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Abstract 

Recent work by Siegelmann and Sontag hod 
demonatrated that polynomial time on linear satu- 
rated recurrent neural networks equab polynomial 
time on standard computational models: !bring 
machines if the weights of the net are rationab, 
and nonuniform circuits if the weights are reab. 
Here we develop further connections between the 
languages recognized by  such neural nets and other 
complen'ty classes. We present connections to  
space- bounded classes, simulation of parallel compu- 
tational models such as Vector Machines, and a dis- 
cussion of the charaderkations of various nonuni- 
form classes in terms of Kolmogorov complezity. 

1 Introduction 

Among the many research issues suggested by 
neural computational models, the problem of pre- 
cisely knowing the power of the different models 
under different resource bounds is clearly worth at- 
tention. Like for other computational models, the 
analysis of the resources necessary to complete a 
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computation is a practically important, theoreti- 
cally profound, and difficult consideration. This 
paper characterizes the computational power of cer- 
tain resource-bounded neural models in terms of 
some familiar complexity classes of decisional prob- 
lema. 

A number of such relationships are already 
known, mostly for nets with threshold activation 
functions. Threshold nets can be thought of as a 
model of discrete computation, since at each mo- 
ment the state of each neuron is a binary value. 
The model we treat here is analog, in the sense that 
the states of the neurons are real numbers obtained 
through a continuous activation function. There- 
fore the relationships we obtain are quite different 
in kind, and are based on different techniques. 

More precisely, neural nets in which each neuron 
computes a threshold function lead to characteriza- 
tions in terms of circuit classes and other known 
computational models, and actually the simplest 
widely known model, the finite automaton, was ini- 
tially suggested as a characterization of the power of 
finite neural nets with threshold behavior 191. Since 
in this case a constant number of neurons can only 
yield regular languages, nets of nonconstant size are 
considered. By bounding in various manners the 
growth of the neural net with respect to the in- 
put length, characterizations can be found in terms 
of boolean circuits. The excelent surveys [lo] and 
[ll] provide a precise account of these characteri- 
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zations. Most of them correspond to acyclic neural 
nets. Some of them characterize cyclic nets with 
time bounds by "unwinding" them into acyclic nets. 
Our results correspond to essentially cyclic nets in 
the sense that the proof techniques in no case rely 
on any unwinding process. 

A quite ample repertory of functions haa been 
proposed for the action of each computation unit 
in neural modela. We focus on neurons whose 
real-valued states are computed by combining, in 
an affine or polynomial way, the inputs obtained 
from preceding neurons, and then filtering the re- 
sult through a sort of approximation to a sigmoid. 
More precisely, our approximation is known as "lin- 
ear saturated respond"' it is zero for negative ar- 
guments, the identity for arguments between zero 
and one, and staye conatant at one for larger argu- 
ments. This behavior is essentially different from 
the threshold function case. 

Actually thresholds present a problematic dis- 
continuity since they require to sharply distinguish 
between -2-k and 2-' for no matter how large 
a k. As linear saturation is continuous, such ob- 
jection does not arise. Still the discontinuity of the 
derivative at  the aaturation points makes it some- 
what objectable in the grounds of implementations 
on physical systems, and make preferable a stan- 
dard smooth sigmoid. However, linear saturation 
is clearly reasonable as an approximation that still 
allows for study without resorting to computability 
and complexity in the real field [5], and therefore ad- 
mitting characterisations in t e r m  of standard com- 
plexity claesee bawd on the boolean semiring. 

The starting point of the work reported here 
is the result by Siegelmann and Sontag [13] that 
proves that bounded size, linear saturated, cyclic 
neural nets with rational weights (and therefore r& 
tional states) are equivalent in power to Turing ma- 
chines, with polynomial time overhead in both di- 
rections. Actually, it was proved there that the aim- 
ulation of a Turing machine by a neural net can be 
done in linear time. A particularly noteworthy con- 
sequence is that, the proof being completely con- 
structive, it allows one to compute an actual con- 
stant bound on the size of a universal neural net, 
based on a universal Turing machine with small 
tape alphabet and state set: 1058 neurons suffice to 
decide in time T(n) any language Turing-decidable 
in time T(n). 

Here we extend these results in several directions. 
One is to c1aaae-e defined by space bounds on Turing 
machines. As a remurce in neural nets correspond- 
ing to memory space, we identify the size of binary 

descriptions of the rational states of the neurons 
during the computation. A number of technical 
considerations are required due to the input con- 
vention of the neural net, and will be discussed in 
the text; in particular, the simulation of certain on- 
line machines requires a more efficient simulation 
than that of [13]. Indeed, a neural net can simulate 
a Turing machine in real time (although the proof 
of this fact is deferred to the complete version of 
this paper). 

Similarly, we consider classes defined by parallel 
time bounds. Actually neural nets are considered 
a very appropriate model of parallel computation, 
due to the fact that the net result embodies the ac- 
tivity of a large number of neurons (the so-called 
Parallel Distributed Processing). We find rather 
interesting the fact that our model of neural nets 
can achieve exactly the power of parallel machines 
of the Second Machine Class (see [3] or [15]) even 
with a bounded number of neurona. To characterize 
parallel time, we follow an intuition familiar to the 
complexity theorist: to allow the model to manipu- 
late large objects in short time. More precisely, al- 
though there is no difference (modulo a polynomial) 
in the power of our cyclic neural nets if polynomials 
instead of affine combinationa are used to compute 
the argument fed into the sigmoid, we prove that 
second class power is obtained if they can use ratio- 
nal functions (i.e. division) and bitwise AND, and 
obey an exponential precision bound. 

We ale0 consider the case of real-valued weights 
and states, studying again both the affine or poly- 
nomial caee, and the case of aecond class power. 
The following interesting result was proved in [14]: 
with real weights and states, bounded size, linear 
saturated, cyclic neural nets simulate (nonuniform) 
boolean circuits 80 that neural net time and circuit 
size are polynomially related. Thus, for instance, 
in polynomial time these neural nets accept exactly 
the languages in P/poly, and in exponential time 
they can accept any arbitrary set. We relate this 
fact to the preceding ones regarding parallel time 
classee: the w e  of division and bitwise AND in 
this case provides exactly the power of nonuniform 
parallel computation, e0 that time corresponds to 
nonuniform (bounded fan-in) circuit depth; in par- 
ticular, any arbitrary set can be decided in linear 
time by nets with real weights, provided that di- 
vision and bitwise AND are available. This cor- 
responds to writing arbitrary boolean functions as 
sum of minterme in linear depth. So, essentially real 
weights add the characteristic of nonuniformity to 
both the sequential and the parallel models. Thus 
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in a sense the technical merit of this result is that 
of [14]. 

A natural question regarding nonuniform classea 
is the possibility of bounding the amount of advice 
corresponding to the class. We also study how such 
bounds are reflected in the neural model. It can 
be argued that, if some neb  with real weights are 
computationally feasible to implement, then short 
descriptione muet exist for their real-valued weighte. 
It is therefore interesting to have characterizations 
of the accepted languages in terms of the amount 
of information and resources required to construct 
these reals. 

Thus we set bounds on the resource-bounded 
Kolmogorov complexity of the reale used as weights 
in the neural neb, and prove that such bounds cor- 
respond precieely to the amount of advice allowed to 
nonuniform cleeees between P and P/poly, as etud- 
ied previously in [4]. It is known that P/poly and 
some subclaaeas can be characterized by polynomial 
time with tally oracles: we show that the complex- 
ity of the reds in the net corresponds also with 
the Kolmogorov complexity of these tally oracles. 
Using such Kolmogorov complexity arguments, we 
prove that there exists a proper hierarchy of com- 
plexity classes defined by neural nets whose weights 
have increasing Kolmogorov complexity. All this 
is proved by combining the contributions of (141 
with some structural constructions taking care of 
the Kolmogorov complexity conditions. 

2 Preliminaries 

2.1 Structural Complexity 

The concepts from Complexity Theory men- 
tioned through this paper are all standard; eee [2] 
for undefined notions. 

Complexity classes are sets of formal languages. 
A formal language is a set of words over the al- 
phabet (0, l}. By standard encoding methods, any 
other finite, fixed alphabet could be assumed if nec- 
essary provided that it has a t  least two different 
symbols. We denote by wl: )  the word consisting of 
the first k symbols of w ;  this is valid too when w is 
an infinite sequence. The length of a word w is de- 
noted IwI, and overloading the notation we denote 
by IAl the cardinality of the finite set A. 

For any alphabet C, C' is the set of all words 
over C; E<" is the set of all words of length a t  most 
n, and AIn = A n  Cs"; similarly we have C=" and 

A=". Here we will use in particular the alphabets 
C = (0,1} and C = (0). A tally set is a set of words 
over this single letter alphabet (0). The strings 
of C' are ordered by lengths and lexicographically 
within each length. 

If A is a set of words, X A  E (0, 1}O0 is the charac- 
teristic sequence of A, defined in the standard way: 
the ith bit of the aequence is 1 if and only if the it* 
word of E' is in A. Similarly, ~ ~ 5 , "  is the character- 
istic sequence of AS" relative to !@. In both cases 
C is taken as the smallest alphabet containing all 
the symbols occurring in words of A, so that for a 
tally set T, XT denotes the characteristic sequence 
of T relative to {O}*. 

Throughout this paper, logn means the function 

We will mention complexity classes defined by 
computational models; these can either be sequen- 
tial or exhibit unbounded parallelism in some guise. 
The sequential classea can be defined in a com- 
pletely standard way by timebounded or space- 
bounded multitape Turing machines, poasibly non- 
deterministic, e.g. classes like P, PSPACE, or NP. 
Relativizations of these claeees are also used; the or- 
acle machine model used for defining them is stan- 
dard. All these classes are invariant under changes 
of the machine model, provided that it stays within 
the so-called First Machine Class [15]: they sim- 
ulate and are simulated by multitape Turing ma- 
chines within a polynomial time overhead and a lin- 
ear space overhead. 

Parallel models have in principle more power 
than the First Class. Many models exist, and 
not all of them are equivalent. Our parallel mod- 
els are taken from the so-called Second Machine 
Class [15]. This class captures a very frequently ob- 
served species of parallelism, characterized by the 
Parallel Computation Thesis: time on these mod- 
els corresponds, modulo polynomial overheads, to 
space on First Class models. Prominent members of 
the Second Machine Class are the alternating Tur- 
ing machines and the Vector Machines ([12], see also 

The notion of advice function was introduced in 
[6] to provide connections between uniform compu- 
tation models such as resource-bounded Turing ma- 
chines and nonuniform computation models such as 
bounded-size boolean circuits. 

"(1, PO& 4 ) .  

[31). 

Definition 1 Given a class of sets C and a class of 
bounding functions F, the class CIF is formed by 
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the sets A such that 

Vn 3w ( I w l s  h(n)) Vx (1x1 = n) 
Z E A  e ( 2 , w ) E B  

where B E C and h E F. 0 

The words w mentioned in the definition are fre- 
quently called “advice wordd’. The corresponding 
Skolem function mapping each n into an appropri- 
ate advice wn for length n is cdled “advice func- 
tion”. C is usually a uniform complexity clam, most 
frequently P, whereas the clam poly = (nk I C E IN) 
of polynomials and the class log = {C a logn I L E 
IN) = O(1ogn) of logarithms are the most frequent 
bounding functions. 

The class P/poly is known to have a number of 
interesting characterizations; the most relevant two 
of them are UT P(T) where T is a tally set and the 
class of sets A such that for all n the set A=R can be 
decided by a circuit of size polynomial in n. Several 
variants corresponding to logarithmic advice can be 
defined; see [4] and the references there. 

Later on in section 5 we introduce additional 
structural material regarding Kolmogorov complex- 
ity. 

2.2 Neural Networks 

In this work, a neural network is a processor net- 
work consisting of a finite number of processors, or 
neurons, each of which has a state whose value a t  
integer times t that can be characterized by a real 
number. We assume that there are N processors 
and M external input signals. The state values, or 
“activations,” are updated by equations such as 

(1) 
for i = 1,. . . , N. Here zi(t) and uj(t) denote the 
state of neuron i and the value of input line j a t  
time t ,  respectively. The elements ai,, etc, are 
called the “weights” of the network, and U(.) = 
max{min{x, l}, 0). In vector form, this reads 

z+ = u(Ax + Bu + c)  (2) 

where “z+(t)” stands for “z(t + 1)” and we drop 
time arguments t .  We are letting U denote the a p  
plication of U to each coordinate of x; note that now 
c is an N-vector, A and B are real matrices of sizes 
N x N and N x M respectively. Given as part of the 
definition is also a set of indices i l ,  . . . , ip .  We think 

of the processors xil,. . .,xi, as output processors. 
For each input sequence U = U( l), u(2), . . . and ini- 
tial state z(1) = 0, recursively solving equations 
(2) gives us the state z(t)  at time t .  Restricting 
attention to the output processors one gets a corre- 
sponding sequence of output dues, which we refer 
to as the output produced by the input U. We as- 
sume that 0 is an equilibrium state, which amounts 
to: 

a(A0 + BO + c) = 0 .  

We now restrict, as in [13], to networks with two 
binary input and output lines. In each case, the 
first one is a data line that carries a binary signal 
(defaults to zero if there is no signal), and the sec- 
ond one is a validation line, used to indicate when 
the data line is active. The validation signal is “1” 
while the input is present, and “0” otherwise. Thus 
we can write ~ ( t )  = (D( t ) ,  V ( t ) )  E (0, 1}2, and sim- 
ilarly for outputs (Od(t), O,(t)) .  

We use the following convention to deal with lan- 
guage recognition. We start by encoding each word 
a = a1 . . -ai .  E (0, I}+ into an input signal of the 
form described above, namely: Let 

ua(t) = (oa(t), Va(t)) 9 t = 1, - 9 

where Va(t) is 1 if t = 1,. . . , k and is 0 otherwise, 
while Da(t) equals a, for t = 1,. . . , 1: and is 0 other- 
wise. We say that a word a is clossified in time 7 if 
the output sequence y(t) = (Od(t), O,(t)) produced 
by uo is of the special type: 

Od = O..*O~aOOO.*. , 0, = 0 . * * 0 1 0 0 0 . * .  , w v 
r-1 t-1 

where va is binary. 
A language L 2 {0,1}+ is said to be accepted 

in time T by the network N if each a E {0,1}+ is 
classified in time 7 5 T(lal), and va equals 1 when 
a E L and equals 0 otherwise. 

The definition given here corresponds to the 
so-called first-order neural networks, since the 
computation of each processor is an affine func- 
tion. Second-order nets are obtained if polynomi- 
als (equivalently, multiplication) are allowed to take 
place in the processors. Time in second-order nets is 
polynomially related to time in first-order nets [13]. 

3 Space Classes 

This section discusses rational-valued neural nets 
on which a bound is set on the precision available for 



the computations. It should be observed that any 
simulation of a neural net computation, e.g. by im- 
plementing a simulation program on a more or less 
standard computer, will have to obey such a bound. 
Indeed, efficient implementations of the arithmetic 
require dedicated hardware, able to handle 're&" 
of a limited precision seldom larger than 64 bits 
(and quite frequently smaller). When larger preci- 
sion is necessary, for instance to process longer in- 
puts, one must resort to  a software implementation 
of real arithmetic (sometimes provided by the com- 
piler), and even in thie cane a physical limitation on 
the length of the mantissa of each state of a net- 
work under simulation ia imposed by the amount of 
available memory. It is thus important to know the 
computational consequences of these limitations. 

This very same observation suggests that some 
connection can be traced between the space require 
ments needed to eolve a problem and the precision 
required on the states of the neural networks that 
solve them. 

Definition 2 A rational neural net works within 
precision S(n) if and only if all the weights, and 
all the rational values of the states of the neurons 
through a computation on an input of length n, can 
be represented in binary within O(S(n)) bits. 

We observe here the following: 

Theorem 1 Let S(n) 1 n be a space-constructible 
function. Then the following are equioalent: 

1 .  the set L is accepted by a lhring machine 
within space O(S(n)); 

2. the set L b accepted by a neurcrl net within pre- 
cision O(S(n)).  

The proof is not difficult along the lines of [HI. 
However, that proof relies on a preliminary phase 
through which the input is completely loaded into 
the state of a specific neuron, before proceeding to 
the actual computation. This is the reason why we 
need the condition S(n) 2 n, since the precision 
needed for that neuron will be at least linear. Ac- 
tually, the proof of theorem 2 below can be used as 
well to prove this theorem, taking into account that 
the restrictions imposed there become trivial for at 
least linear space. 

It is quite interesting to see what happens under 
sublinear precision bounds. The point is that the 
input convention we have described for neural nets 

makes available each input symbol only once; more- 
over, it ie available for only a single step, eince the 
next iteration brings a new symbol in. 

Thus, nets will correspond weakly to restricted 
variants of Turing machines, the on-line machines 
and a still more restricted model called here lr- 
d i n e s :  they move left to right the input head 
one symbol per each step, and cannot backtrack nor 
even stay at a symbol more than one step. However, 
they are allowed to continue working without fur- 
ther reading after exhausting the input. This last 
period of work usea only the information gathered 
in the w o r k t a p  during the reading. Clearly this 
restricted model is equivalent to the standard model 
for a t  least linear space bounds. 

Theorem 2 Let S(n) be any space-constructible 
function. 

1. If a set L is accepted by an lr-machine within 
space O(S(n)) ,  then L is accepted by a neural 
net within precision O(S(n)) .  

2. If a set L is accepted by a neural net within 
precision O(S(n)) ,  then L is accepted by an on- 
line machine within space O(S(n)).  

Note that, unlike the previous and next theo- 
rems, we don't have to impose any lower bound on 
S(n) here. Essentially this corresponds to proving 
that the intermediate step of loading the input into 
a single neuron state, as done in [13], is not neces- 
sary; but this does not suffice since there the net 
needs four steps to simulate each step of the Tur- 
ing machine. A different procedure is necessary to 
prove that the simulation can be done in real time, 
i.e. spending only one step of the neural net to sim- 
ulate each step of the Turing machine; otherwise, 
input characters would be lost. This new simula- 
tion will be described in the full paper, together 
with some consequences such as a better bound on 
the size of the smallest univerd neural net. 

On the other hand, the second part is quite sim- 
ple, since it consists of a straightforward simulation 
of the computation of the neural net. The state 
of each of the fixed number of neurons is kept in 
worktape, where it fits due to the precision bound. 
Since the network receives its input in real time, 
there is never the need of backtracking the input 
head during the simulation. Observe however that 
the simulating machine is not an lr-machine since 
each step of the net requires a nontrivial number of 
Turing machine steps due to the arithmetic opera- 
tions to be done. 
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Off-line spacebounded machines can be proven 
equivalent to precision-bounded neural nets under 
a different input convention. 

Definition 3 A neural net with cyclic input re- 
ceives the input w through two input lines as fol- 
lows: the data line brings in the bits of the input w 
repeatedly, woo, while the validation line brings in 
(101+1)oo. 0 

So, the data line brings in wwwwww . . . and the 
validation one, instead of marking the end of the 
whole input, marka the beginning of each cycle. 
This (admittedly somewhat artificial) input conven- 
tion gives: 

Theorem 3 Let S(n) 2 logn be a space con- 
structible function. Then the following are equiv- 
alent: 

1 .  the set L is accepted by an of-line lbring ma- 

1. the set L is accepted by a neural net with cyclic 

chine within space O(S(n)); 

input within precision O(S(n)). 

Here we only sketch the proof. 
Proof. 1 3 2 )  The network hf simulating the Turing 
machine M is built conceptually out of two sub- 
networks: In a manner similar to that of [13], we 
construct a constant sire subnet that receives as 
input the bit currently scanned by the input-tape 
head of the M and the state of M, and returns a 
new state and the direction to move the input-tape 
head, right or left. Another neuron keeps a ratio- 
nal that, interpreted as an integer value, indicates 
the current position of the input-tape head. The 
value is incremented or decremented depending on 
the direction of movement. Then another subnet, 
triggered by the 1 that marks the beginning of each 
cycle, counts up to the position of the input-tape 
head to catch the input symbol necessary for the 
simulation of the next step. With some precompu- 
tation time, it is possible to do the counting in real 
time using only logarithmic precision. 

2 3 1) For the backward implication, use the 
same simulation as for the on-line case. When 
reaching the right end of the input, stop the simula 
tion, reset the input tape head, and resume it; when 
the simulating machine is reading the first symbol 
of the input, it simulates a 1 on the input validation 
line. I 

The fact that time-bounded rational nets corre- 
spond modulo polynomial- time simulations to time- 
bounded n r i n g  machines [13], taken together with 

theorem 1 here, allows us to close this section by 
pointing out a remark on the ''linear precision suf- 
fices" lemma of [14]. There it is proved that for a 
neural net running in time T(n), the net obtained 
truncating all stat- to O(T(n)) bits is equivalent 
to it. Their proof is valid for real states; but if we 
consider ita restriction to the simpler rational case, 
then we can aee an interesting intuitive analogy. 
Through the equivalences with the Turing model, 
we see that this result corresponds in Bome sense 
to the basic theorems relating time-bounded and 
space-bounded classes, and in particular to the by 
now elementary result that everything done in time 
T(n) is done in epace T(n)  as well. The "linear pre- 
cision lemma", restricted to the rational case, would 
be ementially the neural net analog of this result. 

4 Parallel Time Classes 

It was proven in [14] that second-order nets can 
be simulated with a polynomial overhead in time 
by first-order nets. That is, allowing neurons that 
compute polynomials does not increase the compu- 
tational power of nets (up to polynomials). In this 
section we show that, for nets with rational weights, 
adding both division and bitwise AND makes an 
enormous difference: that from sequential to paral- 
lel time. 

Thus the nets we consider in this section have 
processors with either an update equation of the 
form 

where Pi and Q j  are polynomiale with rational co- 
efficients, or of the form 

zi(t + 1) = Z j l ( i ? )  A . .  . A Zj,( t ) .  

where h denotes bitwise AND of binary represen- 
tations (note that adding U does not make any dif- 
ference in this case). We assume that the binary 
expansion of a non-periodic rational always ends in 
an infinite sequence of zeros. That is, 1/2 is repre 
sented as 0.10000. .., not as 0.01111.. . 

We say that a net works within precision p(n) 
if the binary expansion of all weights, and of any 
state appearing during the computation on an input 
of length n, is identically zero after the first p(n) 
digits. Let NN-TIME(t,p) be the set of languages 
accepted by nets with division and bitwise AND in 
time O ( t ( n ) )  and precision O(p(n)) simultaneously. 
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Intuitively, the extra power we get by using di- 
vision can be demonstrated by the following e x m -  
ple. By repeated multiplication a net can build in 
time ~ ( t )  rationals as s m a ~  as 2-2'. TO recover 
the first 1-bit of these numbers, a net without divi- 
sion can only multiply at each step by some (con- 
stant) weight, and thus needs 2"(') steps. However, 
8 single division can turn this digit into the moet 
significant one. 

We use this power of division, and bitwise AND, 
to simulate a model of unbounded parallelism in- 
troduced by Pratt and Stockmeyer, the vector ma- 
chines ([12], see also [3, 71). 

Vector machines are machines that can make 
boolean operations and left and right shifts on their 
potentially infinite registers; these capabilities give 
them the power of parallel machines. More pre- 
cisely, a vector machine is a processor together with 
a fixed number of vector registers VI, VZ, . . ., Vr, 
each containing bit vectors. These bit vectors are 
ultimately constant sequence8 of bits written from 
right to left, and infinite to the left. The length 
of a vector register is the length of its nonconstant 
part. Vectors that are ultimately 0 and ultimately 
1 represent non-negative and negative integers re- 
spectively. The input is given to the machine in 
register VI, and the output is in V' when the ma- 
chine halts. The program for the vector machine 
can contain the following instructions, assumed to 
have unit coet: 

V;: := 2: Load the constant 2 into V;:. 

vl. := not V;.: Bitwise negate all of vi. 

V;. := 5 A vk: Bitwise AND V, and Vk. 

V;. := V;: 7 5: If 5 contains a positive num- 
ber, shift to the left by 5 positions; new 
positions are filled with zeros. Otherwise, do 
nothing. 

V;: := V;. 1 5: If V, contains a positive number, 
shift vl. to the right by V. ositions; rightmost 
bits are discarded. Otherwise do nothing. 

if V;: = 0 go to kbel. 

accept, reject. 

J P  

To make vector machines equivalent in power to 
other Second Class models, we have to impose the 
following restriction: no register is ever shifted by 
more than 2°(t(")) positions in a single shift instruc- 
tion, where t (n)  is the machine's running time. In 

other words, arguments 5 in shift instructions al- 
ways have values O(t(n)). We call machines with 
thia property restricted. Let VECTOR-TIME(t) be 
the class of languages accepted by restricted vector 
machines in time O(t(n)).  

We now show that, up to polynomials, the classes 
VECTOR-TIME(t) and NN-TIME(t, 2') are equal. 
To our view, the restriction of shifts in vector m b  
chines can be compared to the restriction of preci- 
sion in the nets. 

Theorem 4 For any t (n) 2 n, VECTOR-TIME(t) 
N N - T I M E ( ~ ~ ( ~ ) ,  2O@)). I 

Proof. Let M be a restricted vector machine running 
in time t (n).  For a given n, let 8 be the minimum 
power of two such that the length of M's registers 
is always less than 8 ,  during the computation on 
an input of length n. It is easy to prove that s = 
2O('(")) (the restriction on the shifts is necessary 
here). 

To simulate M by meam of a neural net, we en- 
code the contents of each register vl. of M as the 
activation value of a net processor vi.  More pre- 
cisely, if V;: contains the vector . . . OOObtbt-1.. . b2b1, 
then vi = 0.000 ... 000btbt-l...b2b1OOO ..., and 

if V, containa ...lllbtbt-~...b&l, then vi = 
0.111 ... l l l b t b t - 1 . .  .bab1000... Note that 0 5 

vi < 1, and that vi 2 1/2 if and only if V;: < 0. 
Initially, the net reads the input and stores it as 

the state of u l ,  as described in [13]. For the ac- 
tual computation, we divide the proof in two parts: 
First, we show that the effect of each vector instruc- 
tion can be simulated by rational functions and bit- 
wise ANDs in time polylogarithmic in 8 = 2°(t(n)), 
i.e., polynomial in t (n).  Then, we show that these 
sequences of operations, as well as the finite con- 
trol of the vector machine, can be programmed in 
a neural net. 

We simulate each vector instruction as follows: 

\ / 

# 
-. 

\ # 

# 
* 

V;. := x: The constant 2 is built into the 
network as a weight, and this instruction sets 
vi := 2. 

V;: := not vl:: Build the rational 2-* as de- 
scribed below for the shift instructions. Then 
set vi := 1 - 2-' - vi .  

0 V;: := 5 A Vk: This is simulated by a bitwise 
AND of Vj and vk. 
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/* compute y = 2-*, where x = 2,-1. . . xo is given as a real z' = O.X.-~.. . 2 0  */ 

for i := 1 to logs do 
p := 1/2; 

p := p2; 
/* p = 2-' here; recall that B is a power of 2 */ 

y := 1; I := 1/2; 
while z ' / p  2 1 do begin /* digits left in t' */ 

/* 3i ( p  = p + i  

y := y * r; 

= 2-2' A = 2-(~i-1...~0) * ) /  
if (x' A p ) / p  = 1 then 

p := 2 * p ;  
2 := 2 2  

/* 2i = 1 */ 

end 

Figure 1: Computing 2-" 

0 vl. := V;: 7 5. This is simulated as: 

i f a j  < 1/2 (Le., Vi 2 0) then begin 
build y = 2-"j; 
vi := Vi /Y  

end 

Testing condition "v, < 1/2" is knowing 
whether 0(4(wj - 1/2)) is 0 or 1. To compute 
2-"j we w e  the algorithm given in the figure, 
which works in time O(l0g Ivj I). Because Ad is 
restricted, 141 is 2°('(n)) and thus the compu- 
tation t a k a  time O(t(n)). 

0 vi := vl. 1 Vi. Similar to left shift using prod- 
uct times 2-"j instead of division. 

0 if V;: = 0 go to label: Compute 2-' as above and 
then test whether a(vi/2-') = 0. Note that 
a(v i /2 - ' )  = 1 for all possible contents of K 
except for 0. 

0 accept, reject: To simulate these instructions, 
the net sets to 1 the output validation line and 
to 1 or 0, respectively, the output data line. 

It remains to show that sequencing all these instruc- 
tions can be hardwired into a network. Here we only 
provide an example: a subnet that implements the 
computation of p = 2-' following the first loop of 
the algorithm in the figure. 

This network is triggered by the input a; it out- 
puts its data via the neuron p and validates the 
output via the neuron U. 

The binary input a is 0 except for once. When 
1, it triggers the network described below. 

The output validation neuron v is set to 1 
log(s) steps after U triggers. 

The output data neuron p contains the value 
2-' when v = 1. 

The internal neuron c counts the time. We assume 
that some neuron C in the rest of the net provides 
the reciprocal of a, the maximum length that a reg- 
ister can have. For example, if s = 32, I contains 
binary 0.00001 (recall that s is a power of two). 

The update equations of the processors are: 

p+ := U( a/2 + (1 - a)p2 ) 
/* a = 1 resets p to 1/2, a = 0 squares it */ 

/* a = 1 resets counter to 1/s */ 

/* w+ = 0 for c 5 1/4, v+ = 1 for c 2 1/2 */ 

c+ :=U( a .L+ (1 -a). 2c ) 

v+ := 6( 4c - 1 ) 

I 

Theorem 5 For any t (n)  2 n, NN-TIME(t, 2') E 
VECTOR-TIME(~~(')). 

Proof. Consider a net running in time t (n )  and 
within precision 2'("). To simulate the net by a 
vector machine, we keep the state of each proces 
sor in a vector register of length 2'("). Remember 
that addition, product, division, and bitwise AND 



of m b i t  numbers can be computed in parallel ma- 
chines in time (lognI)O(') and n ~ ~ ( ~ )  memory (see 
for example [7]) .  Thus, updating the state of each 
processor at each simulated step needs t (n)O(')  time 
and 2°(t(")) memory on the vector machine. I 

In fact, the simulations show that amount of 
memory in vector machines is polynomially related 
to net precision. The theorems were stated for a t  
least linear running time, aa the networks need lin- 
ear time to read the input. However, the simula 
tions work even for sublinear running times t ( n )  2 
log n, if we adopt an alternative convention that the 
input is given to the net as the initial state of one of 
the processors, as in theorem 2 of [13]. Then we can 
characterize NC, the class of sete accepted by Sec- 
ond Clam machines in pol log time and polynomial 

Time for both models is still polynomially related 
in the presence of nonuniformity, that is, when vec- 
tor machines are nonuniform and nets have real in- 
stead of rational weights. We discuss this in more 
detail in section 5. 

space, as NN-TIME(logo 7 ') n, no(l)). 

5 Nonuniform Classes 

5.1 Real weights and circuit depth 

In section 4 we have considered nets whose pro- 
cessors can compute rational functions and bitwise 
ANDs on their inputs, and shown that time in these 
nets is equivalent to time on parallel machines. If 
we allow real instead of rational weights, their power 
changes accordingly: we obtain nonuniform paral- 
lel time, or, equivalently, nonuniform circuit depth. 
For example, one can obtain the following analog of 
the fact that nonuniform circuits of bounded fan-in 
and linear depth can decide any set. 

Theorem 0 Every language i s  decided in linear 
time by a net with real weights whose processors 
compute rational finctions and bitwise ANDs. 

Proof. The net contains a real weight whose binary 
expansion is the characteristic sequence of the lan- 
guage to decide. On an input that has lexicograph- 
ical number i ,  the net computes the real t = 2-' 
using multiplication; it can do this aa the input is 
entering. When the input ends, the net ANDs x 
with the real encoding the set, and divides the re- 
sult by t, thus determining whether the input is in 
the set or not. I 

Note that, in fact, the net has the answer two 
steps after the input has been read. 

5.2 Kolmogorov Weights: Between P 
and P/poly 

As said in the introduction, in [13] and [14] 
Siegelmann and Sontag showed that the computa 
tional power of neural networks depends on the type 
of numbers utilized as weights. They investigated 
the computational power of networks in which ei- 
ther rationals or reals are involved. When the net- 
works compute in polynomial time, the computa 
tional power of these networks happens to coincide 
with the claeaea P and P/poly, respectively. 

Here, we concentrate on weights from various 
classea of computable numbers, characterized in an 
information-theoretic manner. We discover an infi- 
nite hierarchy of computational classes of networks 
with such weights - while still complying with the 
polynomial computation time constraint. This re- 
sult is maybe surprising aa different neural network 
models were traditionally considered aa equivalent 
to finite automata, Turing machines, or unlimitedly 
powerful models. 

We define different claeses of computable num- 
bers [l] by considering different time constraints 
and amounts of information in their construction. 
Our definition of Kolmogorov complexity of infinite 
sequences is a time-bounded analog of that in [8]. 

Definition 4 Fix a universal Turing machine U. 
Let f be a nondecreasing function, g a time- 
constructible function, and a E {O,l}m. We say 
that a E K [ f ( n ) , g ( n ) ]  if there exists p E (0, 1}O0 
such that, for every n, the universal machine U out- 
puts a1:" in time g(n), when given &(") and n as 
inputs. If no condition is imposed on the running 
time, we say a E K [ f ( n ) ] .  

Observe that here the length of the output is 
provided for free to the universal machine; so our 
definition corresponds to the usually named com- 
plexity relative to the length. The reason is that 
we want simple numbers (e.g. rationals) to have ex- 
tremely low complexity (e.g. constant), and the in- 
formation contained in the length of a string could 
be higher. However, the definitions are equivalent 
(modulo constants) for complexities a t  least loga 
rithmic. 

Generally, K[F, 91 is the set of all infinite binary 
sequences taken from K [ f ,  g] where f E F and g E 
0. For example, a sequence is in K[log,poZy] if its 
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prefix- are computable from logarithmically long 
prefixes of some other sequence in polynomial time. 

In the following, we denote by {0,1}# the set of 
both finite and infinite binary strings. 

Define a function 

64 : {0,1}# + [O, 11 

by the formula 

Io’ 2ai + 1 
S4(€) = 0 &(a) = 4’ . 

i= 1 

Here e is the empty string; [a[ is the length of the 
string a, and can be either a finite value or 00; ai 

is the ith bit of the string a. Let A 4  be the range 
of this function. That is, 

The map 64 is injective in {0,1}# I+ A 4  and 6,’ is 
well defined there. Thus, it can be used to define 
the Kolmogorov complexity of numbers in Ad: A 
number w E A 4  is said to be in K [ f ( n ) , g ( n ) ]  iff 

The main contribution of this section is to show 
that the Kolmogorov complexity of the weights of 
a net is also related to a structural notion: the 
amount of advice for nonuniform clasees. Important 
consequences follow; for instance, we can prove the 
following “hierarchy” theorem: 

Theorem 7 Let 3, Q be function classes such that 
3% E 0,s E o(n) such that Vp E poly, Vr E 
F,r (p(n) )  E o(s(n)).  Let NK(7,polyl the set 
of networks that compute in polynomral time, and 
each of which uses weights j i v m  K[3, poly] U Q. Let 
C(hfKIF,poia) be the class of languages accepted bv 

w4 E K [ f ( n ) ,  g ( 4 l .  

NKIF,polyl ’ Then: 

I 

In subsection 5.3, we prove the equivalence be- 
tween an infinite subset of oracle TMs and networks. 
We show in subeection 5.4 the hierarchy in the dis- 
cussed subset of oracle TMs, thus concluding theo- 
rem 7. 

5.3 Equivalence of TMs with Tally Or- 
acles and NNs 

Definition 5 Let S C_ {0,1}#. S is closed under 
mizing if for any finite number k E N and for any 
k strings from S, 

a1 = aiaiai. . . , 
a2 = a;a;a;. . . , 
ak = atafa!. . . 

a;a:a: * - -a; a;a;a; * * -a; a:*; * - - 

... 

the shuffled string 

is again an element of S. 

Definition 6 Let S C_ ( O , l } # .  We define the frac- 
tion set of S to be 

34 = {U E A 4  1 3a, w = &(a) and a E S} 

Definition 7 Let T C (0, l}*. We define the char- 
acteristic number of T as 

T4 = U X T )  E A 4  , 
where XT is the characteristic string of T. 

The main theorem of this subsection is as follows: 

Theorem 8 Let S (0, 1)O“ be closed under miz- 
ing and 7 the class of tally sets I = { T : XT E 
S }. Time in the following models i s  polynomially 
related: 

1 .  Omcle n r i n g  machines that consult omcles in 
7. 

1. Neuml network that have all weights in the set 
s* UQ. 

Before proving this theorem, we look at  some 
consequences for polynomial time machines. The 
following classes Pref-C/H were defined in [4]: 
Given a clam of sets C and a clam of bounding 
functions H, the clam Pref-C/H is formed by the 
sets A such that 

Vn 3 W n  (Iwnl I h(n)) V X  (1.1 I n) 
x E A <%,U,>€ B 

where E E C and h E H and, for all n 5 m, wn 
is a prefix of w,. Observe that advice wn must be 
correct for all strings of length up to  n, not only 
those of length n. Note also that Pref-P/poly = 
P/poly, but that a similar equality may not hold 
for smaller function classes. 

We also say that a class 7 of functions is closed 
under O(.) if for every f, g, if g E O( f )  and f E 3, 
then g E 3. 
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Corollary 8 Let 3 be a claes of nondecreasing 
functions closed under O(.), and L(NKIF,polyl) be 
the class of languages accepted by networks with 
weights in K[F,poly] U Q. Then, 

Some interesting special caaes arise when consid- 
ering various natural bounds for the Kolmogorov 
complexity: 

e S = K[n,poly], that is, arbitrary strings. 
The class of languages accepted in thie case is 
P/poly: this is the main reeult of (141. 

e S = K[1, poly], that is, the sets of strings com- 
putable in polynomial time. The class of lan- 
guages accepted in this caee is P. 

e S = K@og, poly]. In thie case, the class of lan- 
guages accepted is Full-P/log, described in [4]. 

The next two s u b s u b t i o m  prove theorem 8. 

5.5.1 Proof: 1 E 2 

Definition 9 An oracle neural network (0") is 
a network A/ with additional three special oracle 
neurons Q, A, W - called query, anewer, and wait 
neurons - and a particular oracle number Y. The 
above receive their values in 

The network operates regularly as long as W = 
0. When W = 1, the activations in the network 
A/ are not being changed. 

The network can set W to 1 but cannot reset 
it. 

When W = 1, the three oracle neurons change 
as follows: 

A + (6,-'(Y))leX(q) 
Q + O  
W t O  

where lex(&) is the lexicographic index of Q in 
A4. Other neurons of A/ do not change. 

Setting W = 1 is like invoking a subroutine for solv- 
ing a membership query. Y can be thought of as the 
characteristic number of an oracle set Y', and the 
subroutine tests whether &'(Q) E Y'. However, 
we assume that this oracle subroutine answers in 
unit time. 

Lemma 10 Let T be a tally set. Time in the fol- 
lowing models is polynomially related. 

e Oracle TM that consults the tally set T. 

e Oracle NN with all weights in Q and oracle 
number T4. 

The proof of this lemma is very similar to the proof 
of the main result in [13], and is not included here. 

Lemma 11 For each number T4 E Ad, there exists 
a network of five neurons and two inputs - u1, u2 
- that started from the iero initial value, and given 
the input signals 

n 1  
U1 = [C(a)i] 0 0 0 

i = l  

the network outputs 

n + l  

where b is the truth value of 6i1(u1(l)) E T, for the 
set T that has Td as its characteristic number. 

P m f .  We use T4 as one of the weights of the net- 
work. 

Notice that 

ul(1) = .U in base 4 , 
n 

T4 = .3133113..- in base 4 

and the nth digit of T4 in base 4 expansion is the 
decision of whether C ~ ; ' ( E Y = ~ ( ~ ) ~ )  E T. 

The network simultaneously scans the value 
given in T4 [in XI and xz] and the value of ul(1) 
[in 23 and 241. When it reaches the last digit '1' 
of u ~ (  l ) ,  the network returns the currently scanned 
digit in the base 4 expansion of T4. 

Using the above two lemmas, we can prove the 
inclusion 1 C 2 as follows: let M be an OTM that 
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uses a tally set T ae an oracle, where XT E S. We 
construct a network hf that accepts the same lan- 
guage and has all weights in S4 U Q. The network 
Af consists of two subnetworks: hfl is an oracle net- 
work that consults the number T4, and N2 is the 
retrieval network of TI as described in lemma 11. 
By lemma 10, hfl hae only rational weights, and by 
lemma 11, hf2  has both rational weights and the 
weight T4 E $4. h f 1  simulates M in linear time [13], 
while M2 has a total computation time bounded by 
O(Clqueriea1) - which is bounded by the com- 
putation time of M. Thus, given a OTM with an 
oracle in S, there is a corresponding neural netwofk 
whose weights are either rationals or in the set S4 
that computes the same as the TM with no more 
than linear slowdown in the computation. 

(To couple the OTM network with the retrieval 
network: 

We add the neurons 

t i  = U ( Q + W - l )  
t i  = a( t1)  
t'l = a(t1 - t i )  
t2 = a(W - t 1 )  

t3 = 4 4 x 3 -  l 6 x 4 ) ,  

where t y , t 2  are used as the input u1 and u2 of the 
retrieval network. The neuron t3 is used to update 
the dynamics of the oracle neurons. 

W c U( ... -Cit3) 
A 
Q +- U( ... -C3t3), 

+ IT(. . . + C z ( 2 ~ 5  + t 3  - 2))  

where ". . ." represents the previously used values of 
the neurons, and Cl, C2, C3 are constants.) 

5.3.2 Proof: 2 E 1 

Given a network hf with weights in 5 4  UQ. The 
network has a fixed number k' E IN of weights, 
which can be written in base four expansion as: 

... , 

Assume w.1.o.g. that the first k of them are in $4, 

that is, w$ E {1,3} for such weights i .  (The weights 
w k + l , .  . . , wk' are rationals.) As S is closed under 
mixing, the string 

is again an element of S. 
We show an oracle TM M that consults a tally 

set with characteristic string XT = a, and simulates 
the network while keeping the polynomial time 
constraint. 

1.  M receives the input string x .  

2. M computes the running time B(lz1) of M. 
3. For a certain constant C, M executes: 

For i = 1 to kCB(lz1) 
query the ith word ofa. 

Now, M hae the weights of hf up to a precision 
CB(lzl). C is a constant such that this pre- 
cision suffices. The existence of such a C was 
proved in [14]. (The (k' - k) rational weights 
are encoded in the machine M.) 

4. M simulates hf step by step in polynomial 
time. 

5.4 Hierarchy of TMs That Consult 
Tally Oracles 

Theorem 9 Let 3, B be function classes such that 
3s E 9, a E o(n), and for every polynomial p and 
eve- r E 7, r(p(n)) E o(~(n)). Let U T P ( T , F )  
be a class of TMs that compute in polynomial time, 
where each TM consults a tally set T such that XT E 
K [ f ,  po ly ] ,  f E F. Define L(UT P(T,  7)) as the 
class of languages computed by these TMs. Then: 
Z(UT P(T,  7))  and C(& P(T, 0)) are difereni. 

Proof. We define a set A E C(UT P(T, 9 ) )  but not 
in C(UT P(T ,F) ) .  Let a(.) be as in the theorem. 
Choose an infinite sequence 7 K [ n / 2 ] .  For every 
n define string pn ae p,, = 71:!(")/2 - O"-8(n)/2 if 
n 2 s(n)/2, and fin = On otherwise. 

Let A be the tally set with characteristic string 
plp2p3. .  . Given 71:8(n) /2  it is easy to build X A ~ , , ,  

some constant c and polynomial q. Hence, A E 

However, A $! Z(&P(T,F)).  Assume oth- 
erwise, then there is some machine that prints 
71: , (n ) /2  in time p l ( n ) ,  querying a t  most the first 
pl(n)  elements of a tally set T, with XT E 
K[r(n),p2(n)],  P I ,  pz  polynomials, and r E 0. Then 

80 XA E K[s(n)/2 + ciq(n)l E K[s(n), q(n)], for 

C(ur P(T, 9)) .  
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71:,(n)/2 is obtained from the firet r(pl(n))+O(l) < 
s(n)/4 bite Of X T ,  in fact in time O(pl(pl(n))) .  This 
contradicts the choice of 7. I 

The combination of theorem 8 and theorem 9 
proves theorem 7. 
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