
Some Structural Complexity Aspects of Neural Computation

Josh L. Balchar' Ricard Gavaldii'

Department of Software (LSI)
Universitat Polit&cnica de Catalunya

Barcelona 08028, Spain

Ham T. Siegelmannt Eduardo D. Sontag+

Department of Computer Science Department of Mathematics
Rutgers University

New Brunswick, NJ 08903

E-mail: balquiQlsi.upc.es, gavalda@lsi.upc.es,
siegelmaQ yoko.rut gers .edu , sont agQcontro1 .rut gers .edu

Abstract

Recent work by Siegelmann and Sontag hod
demonatrated that polynomial time on linear satu-
rated recurrent neural networks equab polynomial
time on standard computational models: !bring
machines if the weights of the net are rationab,
and nonuniform circuits if the weights are reab.
Here we develop further connections between the
languages recognized by such neural nets and other
complen'ty classes. We present connections to
space- bounded classes, simulation of parallel compu-
tational models such as Vector Machines, and a dis-
cussion of the charaderkations of various nonuni-
form classes in terms of Kolmogorov complezity.

1 Introduction

Among the many research issues suggested by
neural computational models, the problem of pre-
cisely knowing the power of the different models
under different resource bounds is clearly worth at-
tention. Like for other computational models, the
analysis of the resources necessary to complete a

'Research supported in part by the ESPRIT Basic Re-
se-& Actions Program of the EC under contract No. 7141
(project ALCOM II).

tResearch supported in part by US Air Force Grant
AFOSR91-0343.

computation is a practically important, theoreti-
cally profound, and difficult consideration. This
paper characterizes the computational power of cer-
tain resource-bounded neural models in terms of
some familiar complexity classes of decisional prob-
lema.

A number of such relationships are already
known, mostly for nets with threshold activation
functions. Threshold nets can be thought of as a
model of discrete computation, since at each mo-
ment the state of each neuron is a binary value.
The model we treat here is analog, in the sense that
the states of the neurons are real numbers obtained
through a continuous activation function. There-
fore the relationships we obtain are quite different
in kind, and are based on different techniques.

More precisely, neural nets in which each neuron
computes a threshold function lead to characteriza-
tions in terms of circuit classes and other known
computational models, and actually the simplest
widely known model, the finite automaton, was ini-
tially suggested as a characterization of the power of
finite neural nets with threshold behavior 191. Since
in this case a constant number of neurons can only
yield regular languages, nets of nonconstant size are
considered. By bounding in various manners the
growth of the neural net with respect to the in-
put length, characterizations can be found in terms
of boolean circuits. The excelent surveys [lo] and
[ll] provide a precise account of these characteri-

263
1063-6870/93 $03.00 Q 1993 IEEE

zations. Most of them correspond to acyclic neural
nets. Some of them characterize cyclic nets with
time bounds by "unwinding" them into acyclic nets.
Our results correspond to essentially cyclic nets in
the sense that the proof techniques in no case rely
on any unwinding process.

A quite ample repertory of functions haa been
proposed for the action of each computation unit
in neural modela. We focus on neurons whose
real-valued states are computed by combining, in
an affine or polynomial way, the inputs obtained
from preceding neurons, and then filtering the re-
sult through a sort of approximation to a sigmoid.
More precisely, our approximation is known as "lin-
ear saturated respond"' it is zero for negative ar-
guments, the identity for arguments between zero
and one, and staye conatant at one for larger argu-
ments. This behavior is essentially different from
the threshold function case.

Actually thresholds present a problematic dis-
continuity since they require to sharply distinguish
between -2-k and 2-' for no matter how large
a k. As linear saturation is continuous, such ob-
jection does not arise. Still the discontinuity of the
derivative at the aaturation points makes it some-
what objectable in the grounds of implementations
on physical systems, and make preferable a stan-
dard smooth sigmoid. However, linear saturation
is clearly reasonable as an approximation that still
allows for study without resorting to computability
and complexity in the real field [5], and therefore ad-
mitting characterisations in t e r m of standard com-
plexity claesee bawd on the boolean semiring.

The starting point of the work reported here
is the result by Siegelmann and Sontag [13] that
proves that bounded size, linear saturated, cyclic
neural nets with rational weights (and therefore r&
tional states) are equivalent in power to Turing ma-
chines, with polynomial time overhead in both di-
rections. Actually, it was proved there that the aim-
ulation of a Turing machine by a neural net can be
done in linear time. A particularly noteworthy con-
sequence is that, the proof being completely con-
structive, it allows one to compute an actual con-
stant bound on the size of a universal neural net,
based on a universal Turing machine with small
tape alphabet and state set: 1058 neurons suffice to
decide in time T(n) any language Turing-decidable
in time T(n).

Here we extend these results in several directions.
One is to c1aaae-e defined by space bounds on Turing
machines. As a remurce in neural nets correspond-
ing to memory space, we identify the size of binary

descriptions of the rational states of the neurons
during the computation. A number of technical
considerations are required due to the input con-
vention of the neural net, and will be discussed in
the text; in particular, the simulation of certain on-
line machines requires a more efficient simulation
than that of [13]. Indeed, a neural net can simulate
a Turing machine in real time (although the proof
of this fact is deferred to the complete version of
this paper).

Similarly, we consider classes defined by parallel
time bounds. Actually neural nets are considered
a very appropriate model of parallel computation,
due to the fact that the net result embodies the ac-
tivity of a large number of neurons (the so-called
Parallel Distributed Processing). We find rather
interesting the fact that our model of neural nets
can achieve exactly the power of parallel machines
of the Second Machine Class (see [3] or [15]) even
with a bounded number of neurona. To characterize
parallel time, we follow an intuition familiar to the
complexity theorist: to allow the model to manipu-
late large objects in short time. More precisely, al-
though there is no difference (modulo a polynomial)
in the power of our cyclic neural nets if polynomials
instead of affine combinationa are used to compute
the argument fed into the sigmoid, we prove that
second class power is obtained if they can use ratio-
nal functions (i.e. division) and bitwise AND, and
obey an exponential precision bound.

We ale0 consider the case of real-valued weights
and states, studying again both the affine or poly-
nomial caee, and the case of aecond class power.
The following interesting result was proved in [14]:
with real weights and states, bounded size, linear
saturated, cyclic neural nets simulate (nonuniform)
boolean circuits 80 that neural net time and circuit
size are polynomially related. Thus, for instance,
in polynomial time these neural nets accept exactly
the languages in P/poly, and in exponential time
they can accept any arbitrary set. We relate this
fact to the preceding ones regarding parallel time
classee: the w e of division and bitwise AND in
this case provides exactly the power of nonuniform
parallel computation, e0 that time corresponds to
nonuniform (bounded fan-in) circuit depth; in par-
ticular, any arbitrary set can be decided in linear
time by nets with real weights, provided that di-
vision and bitwise AND are available. This cor-
responds to writing arbitrary boolean functions as
sum of minterme in linear depth. So, essentially real
weights add the characteristic of nonuniformity to
both the sequential and the parallel models. Thus

264

in a sense the technical merit of this result is that
of [14].

A natural question regarding nonuniform classea
is the possibility of bounding the amount of advice
corresponding to the class. We also study how such
bounds are reflected in the neural model. It can
be argued that, if some neb with real weights are
computationally feasible to implement, then short
descriptione muet exist for their real-valued weighte.
It is therefore interesting to have characterizations
of the accepted languages in terms of the amount
of information and resources required to construct
these reals.

Thus we set bounds on the resource-bounded
Kolmogorov complexity of the reale used as weights
in the neural neb, and prove that such bounds cor-
respond precieely to the amount of advice allowed to
nonuniform cleeees between P and P/poly, as etud-
ied previously in [4]. It is known that P/poly and
some subclaaeas can be characterized by polynomial
time with tally oracles: we show that the complex-
ity of the reds in the net corresponds also with
the Kolmogorov complexity of these tally oracles.
Using such Kolmogorov complexity arguments, we
prove that there exists a proper hierarchy of com-
plexity classes defined by neural nets whose weights
have increasing Kolmogorov complexity. All this
is proved by combining the contributions of (141
with some structural constructions taking care of
the Kolmogorov complexity conditions.

2 Preliminaries

2.1 Structural Complexity

The concepts from Complexity Theory men-
tioned through this paper are all standard; eee [2]
for undefined notions.

Complexity classes are sets of formal languages.
A formal language is a set of words over the al-
phabet (0, l}. By standard encoding methods, any
other finite, fixed alphabet could be assumed if nec-
essary provided that it has a t least two different
symbols. We denote by wl:) the word consisting of
the first k symbols of w ; this is valid too when w is
an infinite sequence. The length of a word w is de-
noted IwI, and overloading the notation we denote
by IAl the cardinality of the finite set A.

For any alphabet C, C' is the set of all words
over C; E<" is the set of all words of length a t most
n, and AIn = A n Cs"; similarly we have C=" and

A=". Here we will use in particular the alphabets
C = (0,1} and C = (0). A tally set is a set of words
over this single letter alphabet (0). The strings
of C' are ordered by lengths and lexicographically
within each length.

If A is a set of words, X A E (0, 1}O0 is the charac-
teristic sequence of A, defined in the standard way:
the ith bit of the aequence is 1 if and only if the it*
word of E' is in A. Similarly, ~ ~ 5 , " is the character-
istic sequence of AS" relative to !@. In both cases
C is taken as the smallest alphabet containing all
the symbols occurring in words of A, so that for a
tally set T, XT denotes the characteristic sequence
of T relative to {O}*.

Throughout this paper, logn means the function

We will mention complexity classes defined by
computational models; these can either be sequen-
tial or exhibit unbounded parallelism in some guise.
The sequential classea can be defined in a com-
pletely standard way by timebounded or space-
bounded multitape Turing machines, poasibly non-
deterministic, e.g. classes like P, PSPACE, or NP.
Relativizations of these claeees are also used; the or-
acle machine model used for defining them is stan-
dard. All these classes are invariant under changes
of the machine model, provided that it stays within
the so-called First Machine Class [15]: they sim-
ulate and are simulated by multitape Turing ma-
chines within a polynomial time overhead and a lin-
ear space overhead.

Parallel models have in principle more power
than the First Class. Many models exist, and
not all of them are equivalent. Our parallel mod-
els are taken from the so-called Second Machine
Class [15]. This class captures a very frequently ob-
served species of parallelism, characterized by the
Parallel Computation Thesis: time on these mod-
els corresponds, modulo polynomial overheads, to
space on First Class models. Prominent members of
the Second Machine Class are the alternating Tur-
ing machines and the Vector Machines ([12], see also

The notion of advice function was introduced in
[6] to provide connections between uniform compu-
tation models such as resource-bounded Turing ma-
chines and nonuniform computation models such as
bounded-size boolean circuits.

"(1, PO& 4) .

[31).

Definition 1 Given a class of sets C and a class of
bounding functions F, the class CIF is formed by

265

the sets A such that

Vn 3w (I w l s h(n)) Vx (1x1 = n)
Z E A e (2 , w) E B

where B E C and h E F. 0

The words w mentioned in the definition are fre-
quently called “advice wordd’. The corresponding
Skolem function mapping each n into an appropri-
ate advice wn for length n is cdled “advice func-
tion”. C is usually a uniform complexity clam, most
frequently P, whereas the clam poly = (nk I C E IN)
of polynomials and the class log = {C a logn I L E
IN) = O(1ogn) of logarithms are the most frequent
bounding functions.

The class P/poly is known to have a number of
interesting characterizations; the most relevant two
of them are UT P(T) where T is a tally set and the
class of sets A such that for all n the set A=R can be
decided by a circuit of size polynomial in n. Several
variants corresponding to logarithmic advice can be
defined; see [4] and the references there.

Later on in section 5 we introduce additional
structural material regarding Kolmogorov complex-
ity.

2.2 Neural Networks

In this work, a neural network is a processor net-
work consisting of a finite number of processors, or
neurons, each of which has a state whose value a t
integer times t that can be characterized by a real
number. We assume that there are N processors
and M external input signals. The state values, or
“activations,” are updated by equations such as

(1)
for i = 1,. . . , N. Here zi(t) and uj(t) denote the
state of neuron i and the value of input line j a t
time t , respectively. The elements ai,, etc, are
called the “weights” of the network, and U(.) =
max{min{x, l}, 0). In vector form, this reads

z+ = u(Ax + Bu + c) (2)

where “z+(t)” stands for “z(t + 1)” and we drop
time arguments t . We are letting U denote the a p
plication of U to each coordinate of x; note that now
c is an N-vector, A and B are real matrices of sizes
N x N and N x M respectively. Given as part of the
definition is also a set of indices i l , . . . , ip . We think

of the processors xil,. . .,xi, as output processors.
For each input sequence U = U(l), u(2), . . . and ini-
tial state z(1) = 0, recursively solving equations
(2) gives us the state z(t) at time t . Restricting
attention to the output processors one gets a corre-
sponding sequence of output dues, which we refer
to as the output produced by the input U. We as-
sume that 0 is an equilibrium state, which amounts
to:

a(A0 + BO + c) = 0 .

We now restrict, as in [13], to networks with two
binary input and output lines. In each case, the
first one is a data line that carries a binary signal
(defaults to zero if there is no signal), and the sec-
ond one is a validation line, used to indicate when
the data line is active. The validation signal is “1”
while the input is present, and “0” otherwise. Thus
we can write ~ (t) = (D(t) , V (t)) E (0, 1}2, and sim-
ilarly for outputs (Od(t), O,(t)) .

We use the following convention to deal with lan-
guage recognition. We start by encoding each word
a = a1 . . -ai . E (0, I}+ into an input signal of the
form described above, namely: Let

ua(t) = (oa(t), Va(t)) 9 t = 1, - 9

where Va(t) is 1 if t = 1,. . . , k and is 0 otherwise,
while Da(t) equals a, for t = 1,. . . , 1: and is 0 other-
wise. We say that a word a is clossified in time 7 if
the output sequence y(t) = (Od(t), O,(t)) produced
by uo is of the special type:

Od = O..*O~aOOO.*. , 0, = 0 . * * 0 1 0 0 0 . * . , w v
r-1 t-1

where va is binary.
A language L 2 {0,1}+ is said to be accepted

in time T by the network N if each a E {0,1}+ is
classified in time 7 5 T(lal), and va equals 1 when
a E L and equals 0 otherwise.

The definition given here corresponds to the
so-called first-order neural networks, since the
computation of each processor is an affine func-
tion. Second-order nets are obtained if polynomi-
als (equivalently, multiplication) are allowed to take
place in the processors. Time in second-order nets is
polynomially related to time in first-order nets [13].

3 Space Classes

This section discusses rational-valued neural nets
on which a bound is set on the precision available for

the computations. It should be observed that any
simulation of a neural net computation, e.g. by im-
plementing a simulation program on a more or less
standard computer, will have to obey such a bound.
Indeed, efficient implementations of the arithmetic
require dedicated hardware, able to handle 're&"
of a limited precision seldom larger than 64 bits
(and quite frequently smaller). When larger preci-
sion is necessary, for instance to process longer in-
puts, one must resort to a software implementation
of real arithmetic (sometimes provided by the com-
piler), and even in thie cane a physical limitation on
the length of the mantissa of each state of a net-
work under simulation ia imposed by the amount of
available memory. It is thus important to know the
computational consequences of these limitations.

This very same observation suggests that some
connection can be traced between the space require
ments needed to eolve a problem and the precision
required on the states of the neural networks that
solve them.

Definition 2 A rational neural net works within
precision S(n) if and only if all the weights, and
all the rational values of the states of the neurons
through a computation on an input of length n, can
be represented in binary within O(S(n)) bits.

We observe here the following:

Theorem 1 Let S(n) 1 n be a space-constructible
function. Then the following are equioalent:

1 . the set L is accepted by a lhring machine
within space O(S(n));

2. the set L b accepted by a neurcrl net within pre-
cision O(S(n)).

The proof is not difficult along the lines of [HI.
However, that proof relies on a preliminary phase
through which the input is completely loaded into
the state of a specific neuron, before proceeding to
the actual computation. This is the reason why we
need the condition S(n) 2 n, since the precision
needed for that neuron will be at least linear. Ac-
tually, the proof of theorem 2 below can be used as
well to prove this theorem, taking into account that
the restrictions imposed there become trivial for at
least linear space.

It is quite interesting to see what happens under
sublinear precision bounds. The point is that the
input convention we have described for neural nets

makes available each input symbol only once; more-
over, it ie available for only a single step, eince the
next iteration brings a new symbol in.

Thus, nets will correspond weakly to restricted
variants of Turing machines, the on-line machines
and a still more restricted model called here lr-
d i n e s : they move left to right the input head
one symbol per each step, and cannot backtrack nor
even stay at a symbol more than one step. However,
they are allowed to continue working without fur-
ther reading after exhausting the input. This last
period of work usea only the information gathered
in the w o r k t a p during the reading. Clearly this
restricted model is equivalent to the standard model
for a t least linear space bounds.

Theorem 2 Let S(n) be any space-constructible
function.

1. If a set L is accepted by an lr-machine within
space O(S(n)) , then L is accepted by a neural
net within precision O(S(n)) .

2. If a set L is accepted by a neural net within
precision O(S(n)) , then L is accepted by an on-
line machine within space O(S(n)).

Note that, unlike the previous and next theo-
rems, we don't have to impose any lower bound on
S(n) here. Essentially this corresponds to proving
that the intermediate step of loading the input into
a single neuron state, as done in [13], is not neces-
sary; but this does not suffice since there the net
needs four steps to simulate each step of the Tur-
ing machine. A different procedure is necessary to
prove that the simulation can be done in real time,
i.e. spending only one step of the neural net to sim-
ulate each step of the Turing machine; otherwise,
input characters would be lost. This new simula-
tion will be described in the full paper, together
with some consequences such as a better bound on
the size of the smallest univerd neural net.

On the other hand, the second part is quite sim-
ple, since it consists of a straightforward simulation
of the computation of the neural net. The state
of each of the fixed number of neurons is kept in
worktape, where it fits due to the precision bound.
Since the network receives its input in real time,
there is never the need of backtracking the input
head during the simulation. Observe however that
the simulating machine is not an lr-machine since
each step of the net requires a nontrivial number of
Turing machine steps due to the arithmetic opera-
tions to be done.

257

Off-line spacebounded machines can be proven
equivalent to precision-bounded neural nets under
a different input convention.

Definition 3 A neural net with cyclic input re-
ceives the input w through two input lines as fol-
lows: the data line brings in the bits of the input w
repeatedly, woo, while the validation line brings in
(101+1)oo. 0

So, the data line brings in wwwwww . . . and the
validation one, instead of marking the end of the
whole input, marka the beginning of each cycle.
This (admittedly somewhat artificial) input conven-
tion gives:

Theorem 3 Let S(n) 2 logn be a space con-
structible function. Then the following are equiv-
alent:

1 . the set L is accepted by an of-line lbring ma-

1. the set L is accepted by a neural net with cyclic

chine within space O(S(n));

input within precision O(S(n)).

Here we only sketch the proof.
Proof. 1 3 2) The network hf simulating the Turing
machine M is built conceptually out of two sub-
networks: In a manner similar to that of [13], we
construct a constant sire subnet that receives as
input the bit currently scanned by the input-tape
head of the M and the state of M, and returns a
new state and the direction to move the input-tape
head, right or left. Another neuron keeps a ratio-
nal that, interpreted as an integer value, indicates
the current position of the input-tape head. The
value is incremented or decremented depending on
the direction of movement. Then another subnet,
triggered by the 1 that marks the beginning of each
cycle, counts up to the position of the input-tape
head to catch the input symbol necessary for the
simulation of the next step. With some precompu-
tation time, it is possible to do the counting in real
time using only logarithmic precision.

2 3 1) For the backward implication, use the
same simulation as for the on-line case. When
reaching the right end of the input, stop the simula
tion, reset the input tape head, and resume it; when
the simulating machine is reading the first symbol
of the input, it simulates a 1 on the input validation
line. I

The fact that time-bounded rational nets corre-
spond modulo polynomial- time simulations to time-
bounded n r i n g machines [13], taken together with

theorem 1 here, allows us to close this section by
pointing out a remark on the ''linear precision suf-
fices" lemma of [14]. There it is proved that for a
neural net running in time T(n), the net obtained
truncating all stat- to O(T(n)) bits is equivalent
to it. Their proof is valid for real states; but if we
consider ita restriction to the simpler rational case,
then we can aee an interesting intuitive analogy.
Through the equivalences with the Turing model,
we see that this result corresponds in Bome sense
to the basic theorems relating time-bounded and
space-bounded classes, and in particular to the by
now elementary result that everything done in time
T(n) is done in epace T(n) as well. The "linear pre-
cision lemma", restricted to the rational case, would
be ementially the neural net analog of this result.

4 Parallel Time Classes

It was proven in [14] that second-order nets can
be simulated with a polynomial overhead in time
by first-order nets. That is, allowing neurons that
compute polynomials does not increase the compu-
tational power of nets (up to polynomials). In this
section we show that, for nets with rational weights,
adding both division and bitwise AND makes an
enormous difference: that from sequential to paral-
lel time.

Thus the nets we consider in this section have
processors with either an update equation of the
form

where Pi and Q j are polynomiale with rational co-
efficients, or of the form

zi(t + 1) = Z j l (i ?) A . . . A Zj,(t) .

where h denotes bitwise AND of binary represen-
tations (note that adding U does not make any dif-
ference in this case). We assume that the binary
expansion of a non-periodic rational always ends in
an infinite sequence of zeros. That is, 1/2 is repre
sented as 0.10000. .., not as 0.01111.. .

We say that a net works within precision p(n)
if the binary expansion of all weights, and of any
state appearing during the computation on an input
of length n, is identically zero after the first p(n)
digits. Let NN-TIME(t,p) be the set of languages
accepted by nets with division and bitwise AND in
time O (t (n)) and precision O(p(n)) simultaneously.

268

Intuitively, the extra power we get by using di-
vision can be demonstrated by the following e x m -
ple. By repeated multiplication a net can build in
time ~ (t) rationals as s m a ~ as 2-2'. TO recover
the first 1-bit of these numbers, a net without divi-
sion can only multiply at each step by some (con-
stant) weight, and thus needs 2"(') steps. However,
8 single division can turn this digit into the moet
significant one.

We use this power of division, and bitwise AND,
to simulate a model of unbounded parallelism in-
troduced by Pratt and Stockmeyer, the vector ma-
chines ([12], see also [3, 71).

Vector machines are machines that can make
boolean operations and left and right shifts on their
potentially infinite registers; these capabilities give
them the power of parallel machines. More pre-
cisely, a vector machine is a processor together with
a fixed number of vector registers VI, VZ, . . ., Vr,
each containing bit vectors. These bit vectors are
ultimately constant sequence8 of bits written from
right to left, and infinite to the left. The length
of a vector register is the length of its nonconstant
part. Vectors that are ultimately 0 and ultimately
1 represent non-negative and negative integers re-
spectively. The input is given to the machine in
register VI, and the output is in V' when the ma-
chine halts. The program for the vector machine
can contain the following instructions, assumed to
have unit coet:

V;: := 2: Load the constant 2 into V;:.

vl. := not V;.: Bitwise negate all of vi.

V;. := 5 A vk: Bitwise AND V, and Vk.

V;. := V;: 7 5: If 5 contains a positive num-
ber, shift to the left by 5 positions; new
positions are filled with zeros. Otherwise, do
nothing.

V;: := V;. 1 5: If V, contains a positive number,
shift vl. to the right by V. ositions; rightmost
bits are discarded. Otherwise do nothing.

if V;: = 0 go to kbel.

accept, reject.

J P

To make vector machines equivalent in power to
other Second Class models, we have to impose the
following restriction: no register is ever shifted by
more than 2°(t(")) positions in a single shift instruc-
tion, where t (n) is the machine's running time. In

other words, arguments 5 in shift instructions al-
ways have values O(t(n)). We call machines with
thia property restricted. Let VECTOR-TIME(t) be
the class of languages accepted by restricted vector
machines in time O(t(n)).

We now show that, up to polynomials, the classes
VECTOR-TIME(t) and NN-TIME(t, 2') are equal.
To our view, the restriction of shifts in vector m b
chines can be compared to the restriction of preci-
sion in the nets.

Theorem 4 For any t (n) 2 n, VECTOR-TIME(t)
N N - T I M E (~ ~ (~) , 2O@)). I

Proof. Let M be a restricted vector machine running
in time t (n). For a given n, let 8 be the minimum
power of two such that the length of M's registers
is always less than 8 , during the computation on
an input of length n. It is easy to prove that s =
2O('(")) (the restriction on the shifts is necessary
here).

To simulate M by meam of a neural net, we en-
code the contents of each register vl. of M as the
activation value of a net processor vi. More pre-
cisely, if V;: contains the vector . . . OOObtbt-1.. . b2b1,
then vi = 0.000 ... 000btbt-l...b2b1OOO ..., and

if V, containa ...lllbtbt-~...b&l, then vi =
0.111 ... l l l b t b t - 1 . . .bab1000... Note that 0 5

vi < 1, and that vi 2 1/2 if and only if V;: < 0.
Initially, the net reads the input and stores it as

the state of u l , as described in [13]. For the ac-
tual computation, we divide the proof in two parts:
First, we show that the effect of each vector instruc-
tion can be simulated by rational functions and bit-
wise ANDs in time polylogarithmic in 8 = 2°(t(n)),
i.e., polynomial in t (n). Then, we show that these
sequences of operations, as well as the finite con-
trol of the vector machine, can be programmed in
a neural net.

We simulate each vector instruction as follows:

\ /

-.

\ #

*

V;. := x: The constant 2 is built into the
network as a weight, and this instruction sets
vi := 2.

V;: := not vl:: Build the rational 2-* as de-
scribed below for the shift instructions. Then
set vi := 1 - 2-' - vi .

0 V;: := 5 A Vk: This is simulated by a bitwise
AND of Vj and vk.

269

/* compute y = 2-*, where x = 2,-1. . . xo is given as a real z' = O.X.-~.. . 2 0 */

for i := 1 to logs do
p := 1/2;

p := p2;
/* p = 2-' here; recall that B is a power of 2 */

y := 1; I := 1/2;
while z ' / p 2 1 do begin /* digits left in t' */

/* 3i (p = p + i

y := y * r;

= 2-2' A = 2-(~i-1...~0) *) /
if (x' A p) / p = 1 then

p := 2 * p ;
2 := 2 2

/* 2i = 1 */

end

Figure 1: Computing 2-"

0 vl. := V;: 7 5. This is simulated as:

i f a j < 1/2 (Le., Vi 2 0) then begin
build y = 2-"j;
vi := Vi /Y

end

Testing condition "v, < 1/2" is knowing
whether 0(4(wj - 1/2)) is 0 or 1. To compute
2-"j we w e the algorithm given in the figure,
which works in time O(l0g Ivj I). Because Ad is
restricted, 141 is 2°('(n)) and thus the compu-
tation t a k a time O(t(n)).

0 vi := vl. 1 Vi. Similar to left shift using prod-
uct times 2-"j instead of division.

0 if V;: = 0 go to label: Compute 2-' as above and
then test whether a(vi/2-') = 0. Note that
a(v i /2 - ') = 1 for all possible contents of K
except for 0.

0 accept, reject: To simulate these instructions,
the net sets to 1 the output validation line and
to 1 or 0, respectively, the output data line.

It remains to show that sequencing all these instruc-
tions can be hardwired into a network. Here we only
provide an example: a subnet that implements the
computation of p = 2-' following the first loop of
the algorithm in the figure.

This network is triggered by the input a; it out-
puts its data via the neuron p and validates the
output via the neuron U.

The binary input a is 0 except for once. When
1, it triggers the network described below.

The output validation neuron v is set to 1
log(s) steps after U triggers.

The output data neuron p contains the value
2-' when v = 1.

The internal neuron c counts the time. We assume
that some neuron C in the rest of the net provides
the reciprocal of a, the maximum length that a reg-
ister can have. For example, if s = 32, I contains
binary 0.00001 (recall that s is a power of two).

The update equations of the processors are:

p+ := U(a/2 + (1 - a)p2)
/* a = 1 resets p to 1/2, a = 0 squares it */

/* a = 1 resets counter to 1/s */

/* w+ = 0 for c 5 1/4, v+ = 1 for c 2 1/2 */

c+ :=U(a .L+ (1 -a). 2c)

v+ := 6(4c - 1)

I

Theorem 5 For any t (n) 2 n, NN-TIME(t, 2') E
VECTOR-TIME(~~(')).

Proof. Consider a net running in time t (n) and
within precision 2'("). To simulate the net by a
vector machine, we keep the state of each proces
sor in a vector register of length 2'("). Remember
that addition, product, division, and bitwise AND

of m b i t numbers can be computed in parallel ma-
chines in time (lognI)O(') and n ~ ~ (~) memory (see
for example [7]) . Thus, updating the state of each
processor at each simulated step needs t (n)O(') time
and 2°(t(")) memory on the vector machine. I

In fact, the simulations show that amount of
memory in vector machines is polynomially related
to net precision. The theorems were stated for a t
least linear running time, aa the networks need lin-
ear time to read the input. However, the simula
tions work even for sublinear running times t (n) 2
log n, if we adopt an alternative convention that the
input is given to the net as the initial state of one of
the processors, as in theorem 2 of [13]. Then we can
characterize NC, the class of sete accepted by Sec-
ond Clam machines in pol log time and polynomial

Time for both models is still polynomially related
in the presence of nonuniformity, that is, when vec-
tor machines are nonuniform and nets have real in-
stead of rational weights. We discuss this in more
detail in section 5.

space, as NN-TIME(logo 7 ') n, no(l)).

5 Nonuniform Classes

5.1 Real weights and circuit depth

In section 4 we have considered nets whose pro-
cessors can compute rational functions and bitwise
ANDs on their inputs, and shown that time in these
nets is equivalent to time on parallel machines. If
we allow real instead of rational weights, their power
changes accordingly: we obtain nonuniform paral-
lel time, or, equivalently, nonuniform circuit depth.
For example, one can obtain the following analog of
the fact that nonuniform circuits of bounded fan-in
and linear depth can decide any set.

Theorem 0 Every language i s decided in linear
time by a net with real weights whose processors
compute rational finctions and bitwise ANDs.

Proof. The net contains a real weight whose binary
expansion is the characteristic sequence of the lan-
guage to decide. On an input that has lexicograph-
ical number i , the net computes the real t = 2-'
using multiplication; it can do this aa the input is
entering. When the input ends, the net ANDs x
with the real encoding the set, and divides the re-
sult by t, thus determining whether the input is in
the set or not. I

Note that, in fact, the net has the answer two
steps after the input has been read.

5.2 Kolmogorov Weights: Between P
and P/poly

As said in the introduction, in [13] and [14]
Siegelmann and Sontag showed that the computa
tional power of neural networks depends on the type
of numbers utilized as weights. They investigated
the computational power of networks in which ei-
ther rationals or reals are involved. When the net-
works compute in polynomial time, the computa
tional power of these networks happens to coincide
with the claeaea P and P/poly, respectively.

Here, we concentrate on weights from various
classea of computable numbers, characterized in an
information-theoretic manner. We discover an infi-
nite hierarchy of computational classes of networks
with such weights - while still complying with the
polynomial computation time constraint. This re-
sult is maybe surprising aa different neural network
models were traditionally considered aa equivalent
to finite automata, Turing machines, or unlimitedly
powerful models.

We define different claeses of computable num-
bers [l] by considering different time constraints
and amounts of information in their construction.
Our definition of Kolmogorov complexity of infinite
sequences is a time-bounded analog of that in [8].

Definition 4 Fix a universal Turing machine U.
Let f be a nondecreasing function, g a time-
constructible function, and a E {O,l}m. We say
that a E K [f (n) , g (n)] if there exists p E (0, 1}O0
such that, for every n, the universal machine U out-
puts a1:" in time g(n), when given &(") and n as
inputs. If no condition is imposed on the running
time, we say a E K [f (n)] .

Observe that here the length of the output is
provided for free to the universal machine; so our
definition corresponds to the usually named com-
plexity relative to the length. The reason is that
we want simple numbers (e.g. rationals) to have ex-
tremely low complexity (e.g. constant), and the in-
formation contained in the length of a string could
be higher. However, the definitions are equivalent
(modulo constants) for complexities a t least loga
rithmic.

Generally, K[F, 91 is the set of all infinite binary
sequences taken from K [f , g] where f E F and g E
0. For example, a sequence is in K[log,poZy] if its

261

prefix- are computable from logarithmically long
prefixes of some other sequence in polynomial time.

In the following, we denote by {0,1}# the set of
both finite and infinite binary strings.

Define a function

64 : {0,1}# + [O, 11

by the formula

Io’ 2ai + 1
S4(€) = 0 &(a) = 4’ .

i= 1

Here e is the empty string; [a[is the length of the
string a, and can be either a finite value or 00; ai

is the ith bit of the string a. Let A 4 be the range
of this function. That is,

The map 64 is injective in {0,1}# I+ A 4 and 6,’ is
well defined there. Thus, it can be used to define
the Kolmogorov complexity of numbers in Ad: A
number w E A 4 is said to be in K [f (n) , g (n)] iff

The main contribution of this section is to show
that the Kolmogorov complexity of the weights of
a net is also related to a structural notion: the
amount of advice for nonuniform clasees. Important
consequences follow; for instance, we can prove the
following “hierarchy” theorem:

Theorem 7 Let 3, Q be function classes such that
3% E 0,s E o(n) such that Vp E poly, Vr E
F,r (p(n)) E o(s(n)). Let NK(7,polyl the set
of networks that compute in polynomral time, and
each of which uses weights j i v m K[3, poly] U Q. Let
C(hfKIF,poia) be the class of languages accepted bv

w4 E K [f (n) , g (4 l .

NKIF,polyl ’ Then:

I

In subsection 5.3, we prove the equivalence be-
tween an infinite subset of oracle TMs and networks.
We show in subeection 5.4 the hierarchy in the dis-
cussed subset of oracle TMs, thus concluding theo-
rem 7.

5.3 Equivalence of TMs with Tally Or-
acles and NNs

Definition 5 Let S C_ {0,1}#. S is closed under
mizing if for any finite number k E N and for any
k strings from S,

a1 = aiaiai. . . ,
a2 = a;a;a;. . . ,
ak = atafa!. . .

a;a:a: * - -a; a;a;a; * * -a; a:*; * - -

...

the shuffled string

is again an element of S.

Definition 6 Let S C_ (O , l } # . We define the frac-
tion set of S to be

34 = {U E A 4 1 3a, w = &(a) and a E S}

Definition 7 Let T C (0, l}*. We define the char-
acteristic number of T as

T4 = U X T) E A 4 ,
where XT is the characteristic string of T.

The main theorem of this subsection is as follows:

Theorem 8 Let S (0, 1)O“ be closed under miz-
ing and 7 the class of tally sets I = { T : XT E
S }. Time in the following models i s polynomially
related:

1 . Omcle n r i n g machines that consult omcles in
7.

1. Neuml network that have all weights in the set
s* UQ.

Before proving this theorem, we look at some
consequences for polynomial time machines. The
following classes Pref-C/H were defined in [4]:
Given a clam of sets C and a clam of bounding
functions H, the clam Pref-C/H is formed by the
sets A such that

Vn 3 W n (Iwnl I h(n)) V X (1.1 I n)
x E A <%,U,>€ B

where E E C and h E H and, for all n 5 m, wn
is a prefix of w,. Observe that advice wn must be
correct for all strings of length up to n, not only
those of length n. Note also that Pref-P/poly =
P/poly, but that a similar equality may not hold
for smaller function classes.

We also say that a class 7 of functions is closed
under O(.) if for every f, g, if g E O(f) and f E 3,
then g E 3.

262

Corollary 8 Let 3 be a claes of nondecreasing
functions closed under O(.), and L(NKIF,polyl) be
the class of languages accepted by networks with
weights in K[F,poly] U Q. Then,

Some interesting special caaes arise when consid-
ering various natural bounds for the Kolmogorov
complexity:

e S = K[n,poly], that is, arbitrary strings.
The class of languages accepted in thie case is
P/poly: this is the main reeult of (141.

e S = K[1, poly], that is, the sets of strings com-
putable in polynomial time. The class of lan-
guages accepted in this caee is P.

e S = K@og, poly]. In thie case, the class of lan-
guages accepted is Full-P/log, described in [4].

The next two s u b s u b t i o m prove theorem 8.

5.5.1 Proof: 1 E 2

Definition 9 An oracle neural network (0") is
a network A/ with additional three special oracle
neurons Q, A, W - called query, anewer, and wait
neurons - and a particular oracle number Y. The
above receive their values in

The network operates regularly as long as W =
0. When W = 1, the activations in the network
A/ are not being changed.

The network can set W to 1 but cannot reset
it.

When W = 1, the three oracle neurons change
as follows:

A + (6,-'(Y))leX(q)
Q + O
W t O

where lex(&) is the lexicographic index of Q in
A4. Other neurons of A/ do not change.

Setting W = 1 is like invoking a subroutine for solv-
ing a membership query. Y can be thought of as the
characteristic number of an oracle set Y', and the
subroutine tests whether &'(Q) E Y'. However,
we assume that this oracle subroutine answers in
unit time.

Lemma 10 Let T be a tally set. Time in the fol-
lowing models is polynomially related.

e Oracle TM that consults the tally set T.

e Oracle NN with all weights in Q and oracle
number T4.

The proof of this lemma is very similar to the proof
of the main result in [13], and is not included here.

Lemma 11 For each number T4 E Ad, there exists
a network of five neurons and two inputs - u1, u2
- that started from the iero initial value, and given
the input signals

n 1
U1 = [C(a)i] 0 0 0

i = l

the network outputs

n + l

where b is the truth value of 6i1(u1(l)) E T, for the
set T that has Td as its characteristic number.

P m f . We use T4 as one of the weights of the net-
work.

Notice that

ul(1) = .U in base 4 ,
n

T4 = .3133113..- in base 4

and the nth digit of T4 in base 4 expansion is the
decision of whether C ~ ; ' (E Y = ~ (~) ~) E T.

The network simultaneously scans the value
given in T4 [in XI and xz] and the value of ul(1)
[in 23 and 241. When it reaches the last digit '1'
of u ~ (l) , the network returns the currently scanned
digit in the base 4 expansion of T4.

Using the above two lemmas, we can prove the
inclusion 1 C 2 as follows: let M be an OTM that

263

uses a tally set T ae an oracle, where XT E S. We
construct a network hf that accepts the same lan-
guage and has all weights in S4 U Q. The network
Af consists of two subnetworks: hfl is an oracle net-
work that consults the number T4, and N2 is the
retrieval network of TI as described in lemma 11.
By lemma 10, hfl hae only rational weights, and by
lemma 11, hf2 has both rational weights and the
weight T4 E $4. h f 1 simulates M in linear time [13],
while M2 has a total computation time bounded by
O(Clqueriea1) - which is bounded by the com-
putation time of M. Thus, given a OTM with an
oracle in S, there is a corresponding neural netwofk
whose weights are either rationals or in the set S4
that computes the same as the TM with no more
than linear slowdown in the computation.

(To couple the OTM network with the retrieval
network:

We add the neurons

t i = U (Q + W - l)
t i = a(t1)
t'l = a(t1 - t i)
t2 = a(W - t 1)

t3 = 4 4 x 3 - l 6 x 4) ,

where t y , t 2 are used as the input u1 and u2 of the
retrieval network. The neuron t3 is used to update
the dynamics of the oracle neurons.

W c U(... -Cit3)
A
Q +- U(... -C3t3),

+ IT(. . . + C z (2 ~ 5 + t 3 - 2))

where ". . ." represents the previously used values of
the neurons, and Cl, C2, C3 are constants.)

5.3.2 Proof: 2 E 1

Given a network hf with weights in 5 4 UQ. The
network has a fixed number k' E IN of weights,
which can be written in base four expansion as:

... ,

Assume w.1.o.g. that the first k of them are in $4,

that is, w$ E {1,3} for such weights i . (The weights
w k + l , . . . , wk' are rationals.) As S is closed under
mixing, the string

is again an element of S.
We show an oracle TM M that consults a tally

set with characteristic string XT = a, and simulates
the network while keeping the polynomial time
constraint.

1. M receives the input string x .

2. M computes the running time B(lz1) of M.
3. For a certain constant C, M executes:

For i = 1 to kCB(lz1)
query the ith word ofa.

Now, M hae the weights of hf up to a precision
CB(lzl). C is a constant such that this pre-
cision suffices. The existence of such a C was
proved in [14]. (The (k' - k) rational weights
are encoded in the machine M.)

4. M simulates hf step by step in polynomial
time.

5.4 Hierarchy of TMs That Consult
Tally Oracles

Theorem 9 Let 3, B be function classes such that
3s E 9, a E o(n), and for every polynomial p and
eve- r E 7, r(p(n)) E o(~(n)). Let U T P (T , F)
be a class of TMs that compute in polynomial time,
where each TM consults a tally set T such that XT E
K [f , po ly] , f E F. Define L(UT P(T, 7)) as the
class of languages computed by these TMs. Then:
Z(UT P(T, 7)) and C(& P(T, 0)) are difereni.

Proof. We define a set A E C(UT P(T, 9)) but not
in C(UT P(T ,F)) . Let a(.) be as in the theorem.
Choose an infinite sequence 7 K [n / 2] . For every
n define string pn ae p,, = 71:!(")/2 - O"-8(n)/2 if
n 2 s(n)/2, and fin = On otherwise.

Let A be the tally set with characteristic string
plp2p3. . . Given 71:8(n) /2 it is easy to build X A ~ , , ,

some constant c and polynomial q. Hence, A E

However, A $! Z(&P(T,F)). Assume oth-
erwise, then there is some machine that prints
71: , (n) /2 in time p l (n) , querying a t most the first
pl(n) elements of a tally set T, with XT E
K[r(n),p2(n)], P I , pz polynomials, and r E 0. Then

80 XA E K[s(n)/2 + ciq(n)l E K[s(n), q(n)], for

C(ur P(T, 9)) .

264

71:,(n)/2 is obtained from the firet r(pl(n))+O(l) <
s(n)/4 bite Of X T , in fact in time O(pl(pl(n))) . This
contradicts the choice of 7. I

The combination of theorem 8 and theorem 9
proves theorem 7.

References

[l] Aberth O., Computable Analysis, McGraw-Hill,
1980.

[2] Balcbar J.L., J. Diax, and J. Gabarrb, Struc-
tuml Complezity I, Springer-Verlag EATCS
Monographs vol. 11, 1988.

[3] Baldzar J.L., J. Diu , and J. Gabarrb, Struc-
tuml Complezity 11, Springer-Verlag EATCS
Monographs vol. 22, 1990.

[4] BalcBear J.L., M. Hermo, and E. Mayordomo,
“Characterizations of logarithmic advice com-
plexity claaaea”, in Information Processing 92,
vol. I, IFIP Transactions A-12, North-Holland,

[5] Blum L., M. Shub, and S. Smale, “On a the-
ory of computation and complexity over the real
numbere: NP-completeness, recursive functione,
and universal machined’, Bull. A.M.S. 21, 1989,

[6] Karp R.M. and R.J. Lipton, “Some connec-
tions between uniform and nonuniform complex-
ity claaaea”, in Pm. 12th ACM Symp. on The-
ory of Computing, 1980, 302-309.

[7] Karp R.M. and V. Ramachandran, “Paral-
lel algorithms for shared-memory machines”,
in Handbook of Theoretical Computer Science,
vol. A, MITIEleevier, 1990, 869-941.

[SI Kobayaahi K., “On compresaibility of infinite se
quences”, €”arch Report C-34, Department of
Information Sciencea, Tokyo Institute of Tech-
nology, 1981.

[9] McCulloch W.S. and W. Pitte, “A logical calcu-
lus of the ideas immanent in nervous activity”,
Bull. Math. Biophys. 5, 1943, 115-133.

[lo] Orponen P., “Neural networks and complex-
ity theory”, in P a . 17th Symposium on Mathe-
matical Foundations of Computer Science, 1992,

(111 Parberry I., “A primer on the complexity the-
ory of neural networks”, in Formal Techniques
in Artificial Intelligence: a Sourcebook, North-
Holland, 1990, 217-268.

1992,315-321.

1-46.

50-61.

[12] Pratt V.R. and L.J. Stockmeyer, “A character-
ization of the power of vector machined’, Jour-
nal of Computer and System Sciences 12, 198-
221 (1976).

[13] Siegelmann H.T. and E.D. Sontag, “On the
computational power of neural nets,” in Proc.
Fifth ACM Workuhop on Computational Learn-
ing T h e m , Pittsburgh, July 1992,440-449.

[14] Siegelmann H.T. and E.D. Sontag, “Neural
networks with real weights: analog computa-
tional complexity,” Report SYCON 92-05, Rut-
gem Center for Systema and Control, September
1992. Submitted for publication.

[15] Van Emde Boaa P., “Machine modela and aim-
ulations”, in Handbook of Theoretical Computer
Science, vol. A, MIT/Elaevier, 1990, 1-66.

265

