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Abstract: This note presents an explicit proof of the theorem - 
due to Artstein - which states that the existence of a smooth 
control-Lyapunov function implies smooth stabilizabifity. 
Moreover, the result is extended to the real-analytic and ra- 
tional cases as well. The proof uses a "universal' formula given 
by an algebraic function of Lie derivatives; this formula 
originates in the solution of a simple Riccati equation. 
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1. Introduction 

The  ma in  objec t  of this note  is to p rov ide  a 
s imple,  explicit ,  and  in a sense ' un ive r sa l '  p r o o f  of  
a resul t  due  to Ar t s t e in  [1], and  to ob ta in  cer ta in  
genera l iza t ions  of  it. The  result  concerns  cont ro l  
systems of the type  

Yc(t) = f ( x ( t ) )  + u l ( t ) g l ( x ( t ) )  

+ . . .  + U m ( t ) g m ( x ( t ) )  (1) 

wi th  states x ( t ) ~  R"  and  cont ro ls  

u ( t )  = ( U , ( t )  . . . . .  urn(t))  ~ R m, 

where  f as well as the & ' s  are  smooth  (i.e., in- 
f ini te ly dif ferent iable , )  vector  f ields and  f ( O ) =  O. 
It  is a ssumed  that  there  is given a control-Lyapunov 
function (hencefor th  jus t  'c l f ' )  V for this system, 
that  is, a smooth ,  p roper ,  and  posi t ive  def in i te  
func t ion  

V : g~ " ----~ g~ 
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for  each x 4= 0. In  o ther  words,  V is such that  for 
each nonzero  state x one can dimin ish  its value  by  
app ly ing  some open- loop  control .  Recal l  that  
posi t ive  def ini te  means  that  V(0) = 0 and  V ( x )  > 0 
for x 4: 0, and  p rope r  means  that  V ( x ) - - ,  oo as 

IJxll - - '  o o .  

It  is easy to show that  the exis tence of  such a 
clf  impl ies  that  the sys tem is a sympto t i ca l ly  con- 
t ro l lab le  ( f rom any  state one can  a sympto t i ca l ly  
reach the origin);  in the pape r  [7] we showed that  
the existence of  a clf  is in fact  also necessary if 
there  is a sympto t i c  cont ro l lab i l i ty ,  p rov ided  that  
one  does not  require  smoothness  (in which  case 
equa t ion  (2) mus t  be rep laced  b y  an equa t ion  
involving Din i  derivatives).  M o r e  re levant  to the 
topic  of  this paper ,  it  was shown in [1] that  if there  
is a clf, smoo th  as above,  then there mus t  be  a 
feedback  law 

=k(x),  k(0) =o, 

which g lobal ly  s tabi l izes the sys tem and  which is 
smooth  on 

R~:=R'-O. 

In  general  k m a y  fail  to be  smoo th  everywhere,  
but  under  cer ta in  condi t ions ,  which we s tudy  be-  
low, k can  be  gua ran teed  to be  at  least  con t inuous  
at  the origin in add i t i on  to be ing  smoo th  every-  
where  else. (The condi t ions  are necessary  as well 
as sufficient,  the necess i ty  fo l lowing f rom the by  
now s t anda rd  L y a p u n o v  func t ion  inverse theo-  
rems due  to Massera ,  Zubov,  Kurzwei l  and  others .)  

Al lowing  nonsmoo thness  at  the or igin was em- 
phas ized  in [10], and  has  since been  recognized  as 
des i rable  by  m a n y  au thors  (see e.g. [11,5,2], the 
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first of  which in particular also proved a version 
of  Artstein 's  theorem). F rom the point  of  view of  
Lyapunov  techniques, this is more natural than 
global smoothness,  because it can be characterized 
precisely in terms of  Lyapunov  functions. 

Since (control-) Lyapunov  functions are as a 
general rule easier to obtain than the feedback 
laws themselves - after all, in order to prove that 
a given feedback law stabilizes, one often has in 
addit ion to provide a suitable Lyapunov  function 
anyway - Artstein 's  theorem provides in principle 
a very powerful approach  to nonlinear stabiliza- 
tion. Previous proofs relied on nonconstruct ive 
parti t ion of unity arguments.  To make it a practi- 
cal technique, one needs a more explicit construc- 
tion. In this note we give one such explicit, very 
elementary, construct ion of  k f rom V and the 
vector fields defining the system. A further ad- 
vantage of our method, in addit ion to its extreme 
simplicy and ease of  implementation,  is that it 
provides automatically an analytic feedback law if 
the original vector fields as well as the clf are also 
analytic. We also provide a (less elementary, and 
in other senses weaker, as explained later) theorem 
that shows that if V as well as f ,  gl . . . . .  g~ are 
rational then k can be chosen also rational. 

Our  construct ion is based on the following 
observation, which for int roductory purposes we 
restrict to single-input (m = 1) systems only. As- 
sume that V is a clf for the system 

)~ = f ( x )  + ug(x). 

Denote  

,=  

b(x)  ,= v V ( x ) .  

The condit ion that V is a clf is precisely the 
statement that 

b ( x )  = o = a ( x )  < 0 

for all nonzero x. In  other words, for each such x, 

the pair (a(x), b(x)) is stabilizable 

when seen as a single-input, one-dimensional  lin- 
ear system. On the other hand, giving a feedback 
law u = k(x) for the original system, with the 
proper ty  that  the same V is a Lypaunov  function 
for the obtained closed-loop system 

:~=f (x )+k(x)g(x )  

is equivalent to asking that 

V'V(x)  • ( f ( x )  + k ( x ) g ( x ) )  < 0, 

that  is, 

a(x )+k(x )b (x )<O,  

for all nonzero x. In  other words, k(x), seen as a 
1 × 1 matrix, must  be a constant  linear feedback 
stabilizer for (a(x), b(x)), for each fixed x. 

We now interpret (a(x), b(x)) as a family of 
linear systems parameterized by x. This family de- 
pends smoothly on x. F rom the theory of families 
of systems or ' systems over rings' we know that 
since each such linear system is stabilizable there 
exists indeed a smoothly dependent  k as wanted. 
Moreover,  this k can be chosen to be analytically 
dependent  if the original family is, that  is, if the 
original system and clf are. The general theory is 
surveyed in [8], and the result in the smooth  and 
analytic cases is due to Delchamps (see for in- 
stance [3]), but  in this very simple case (the family 
is one dimensional), the construct ion of k can be 
carried out directly without  explicit recourse to 
the general result. Indeed, one can show directly 
that the following feedback law: 

a + ~ + b  2 
k : =  - 

b 

works. This results f rom the solution of  an LQ 
problem, and is analytic, in fact algebraic, on 
a, b. (The apparent  singularity due to division by 
b is removable, as discussed later.) Along trajecto- 
ries of the corresponding closed-loop system, on 
has that 

d V =  - ~ + b 2  < 0  
d t  

as desired. This feedback law may  fail to be 
continuous at zero, however. If  one modifies it 
slightly to 

a + ~ + b  4 
k : ~  

b 

then under  the natural hypotheses - reviewed 
later - this does become continuous.  Except  for 
the rational case which must  be treated separately, 
and for the multi- input case which is an im- 
mediate generalization, this will be the final form 
of our feedback law which provides a p roof  of  
Artstein 's  theorem. 
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In the next section we provide precise state- 
ments and proofs of results in the smooth and 
analytic case, and then the rational case is dealt 
with. 

In closing this introduction, we remark that our 
description of Artstein's result is very incomplete. 
He proved somewhat stronger results than men- 
tioned here. For instance, the feedback law can 
still be chosen smooth even if the system satisfies 
just a Lipschitz condition and V is C 1 (which 
proves that the existence of a weak kind of 
Lipschitz feedback is in fact equivalent to the 
existence of smooth feedback), and the result is 
true for general multi-input systems, not neces- 
sarily affine in controls, provided that one allows 
a certain type of 'chattering' feedback law; for 
details the reader should consult [1]. Perhaps more 
importantly, his partition of unity construction 
permits dealing with arbitrary closed control value 
sets. 

Finally, we note that local versions of our re- 
sults in the smooth and analytic case are also 
easily obtained by the same construction, as are 
some other variations of Artstein's result (for in- 
stance, that the feedback law may be chosen 
bounded about the origin provided that bounded 
open-loop controls exist which make the clf de- 
crease). 

2. Stabilizability 

We start with some definitions for the system 
(1). 

Definition 2.1. Let k : R" ~ R '~ be a mapping, 
smooth on R~ and with k(0) = 0. This is a smooth 
feedback stabilizer for the system (1) provided 
that, with 

k = ( k  1 . . . . .  kin) t, 

the closed-loop system 

Yc(t) = f ( x ( t ) )  + k l ( X ( t ) ) g l ( x ( t ) )  

+ . . .  + k , , ( x ( t ) ) g , , ( x ( t ) )  

is globally asymptotically stable. 

By global asymptotic stability we mean the 
usual concept: attraction (solutions are defined for 
t > 0 and every initial state, and converge to 0) 

plus local asymptotic stability (initial states near 
one origin produce trajectories near the origin). 
The fact that k may fail to be even continuous at 
the origin causes no problems regarding existence 
and uniqueness of solutions, as is easy to verify 
from the definition of asymptotic stability. A suf- 
ficient (as well as necessary) condition for a given 
k to be a smooth feedback stabilizer is that there 
exist a Lyapunov function for the closed-loop 
system, i.e. a smooth, proper, and positive definite 
function V so that 

V V ( x ) "  [ f ( x )  + k a ( x ) g a ( x  ) 

+..-+km(z)gm(x)] <0 
for all nonzero x. Observe that such a Lyapunov 
function is automatically a clf for the open-loop 
system (1). Note also that if k happens to be 
continuous at the origin then the following prop- 
erty holds too (with u ~= k(x)):  

For each e > O there is a 8 > 0  such that, i f  
x 4= 0 satisfies [I x II < 8, then there is some u with 
I lu I I < ~ such that 

V 'V(x)  " f ( x )  + u l V V ( x  ) • g l ( x )  

+ . . .  < 0 .  

We shall call this the small control property for 
the clf V. The existence of a elf with the property 
is necessary if there is any smooth stabilizer con- 
tinuous at zero; part of Artstein's theorem is the 
statement that this is also sufficient. Thus we wish 
to prove the following result: 

Theorem 1. I f  there is a smooth clf V (respectively, 
the system as well as V are real-analytic), then there 
is a smooth (respectively, real-analytic) feedback 
stabilizer k. I f  V satisfies the small control property, 
then k can be chosen to be also continuous at O. 

Proof. We shall prove the theorem by con- 
structing, once and for all, a fixed real-analytic 
function ~ of two variables, and then designing 
the feedback law in closed-form, analytically, from 
the evaluation of this function at a point de- 
termined by ~TV(x) . f ( x )  and the ~TV(x). gi(x)'s.  

Consider the following open subset of R 2, which 
can be interpreted as a subset of the set of all 
stabilizable single-input linear systems of dimen- 
sion one: 

S:=((a, b) R21b>Oora<O}. 
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Pick any real analytic function q : R - - +  R such 
that q(0) = 0 and bq(b) > 0 whenever b 4= 0. (Later 
we specialize to the particular case q(b) = b.) We 
now show that the function defined by 

( a , 0 ) : = 0  for all a < 0  

and 

a + la 2 + bq(b) 
b):= b 

otherwise, is real-analytic on S. For  this, consider 
the algebraic equation 

F(a,  b, p ) = b p  2 -  2 a p - q = O  (3) 

which is satisfied by p = + (a ,  b) for each (a ,  b) 
E S. We show that the derivative of F with re- 
spect to p is nonzero at each point  of  the form 
(a,b, q~(a, b)) with (a,  b) ~ S, f rom which it will 
follow by the implicit function theorem that q) 
must  indeed be real-analytic. Indeed, 

1 OF 
- - - -  ~ b p - - a  
2 0p 

equals - a v ~ 0  when b = 0  and t a 2 + b q ( b )  4=0 
otherwise. 

Assume that V is a clf. As in the introduction, 
we let 

a(x )  := W V ( x ) . f ( x ) ,  

b i ( x ) : = g r V ( x ) . & ( x  ), i = 1  . . . . .  m. 

We also let 

B(x)'.=(b,(x) . . . . .  b = ( x ) ) ,  

f l ( x ) : =  I [ B ( x ) [ [ 2 =  y" b2(x). 
i = 1  

Then the condit ion that V is a clf is again equiv- 
alent to asking that f l (x)  = 0 imply a(x) < O, that 
is, that  

for each nonzero x, or equivalently, that the one- 
dimensional time-invariant systems with m con- 
trois 

( a ( x ) ,  B ( x ) )  

be stabilizable, for each such x. Thus we may 
define the feedback law k = (k I . . . . .  k m )  , where: 

k , (x )  .'= - b , ( x ) O ( a ( x ) ,  ,8(x)) 

for x 4= 0 and k ( 0 ) : =  0. This is smooth,  and it is 
also real-analytic if V as well as f ,  gl . . . . .  gm are. 
Moreover,  at nonzero x we have that 

grV(x) . [ / ( x )  + k , ( x ) g , ( x )  + . . .  

+km(X)gm(X)] 
= a ( x ) -  

= - l a ( x )  z + B (x )q ( f l ( x ) )  < 0 

so the original V decreases along trajectories of the 
corresponding closed-loop system, and is a 
Lyapunov  function for this. 

Finally, assume that V satisfies the small con- 
trol property.  We wish to show that  the funct ion k 
is cont inuous at the origin. Pick any e > 0. We will 
find a 8 > 0  so that I]k(x)[]  < e  whenever ][xl[ 
< & Since k ( x ) =  0 whenever f l (x )= 0, we may 
assume that fl(x)-4= 0 in what  follows. We also 
take 

q(b) =b 

from now on, for simplicity. Let e' := ½e. 
Since V is positive definite, it has a min imum 

at 0, so VrV(0)= 0. Since the gradient is continu- 
ous, it holds that each of  the bi(x ) are small when 
x is small. Together  with the small control  prop-  
erty, this means that there is some 8 > 0 such that, 
if x4=0  satisfies Ilxl] < 8 ,  then there is some u 
with [I u ]l < e' so that 

a(x) + 

and in addit ion 

II B(x)II < ~'. (4) 

The first of the above implies, by the C a u c h y -  
Schwartz inequality, that  

a(x) <Vll (x)ll 
i f 0 <  Ilx][ < 8 ,  a n d s o a l s o  

l a ( x ) l  < ~ ' l I B ( x ) I I  (5) 

in the case when a(x)> 0. On the other hand, 
observe that 

bep(a, b ) = a + ~ + b  / < 2 l a l + b  

for all (a ,  b) ~ S with b > 0. Thus, if 0 < [J x Jl < 8 
and a(x) > 0, necessarily 

2e'  
,#(a(x),  /3(x)) < + 1 

l iB (x )  II 

(use (5)) and hence also 
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[[ k(x)1]  = ep(a(x) ,  f l (x))[[  B(x)[1 < 3e ' =  e 

as desired. There remains the case of  those x for 
which a(x )  < O. There, 

0 < a ( x )  + f f a ( x )  2 + •(X) 2 -~ f l (X) 

SO 0 < ~ ( a ( x ) ,  f l (x))  _< 1 and therefore 

i lk(x) II = ¢ ( a ( x ) ,  /~(x))riB(x)II -< ~' < 
as desired too. [] 

As an example, consider the case of  one-dimen-  
sional systems with a scalar control  (m = n = 1), 

-¢ = f ( x )  + ug(x ) .  

This system is stabilizable if the following assump- 
t ion holds: if g(x )  = 0 and x ~ 0 then x f ( x )  < O. 
The feedback law given by the above construction,  
using the Lyapunov  function V ( x ) =  ½x 2, is sim- 
ply 

x f ( x )  + I x l ~ f ( x ) 2  h- x 2 g ( x )  4 
k ( x )  = 

xg( ) 

(which is analytic, even though the absolute value 
sign appears, because in the one-dimensional  case 
there are two connected components  of  R - (0}), 
so that the closed-loop system becomes 

:~ = _ s i g n ( x ) ~ f ( x )  2 + x 2 g ( x )  4 . 

In the case of  linear systems, where f ( x )  = f x  and 
g(x )  = g for some constants  f ,  g, the closed-loop 
equat ion is 

2~ = - - C X  

where c =  f ~ + g 4 .  ( In this case, the term g4 
could have been replaced by simply g 2  a n d  a 
cont inuous  stabilizer still results.) 

To close this section, we remark how the form 
of  the function ff could be obtained f rom an 
opt imizat ion problem. For  each x ~ 0 one can 
think of  the linear system (writing b i :=  b~(x) and 
a := a (x ) ) :  

m 

= ax + ~ b iu~= ax + Bu 
i = 1  

and this is stabilizable in the usual liflear sense. 
One needs a stabilizing feedback law k, thought  of  
now as a constant  row vector (for each fixed x),  
that  is a k so that 

a +  ~ biki<O. 
i = 1  

If  we pose the l inear -quadra t ic  problem of  mini- 
mizing 

fo°°U2(t) + qx2( t ) dt 

the solution is given by the feedback law u := 
- B ' p x ,  where p is the positive solution of  the 
algebraic Riccati  equation (3). Thus  we recover 
k~ = - b / p ( a ,  b). The fact that  this is analytic on 
the data  is no  accident;  De lchamp ' s  theorem [3] 
guarantees this even for systems in arbi t rary di- 
mensions, essentially by the same argument  we 
gave for scalar equations. The choice q := b is 
made  so that, in the above cost, the u 2 term is 
given more  relative weight when b is small, forcing 
small controls when b is small. 

3. The rational case 

Part of  Theorem 1 can be extended to the 
rational case, as follows. The construct ion is not  
'universal '  in terms of  the Lie derivatives of  f and 
the gi's, however, and it blows up at the origin. 
( In practice, then, one would only use such a 
feedback law to guarantee 'prac t ica l  stability', in 
the sense of  controll ing merely to a ne ighborhood  
of  the origin.) 

Theorem 2. I f  there is a rational clf V and the 
system is given by rational vector fields, then there is 
a feedback stabilizer k which is rational on R no. 

Proof. Arguing as before, we look for a feedback 

k = ( k ]  . . . . .  kin)" 

of the particular form 

k,(x)  = - c ( x ) b , ( x )  

where b i as well as the rest of  the nota t ions  are as 
earlier, and c is a rational funct ion with no poles 
on R ~. Thus we need that 

a ( x )  - c ( x ) B ( x )  < 0 (6) 

for all x ~ 0, or equivalently, s ince /3(x)  is always 
nonnegative and a ( x ) <  0 when fl vanishes, that  

c ( x )  > a ( x ) / f l ( x )  

whenever f l (x )  > 0. Moreover,  if c is const ructed 
everywhere positive, it is only necessary to check 
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(6) at those x where a ( x )  >__ O. 
Consider  the closed semialgebraic set 

T : =  ( ( x ,  y ) ~ R " + ] l a ( x ) > O a n d  I l x l lZY-  1}. 

Note  t ha t / 3 (x )  is never zero if there exists some y 
so that (x, y ) ~  T, since in that case x ~ 0 and 
therefore a ( x )  > 0 implies f l (x)  4= 0. Thus the ra- 
tional function a ( x ) / B ( x )  is well-defined in the 
set T. The lemma to follow guarantees that there 
is a polynomial  function 

d : R  "+1 --*R 

so that d > 0 everywhere and 

d ( x ,  y )  >_ a ( x ) / [ 3 ( x )  

whenever (x, y )  ~ T. We let 

c ( x )  := d ( x ,  1/1[ x II 2). 
This has no poles on R ~. 

Assume that /3(x) > 0 and a(x )  > O. Then 
(x, 1 / I  Ixll 2) ~ T, so (6) holds and the proof  is 
complete. [] 

The existence of a polynomial  d as needed 
above was shown in the context of  establishing a 
result about  familes of systems in the paper [8]. 
For  completeness, we provide here a precise state- 
ment  and proof.  

Lemma 3.1. Assume that T is a closed semialgebraic 
subset of R" and that fl and a are (n-variable) 
polynomials so that f l (x )  > 0 on T. Then exists a 
polynomial d such that 

/ 3 ( x ) d ( x ) > a ( x )  f o r a l l x ~ R " .  

Proof.  If T is empty, there is nothing to prove, so 
assume it is not. Let 

Po := dist(T,  0) 2 

and consider the function /~ : [O0, + ~ )  ---' R given 
by 

fa(x) } 
# ( p ) : = s u p t ~ - - - ~ l x ~ T a n d  I l x l J 2 < p  . 

No te  that the value is always finite because of  the 
choice of  P0 and continuity of  a ( x ) / f l ( x )  on the 
(closed) set T. This function is semialgebraic, since 
it can be defined by  a first-order sentence in the 
theory of  real-closed fields (namely, "~t(p) = s iff 
/3(x)s  > a ( x )  whenever x ~ T and II x II 2 < s and 

for every t satisfying these properties, t > s") .  
Moreover,  it holds for each x ~ T that 

I-t( II xll 2) > a ( x ) / B ( x ) .  

It follows f rom [6], pages 367-368,  that  

lim p - ~ ( p )  = c (7) 

for some constant  c and rational number  a. So 
there exists some polynomial  q so that q dominates  
/~ for all O > P0, and q may be assumed to be 
everywhere positive (otherwise replace it by  q2 + 1, 
which is positive and dominates  q). Then, d ( x )  := 
t~( II x 112) is as desired. [] 

4. Remarks 

Note  that the form of our feedback law, 

a + ~/a 2 + f12 
k ( x )  = /3 B ' ,  

is closely related to the feedback 

a + f i  B,  k ( x )  = /3 

proposed in [11] under  the particular assumption 
that /3 never vanishes, as well as the law 

k ( x )  = - a '  

used in [4] (and related papers) when a can be 
guaranteed to be nonposit ive and a certain trans- 
versality condit ion holds. 

In [9] we showed that in general it is desirable 
to study a somewhat  different, and more  ' robus t '  
problem than stabilization, namely  the problem of 
input to state stabilization. This deals with finding 
feedback laws that have the proper ty  that when 
feeding 

u = k ( x ) + o  

into the system, where v is a new control,  the 
resulting control  system is stable in a ' b o u n d e d -  
input bounded-ou tpu t '  sense. This type of  design 
is impor tant  in dealing with questions of so-called 
coprime factorization for control  systems, as well 
as in dealing with possible noise in the implemen- 
tation of control  laws. Even though the not ion 
used in that paper  was that of  feedback which is 
smooth  everywhere, it is easy to see - and it was 
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remarked in  the paper  - that all results go through 

in the more general case of smoothness  on R~. 
The feedback 'correct ion '  needed after stabiliza- 

t ion was given there by the simple formula 

l , ( x )  := ~--~) B ( x ) '  

where ~ is VrV- f  for the closed-loop f- that re- 
sulted from first stabil izing the system in the usual  
sense. Together with the results in  this paper, the 
following formula  is obta ined  for the input- to-s ta te  
stabilizer k if a elf V exists: 

k : = -  /3 + 2m 

(dropping x 's) .  To be more accurate, a mild tech- 
nical  condi t ion  is needed for the result in [9], 
which in this case becomes the assumpt ion  that 

l im a 2 + f l  2 =  ~ .  

If this would not  hold, that reference shows how 
to slightly modify  the construct ion.  
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