnr), for each
r = 1, . . ., k. Since no coordinate of Ai is zero, we know that Ai belongs to the
set

C = Rk−1\(L1 ∪ · · · ∪ Ln)

where, for each 1 ≤ s ≤ n, Ls is the hyperplane in Rk−1 consisting of all those
vectors

(�2, . . . , �k) such that
k∑

r=2

�rvsr = −vs1.

On each connected component of C, signs patterns are constant.
Thus the possible number of sign patterns is upper-bounded by the max-

imum possible number of connected regions determined by n hyperplanes
in dimension k − 1. A result of L. Schläfli (see Cover,9 Schläfli,10 and Son-
tag11 for a discussion, proof, and relations to Vapnik-Chervonenkis dimension)
states that this number is bounded above by �(n, k − 1), provided that k − 1
≤ n, where �(n, d) is the number of possible subsets of an n-element set with
at most d elements, that is,

�(n, d) =
d∑

i=0

(
n
i

)
≤ 2

nd

d!
≤

(en

d

)d
.

Doubling the estimate to include �1 < 0, we have the upper bound 2�(n, k −
1). For example, one has �(n, 0) = 1, �(n, 1) = n + 1, and �(n, 2) = 1/2(n2 +
n + 2). Thus, we have an estimate of two sign patterns when k = 1 (as obtained
earlier), 2n + 2 when k = 2, n2 + n + 2 when k = 3, and so forth. In general,
the number grows only polynomially in n (for fixed k). These considerations
lead us to formulating the generalized problem, for each fixed k:

find J of minimal cardinality such that |Ji | = n − k for alli = 1, . . . , n.

Recalling the definition of Ji, we see that Ji = J ∩ Ti, where Ti = { j |c0
i j =

0}. Thus, we can reformulate our question purely combinatorially, as a more
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general version of Question (Q1) as follows. Given sets

Ti ⊆ {1, . . . , m}, i = 1, . . . , n,

and an integer k < n, the problem is:

find J ⊆ {1, . . . , m}of minimal cardinality
such that|J ∩ Ti | = n − k, 1 = i = n. (Q2)

For example, suppose that k = 1, and pick the matrix C0�{0,1}n×n in such a
way that the columns of C0 are the binary vectors representing all the (n −
1)-element subsets of {1, . . ., n} (so m = n); in this case, the set J must equal
{1, . . ., m} and hence has cardinality n. On the other hand, also with k = 1,
if we pick the matrix C0 in such a way that the columns of C0 are the binary
vectors representing all the two-element subsets of {1, . . ., n} (so m = n(n −
1)/2), then J must again be the set of all columns (because, since there are only
two zeros in each column, there can only be a total of 2� zeros, � = |J |, in the
submatrix indexed by J , but we also have that 2� ≥ n(n − 1), since each of
the n rows must have ≥ n − 1 zeros); thus in this case the minimal cardinality
is n(n − 1)/2.

THE SET MULTICOVER PROBLEM

The set multicover problem with a “coverage factor” of k > 0, which
we denote by SCk , is well-known in the combinatorial algorithms community
(e.g., see Vazirani12) and is defined as follows. We are given a set of n elements
U = {1, 2, . . ., n}, usually termed as the universe, and m sets S1, S2, . . ., Sm ⊆
U . Our goal is to select a sub-collection of these sets of minimum cardinality
such that every element of U occurs in at least k of the selected sets. The case
k = 1, namely SC1, is simply called the set-cover problem. Usually, the problem
is parameterized by a, the maximum number of elements in any set.

A brief summary of some of the known relevant results for these problems
is as follows. In general, for arbitrary a, Feige showed that assuming N P �⊆
DT I M E(nlog log n), SC1 cannot be approximated to within a factor of (1 −
ε)ln n for any constant 0 < ε < 1 in polynomial time.13 A slightly weaker
lower bound under the more standard complexity-theoretic assumption of
P �= NP was obtained by Raz and Safra,14 who showed that there is a constant
0 < c < 1 such that it is NP-hard to approximate SC to within a factor of c
ln n. The result of Feige was generalized by Trevisan15 by showing that for
all sufficiently large a SC1 cannot be approximated to within a factor of (1 −
ε)ln a for any constant 0 < ε < 1 in polynomial time unless P = NP. On the
positive side, the SCk problem can be (1 + ln a)-approximated in O(nmk) time
by a simple greedy heuristic that, at every step, selects a new set that covers
the maximum number of those elements that has not been covered at least k
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times yet. It is also possible to design randomized approximation algorithms
with similar expected approximation ratios.12

Combinatorial Formulation of Questions (Q1) and (Q2)

A combinatorial formulation of Questions (Q1) and (Q2) can be obtained
via a generalization of the the so-called hitting set problem (e.g., see Garey
and Johnson16 [p. 222]). We denote this problem by CPk . We are given a set
of m elements U = {1, 2, . . ., m}, usually termed as the universe, and n sets
T 1, T 2, . . ., Tn ⊆ U and a “coverage factor” k > 0. Our goal is to select a
subset of elements of U of minimum cardinality such that every set contains
at least k of the selected elements. The hitting set problem is precisely the case
k = 1.

Equivalence of CPk and SCk

One can easily establish a one-to-one correspondence between an instance
of CPk and an instance of SCn−k by taking an instance of CPk and creating
an instance of SCn−k in which we have an element for every set of CPk and
a set for every element x of CPk that contains those sets of CPk in which the
element x was contained. It is easy to verify that U ′ is a solution to the instance
of CPk if and only if the collection of sets Su for each u ∈ U ′ is a solution to
the instance of SCk .

SUMMARY OF OUR RESULTS

Our algorithmic contributions can be summarized as follows; see Berman
et al.8 for more details. A polynomial time algorithm for a minimization
problem is said to have a performance or approximation ratio of ε > 1 if it
provides a solution with an objective value no larger than ε times the value of
the optimum.

We first observe that the standard greedy algorithm SCk , namely a procedure
that selects a set which contains the maximum number of elements that has
not been covered k times yet, produces an approximation ratio of �(log n)
even if k is “large,” i.e., k = n − c for some constant c > 0. This is obtained
by giving an explicit example in which the greedy performs in such a manner.
For k = 1, such a result was already known.17 This indicates that such a greedy
procedure cannot have an improved approximation ratio for larger values of k.

Recall that a > 1 denotes the maximum number of elements in any given
set in our set multicover problem. We show that a non-trivial analysis of
a simple randomized polynomial-time algorithm for this problem yields an
expected approximation ratio E[r(a, k)] that is an increasing function of a/k.
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TABLE 1. Precise mathematical upper bounds on E[r(a, k)]

Upper bound on E[r(a, k)] Parameter range

1 + ln a k = 1, a arbitrary
(1 + e−(k−1)/5) ln (a/(k − 1)) a/(k − 1) ≥ e2 ≈ 7.39, k > 1
min{2 + 2 · e−(k−1)/5, 2 + (e−2 + e−9/2) · (a/k)}

≈ min{2 + 2 · e−(k−1)/5, 2 + 0.46 · (a/k)} 1/4 < a/(k − 1) < e2, k > 1

1 + 2
√

(a/k) a/(k − 1) ≤ 1/4, k > 1

The behavior of E[r(a, k)] is “roughly” as follows: it is about ln(a/k) when a/k
is at least about e2 ≈ 7.39, and for smaller values of a/k it decreases toward 1
as a linear function of

√
(a/k) with lim a/k→0 E[r (a, k)] = 1. More precise

bounds for our results are shown in TABLE 1.

Can E[r(a, k)] Converge Toward 1 at a Faster Rate?

Is it possible to design randomized or deterministic approximation algo-
rithms for which E[r(a, k)] or r(a, k) converges to 1 at a significantly faster
rate as a function of a/k? Assuming P �= NP, this may be difficult to achieve
and, in particular, E[r(a, k)] or r(a, k) cannot be 1 + o(1) for a ≥ k since the
set multicover problem is MAX-SNP-hard for this case. To illustrate the last
assertion, consider the special case of k = a = n − 1. Then, the set multicover
problem is still MAX-SNP-hard as shown in the following. One could have n
− 1 sets of the form V \ {i} that cover every element, except one, exactly n
− 2 times (the last element is covered n − 1 times). Moreover, we can have a
family of sets of size exactly 3 that form an instance of the set-cover problem
restricted to a = 3. This restricted problem is MAX-SNP-hard, and a solution
of size m for that instance gives solution of size n + m − 1 for our instance.
Because m ≥ n/3, this is an approximation-preserving reduction.
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11. SONTAG, E.D. 1998. VC dimension of neural networks. In Neural Networks and
Machine Learning. C.M. Bishop, Ed.: 69–95. Springer-Verlag. Berlin.

12. VAZIRANI, V. 2001. Approximation Algorithms. Springer-Verlag. Berlin.
13. FEIGE, U. 1998. A threshold for approximating set cover. JACM 45: 634–652.
14. RAZ, R. & S. SAFRA.1997. A sub-constant error-probability low-degree test and

sub-constant error-probability PCP characterization of NP. Proceedings of the
29th Annual ACM Symposium on Theory of Computing, El Paso, Texas, ACM
Press, NY, pp. 475–484.

15. TREVISAN, L. 2001. Non-approximability results for optimization problems on
bounded degree instances. Proceedings of of the 33rd ACM Symposium on
Theory of Computing, Hersonissos, Greece, ACM Press, NY, pp. 453–461.

16. GAREY, M.R. & D.S. JOHNSON. 1979. Computers and Intractability: a Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. New York.

17. JOHNSON, D.S. 1974. Approximation algorithms for combinatorial problems. J.
Comput. Systems Sci. 9: 256–278.


