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Abstract. This paper presents a stability test for a class of intercon-
nected nonlinear systems motivated by biochemical reaction networks.
The main result determines global asymptotic stability of the network
from the diagonal stability of a dissipativity matrix which incorporates
information about the passivity properties of the subsystems, the inter-
connection structure of the network, and the signs of the interconnection
terms. This stability test encompasses the secant criterion for cyclic
networks presented in [1], and extends it to a general interconnection
structure represented by a graph. The new stability test is illustrated
on a mitogen-activated protein kinase (MAPK) cascade model, and on
a branched interconnection structure motivated by metabolic networks.
The next problem addressed is the robustness of stability in the pres-
ence of diffusion terms. A compartmental model is used to represent the
localization of the reactions, and conditions are presented under which
stability is preserved despite the diffusion terms between the compart-
ments.

1. Introduction. This paper continues the development of passivity-based
stability criteria for interconnected systems motivated by classes of biochem-
ical reaction networks. In [1,2] the authors studied a cyclic interconnection
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structure in which the first subsystem of a cascade is driven by a nega-
tive feedback from the last subsystem downstream. This cyclic feedback
structure is ubiquitous in gene regulation networks [3–14], cellular signaling
pathways [15, 16], and has also been noted in metabolic pathways [17, 18].
In [1, 2] the authors first presented a passivity interpretation of the “secant
criterion” developed earlier in [8, 14] for the stability of linear cyclic sys-
tems, and next used this passivity insight to extend the secant criterion to
nonlinear systems. The dynamic system

ẋ = f(x, u) y = h(x, u), (1)

u, y ∈ IR is said to be output strictly passive (OSP) if there exists a C1

storage function S(x) ≥ 0 such that

Ṡ = ∇S(x)f(x, u) ≤ −y2 + γuy (2)

for some constant γ > 0. The notion of passivity evolved from an abstraction
of energy conservation and dissipation in electrical and mechanical systems
[19, 20], into a fundamental tool routinely used for nonlinear system design
and analysis [21,22].

The first contribution of this paper is to expand the analysis tool of [1]
to a general interconnection structure, thus obtaining a broadly applicable
stability criterion that encompasses the secant criterion for cyclic systems
as a special case. As in [1], our approach is to exploit the OSP properties
and the corresponding storage functions for smaller components that com-
prise the network, and to construct a composite Lyapunov function for the
interconnection using these storage functions. The idea of using composite
Lyapunov functions has been explored extensively in the literature of large-
scale systems as surveyed in [23, 24], and led to several network small-gain
criteria [25, 26] that restrict the strength of the interconnection terms. A
distinguishing feature of our passivity-based criterion, however, is that we
take advantage of the sign properties of the interconnection terms to obtain
less conservative stability conditions than the small-gain approach.

To determine the stability of the resulting network of OSP subsystems
we follow the formalism of [27,28], and construct a dissipativity matrix (de-
noted by E below) that incorporates information about the OSP properties
of the subsystems, the interconnection structure of the network, and the
signs of the interconnection terms. As a stability test for the interconnected
system, we check the diagonal stability [29] of this dissipativity matrix, that
is, the existence of a diagonal solution D > 0 to the Lyapunov equation
ET D + DE < 0 which, if feasible, proves that the network is indeed stable.
In particular, the diagonal entries of D serve as the weights of the storage
functions in our composite Lyapunov function. Although similar results can
be proven by combining the pure input/output approach in [27,28] with ap-
propriate detectability and controllability conditions, the direct Lyapunov
approach employed in this paper allows us to formulate verifiable state-space
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conditions that guarantee the desired passivity properties for the subsys-
tems. These conditions are particularly suitable for systems of biological
interest because they are applicable to models with nonnegative state vari-
ables, and do not rely on the knowledge of the location of the equilibrium.

The second contribution of this paper is to accommodate state products
which are disallowed in the nonlinear model studied in [1]. This is achieved
with a new storage function construction for each subsystem which, in the
absence of state products, coincides with the construction in [1]. Thanks to
this extension, our stability criterion is now applicable to a broader class of
models, even in the case of cyclic systems. This class encompasses a mitogen
activated protein kinase (MAPK) cascade model with inhibitory feedback
proposed in [15, 16], which is studied in Example 1 as an illustration of our
main result. The final result in the paper employs a compartmental model
to describe the spatial localization of the reactions, and proves that, if the
passivity-based stability criterion holds for each compartment and if the
storage functions satisfy an additional convexity property, then stability is
preserved in the presence of diffusion terms between the compartments.

The paper is organized as follows: Section 2 gives an overview of the main
results in [1]. Section 3 presents a general interconnection structure repre-
sented by a graph and gives the main stability result of the paper. Section 4
illustrates this result on biologically motivated examples. Section 5 studies
robustness of stability in the presence of diffusion terms in a compartmental
model. Section 6 gives the conclusions.

2. Overview of the secant criterion for cyclic systems. To evaluate
stability properties of negative feedback cyclic systems, references [8, 14]
analyzed the Jacobian linearization at the equilibrium, which is of the form

A =




−a1 0 · · · 0 −bn

b1 −a2
. . . 0

0 b2 −a3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 bn−1 −an




(3)

ai > 0, bi > 0, i = 1, · · · , n, and showed that A is Hurwitz if the following
sufficient condition holds:

b1 · · · bn

a1 · · · an
< sec(π/n)n. (4)

Unlike a small-gain condition which would restrict the right-hand side of
(4) to be 1, the “secant criterion” (4) also exploits the phase of the loop
and allows the right-hand side to be as high as 8 (when n = 3). The secant
criterion is also necessary for stability when the ai’s are identical.

Local stability of the equilibrium proven in [8,14], however, does not rule
out the possibility of periodic orbits. Indeed, the Poincaré-Bendixson Theo-
rem of Mallet-Paret and Smith for cyclic systems [30,31] allows such periodic
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orbits to coexist with stable equilibria, as we illustrate on the system1 :

ẋ1 = −x1 + ϕ(x3)
ẋ2 = −x2 + x1 (5)
ẋ3 = −x3 + x2

where
ϕ(x3) = e−10(x3−1) + 0.1sat(25(x3 − 1)), (6)

and sat(·) := sgn(·)min{1, | · |} is a saturation2 function. The function
(6) is decreasing, and its slope has magnitude b3 = 7.5 at the equilibrium
x1 = x2 = x3 = 1. With a1 = a2 = a3 = b1 = b2 = 1 and n = 3, the secant
criterion (4) is satisfied and, thus, the equilibrium is asymptotically stable.
However, simulations in Figure 1 show the existence of a periodic orbit in
addition to this stable equilibrium.
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Figure 1. Trajectory of (5) starting from initial condition
x = [1.2 1.2 1.2]T , projected onto the x1-x2 plane.

To study global stability properties of cyclic systems with negative feed-
back, in [1, 2] the authors first developed a passivity interpretation of the
secant criterion (4), and next used this passivity insight to extend the secant
criterion to the nonlinear model:

ẋ1 = −f1(x1) + hn(xn)
ẋ2 = −f2(x2) + h1(x1)

... (7)
ẋn = −fn(xn) + hn−1(xn−1)

in which xi ∈ IR≥0, fi(·), i = 1, · · · , n and hi(·), i = 1, · · · , n − 1 are
increasing functions, and hn(·) is a decreasing function which represents
the inhibition of the formation of x1 by the end product xn. When an

1 Other authors have also noted the existence of such examples [32].
2 One can easily modify this example to make ϕ(·) smooth while retaining the same
stability properties.
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equilibrium x∗ exists, [1] proves its global asymptotic stability under the
following condition:∣∣∣∂hi(xi)

∂xi

∣∣∣
∂fi(xi)

∂xi

≤ γi ∀xi ∈ IR≥0, i = 1, · · · , n, (8)

γ1 · · · γn < sec(π/n)n, (9)

which encompasses the linear secant criterion (4) with γi = bi/ai.
The first step in the global asymptotic stability proof of [1] is to represent

(7) as the interconnection of n subsystems, each of which is OSP as in (2),
thanks to the property (8). The next step is to show that the interconnected
system is globally asymptotically stable if the matrix

Ecyclic =




−1/γ1 0 · · · 0 −1

1 −1/γ2
. . . 0

0 1 −1/γ3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −1/γn




(10)

is diagonally stable; that is, if there exists a diagonal matrix D > 0 such
that

ET
cyclicD + DEcyclic < 0. (11)

In particular, the diagonal entries of D constitute the weights of the storage
functions in a composite Lyapunov function for (7), and (11) guarantees
that the time derivative of this composite Lyapunov function is negative
definite. Finally, [1] proves that the secant condition (9) is a necessary and
sufficient condition for the diagonal stability of (10), thus connecting the
secant condition to the global asymptotic stability of (7).

3. From the cyclic structure to general graphs. We now extend the
diagonal stability procedure outlined above for cyclic systems to a general
interconnection structure, described by a directed graph without self-loops.
If a link is directed from node i to node j, we refer to node i as the source
and to node j as the sink of the link. The nodes represent subsystems
with possibly multiple outputs, and a separate link is used for each output.
For the nodes i = 1, · · · , N and links l = 1, · · · ,M , we denote by L+

i ⊆
{1, · · · ,M} the subset of links for which node i is the sink, and by L−i
the subset of links for which node i is the source. We write i = source(l)
if l ∈ L−i , and i = sink(l) if l ∈ L+

i . Using this graph we introduce the
dynamic system:

ẋi = −fi(xi) + gi(xi)
∑

l∈L+
i

hl(xsource(l)) i = 1, · · · , N (12)

where xi ∈ IR≥0, and fi(·), gi(·), i = 1, · · · , N , hl(·), l = 1, · · · ,M are locally
Lipschitz functions further restricted by the following assumptions:
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A1: fi(0) = 0 and, for all σ ≥ 0, gi(σ) > 0, hl(σ) ≥ 0.
Assumption A1 guarantees that the nonnegative orthant IRN

≥0 is forward
invariant for (12). The strict positivity of gi(xi) is also essential for our anal-
ysis since we exploit the sign properties of hl(xsource(l)) which are multiplied
by gi(xi) in (12).

A2: There exists an equilibrium x∗ ∈ IRN
≥0 for (12).

A3: For each node i, the function fi(xi)/gi(xi) satisfies the sector prop-
erty:

(xi − x∗i )
(

fi(xi)
gi(xi)

− fi(x∗i )
gi(x∗i )

)
> 0 ∀xi ∈ IR≥0 − {x∗i }. (13)

A4: For each node i, and for each link l ∈ L−i , the function hl(xi) satisfies
one of the following sector properties for all xi ∈ IR≥0 − {x∗i }:

(xi − x∗i )[hl(xi)− hl(x∗i )] > 0 (14)
(xi − x∗i )[hl(xi)− hl(x∗i )] < 0. (15)

To distinguish between positive and negative feedback signals we assign
to each link l a positive sign if (14) holds, and a negative sign if (15) holds,
and rewrite (14)-(15) as

sign(link l)(xi − x∗i )[hl(xi)− hl(x∗i )] > 0 (16)

∀xi ∈ IR≥0 − {x∗i }.
A5: For each link l ∈ L−i there exists a constant γl > 0 such that,

∀xi ∈ IR≥0 − {x∗i },

sign(link l)
hl(xi)− hl(x∗i )
fi(xi)
gi(xi)

− fi(x∗i )
gi(x∗i )

≤ γl. (17)

Theorem 1. Consider the system (12), and suppose assumptions A1-A5
hold. If the M ×M dissipativity matrix

Elk =




−1/γl if k = l
sign(link k) if source(l) = sink(k)
0 otherwise

(18)

is diagonally stable; that is, if there exists a diagonal matrix D > 0 such
that

ET D + DE < 0, (19)

then the equilibrium x∗ is asymptotically stable. If, further, for each node i
one of the following two conditions holds, then x∗ is globally asymptotically
stable in IRN

≥0:
a) L−i is nonempty and there exists at least one link l ∈ L−i such that

lim
xi→∞

∫ xi

x∗i

hl(σ)− hl(x∗i )
gi(σ)

dσ = ∞, (20)
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b) L−i is empty; that is, the outdegree of node i is zero;

lim
xi→∞

∫ xi

x∗i

σ − x∗i
gi(σ)

dσ = ∞, (21)

and there exists a class-K∞ function3 ω(·) such that

(xi − x∗i )
(

fi(xi)
gi(xi)

− fi(x∗i )
gi(x∗i )

)
≥ |xi − x∗i |ω(|xi − x∗i |) ∀xi ≥ 0. (22)

Proof. We first prove the theorem for the case when L−i is nonempty for all
i = 1, · · · , N ; that is, when there are no nodes with outdegree equal to zero.
In this case we construct a composite Lyapunov function of the form

V (x− x∗) =
M∑

l=1

dlVl(xsource(l) − x∗source(l)) (23)

in which the components are

Vl(xsource(l)−x∗source(l)) = sign(link l)
∫ xsource(l)

x∗
source(l)

hl(σ)− hl(x∗source(l))

gsource(l)(σ)
dσ (24)

and the coefficients dl > 0 are to be determined. The function (23) is
positive definite because each component Vl is a positive definite function of
(xsource(l)− x∗source(l)) due to the sign property (16) of the integrand in (24),
and because (xsource(l) − x∗source(l)) = 0, l = 1, · · · ,M , guarantees x− x∗ = 0
by virtue of the fact that each node is the source for at least one link.

We now claim that the function Vl in (24) satisfies the dissipativity prop-
erty

V̇l ≤ yl

M∑

k=1

Elkyk (25)

where
yl := sign(link l)[hl(xsource(l))− hl(x∗source(l))] (26)

l = 1, · · · ,M , and the coefficients Elk are as in (18). Before we prove this
claim, we first note that the diagonal stability property (19) and the estimate
(25) together imply that the Lyapunov function (23), with coefficients dl ob-
tained from the diagonal elements of D, yields a negative definite derivative
because

V̇ =
M∑

l=1

dlV̇l ≤
M∑

l=1

dlyl

M∑

k=1

Elkyk =
1
2
yT (ET D + DE)y. (27)

Asymptotic stability of x∗ thus follows from (19). If, further, for each node i
there exists at least one link l ∈ L−i such that (20) holds, then the Lyapunov

3 K is the class of functions IR≥0 → IR≥0 which are zero at zero, strictly increasing and
continuous. K∞ is the subset of class-K functions that are unbounded.
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function (23) grows unbounded as |x| → ∞, thus proving global asymptotic
stability.

We now show that the claim (25) is indeed true. To this end we compute
from (24) and (12) the derivative

V̇l = sign(link l)[hl(xi)− hl(x∗i )]
(
−fi(xi)

gi(xi)
+ ui

)
(28)

where i = source(l), and

ui :=
∑

k∈L+
i

hk(xsource(k)). (29)

Adding and subtracting

u∗i :=
∑

k∈L+
i

hk(x∗source(k)) =
fi(x∗i )
gi(x∗i )

(30)

within the bracketed term in (28), we obtain

V̇l = sign(link l)[hl(xi)− hl(x∗i )]
(
−fi(xi)

gi(xi)
+

fi(x∗i )
gi(x∗i )

+ ui − u∗i

)
. (31)

Next, we note that sign(link l)[hl(xi)− hl(x∗i )] and
(

fi(xi)
gi(xi)

− fi(x
∗
i )

gi(x∗i )

)
possess

the same signs due to (13) and (16), and thus, the left-hand side of the
inequality (17) is positive. This means that we can rewrite (17), by taking
reciprocals of both sides, as

−sign(link l)
fi(xi)
gi(xi)

− fi(x
∗
i )

gi(x∗i )

hl(xi)− hl(x∗i )
≤ − 1

γl
, (32)

and multiply each side by [hl(xi)− hl(x∗i )]
2 to obtain:

−sign(link l)[hl(xi)− hl(x∗i )]
(

fi(xi)
gi(xi)

− fi(x∗i )
gi(x∗i )

)
≤ − 1

γl
[hl(xi)− hl(x∗i )]

2.

(33)
Substituting (33) in (31), and using the variables yl defined in (26), we get

V̇l ≤ − 1
γl

y2
l + yl(ui − u∗i ) (34)

which is an OSP property as in (2) with respect to input (ui− u∗i ). Finally,
noting from (29) and (30) that

ui − u∗i =
∑

k∈L+
i

sign(link k)yk, (35)

we rewrite (34) as

V̇l ≤ − 1
γl

y2
l + yl

∑

k∈L+
i

sign(link k)yk, (36)

which is equivalent to (25) by the definition of the coefficients Ekl in (18).
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If there exist nodes with outdegree equal to zero, then the arguments
above prove that the subsystem comprising of the nodes with outdegree one
or more is asymptotically stable. The outputs hl from this subsystem serve
as inputs to the nodes with outdegree equal to zero. Because the dynamics
of these nodes in (12) are asymptotically stable by A3, asymptotic stability
for the equilibrium x∗ for the full system follows from standard results on
cascade interconnections of asymptotically stable systems (see e.g. [33, p.
275]). To insure global asymptotic stability, we show that when condition
(b) holds, (22) and (21) imply an input-to-state stability (ISS) property [34]
for the driven subsystem of the cascade; that is, each node i with outdegree
equal to zero satisfies:

sup
t≥0

|xi(t)− x∗i | ≤ max{γ0(|xi(0)− x∗i |), γ(sup
t≥0

|ui(t)− u∗i |)} (37)

lim sup
t→∞

|xi(t)− x∗i | ≤ γ(lim sup
t→∞

|ui(t)− u∗i |) (38)

for some class-K functions γ0(·) and γ(·). As shown in [34–36], the ISS
property (37)-(38) follows if there exists an ISS Lyapunov function V i

ISS(xi)
and a class-K function χ(·) satisfying the property:

|xi − x∗i | > χ(|ui − u∗i |) ⇒ V̇ i
ISS < 0. (39)

Indeed, with the choice:

V i
ISS(xi) =

∫ x∗i

xi

σ − x∗i
gi(σ)

dσ, (40)

it follows from (22) that

V̇ i
ISS ≤ −|xi − x∗i |ω(|xi − x∗i |) + |xi − x∗i | |ui − u∗i | (41)

and, thus, (39) holds with χ(·) = ω−1(·). Having proven ISS for the nodes
with outdegree zero, we conclude global asymptotic stability for the full
system because the cascade interconnection of an ISS system driven by a
globally asymptotically stable system is globally asymptotically stable [34].

2

Remark 1. The assumptions A3-A5 rely on the knowledge of the equilib-
rium x∗ which may not be available in practice. When the functions fi(·),
gi(·), and hl(·) are C1, the following incremental conditions guarantee A3-
A5, and do not depend on x∗:

A3’: For each i = 1, · · · , N , and ∀xi ≥ 0,

∂

∂xi

(
fi(xi)
gi(xi)

)
> 0. (42)

A4’: For each l = 1, · · · ,M , and ∀xi ≥ 0,

sign(link l)
∂hl(xi)

∂xi
> 0. (43)
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A5’: For each link l ∈ L−i there exists a constant γl > 0 such that
∣∣∣∂hl(xi)

∂xi

∣∣∣
∂

∂xi

(
fi(xi)
gi(xi)

) ≤ γl ∀xi ≥ 0. (44)

Remark 2. Although the growth assumption (44) may appear restrictive,
most biologically relevant nonlinearities satisfy this condition globally. If
there exist closed intervals Xi ⊆ IR≥0 such that X1 × · · · × XN is forward
invariant for (12), a less conservative γl may be obtained by evaluating (44)
on Xi, rather than for all xi ≥ 0. This relaxation is particularly useful in
biological applications where xi represents the amount of a substance which
may be lower- and upper-bounded.

Remark 3. The integral conditions (20) and (21) serve to insure properness
of the Lyapunov function in the proof of Theorem 1, which is in turn used
to guarantee global asymptotic stability. If the solutions are known to belong
to a bounded set as in Remark 2, and if this set is a subset of a compact
level set of the Lyapunov function, then properness of the Lyapunov function
is not needed to prove a global result. Hence, if boundedness can be shown
independently, the assumptions (20) and (21) can be dropped.

The dissipativity matrix E in (18) combines information about the in-
terconnection structure of the network with the passivity properties of its
components. Because the off-diagonal components of this matrix are neg-
ative for links that represent inhibitory reaction rates, diagonal stability is
less restrictive than a networked small-gain condition [25,26] which ignores
the signs of the off-diagonal terms. In the case of a cyclic graph where each
link l = 1, · · · , n connects source i = l to sink i = l + 1 (modn), and where
only link n has a negative sign, (18) assumes the form (10). Theorem 1
thus recovers the result of [1] as a special case, and further relaxes it by
accommodating the gi(xi) functions in (12) which are not allowed in [1].

4. Examples.
Example 1. To illustrate Theorem 1 we first study a simplified model
of mitogen-activated protein kinase (MAPK) cascades with inhibitory feed-
back, proposed in [15,16]:

ẋ1 = − b1x1

c1 + x1
+

d1(1− x1)
e1 + (1− x1)

µ

1 + kx3
(45)

ẋ2 = − b2x2

c2 + x2
+

d2(1− x2)
e2 + (1− x2)

x1 (46)

ẋ3 = − b3x3

c3 + x3
+

d3(1− x3)
e3 + (1− x3)

x2. (47)

The variables xi ∈ [0, 1] denote the active forms of the proteins, and the
terms 1 − xi indicate the inactive forms (after nondimensionalization and
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assuming that the total concentration of each of the proteins is 1). The
second term in each equation indicates the rate at which the inactive form
of the protein is being converted to active form, while the first term models
the inactivation of the respective protein. For the proteins xi, i = 2, 3, the
activation rate is proportional to the concentration of the active form of
the protein xi−1 upstream, which facilitates the conversion. The activation
of the first protein x1, however, is inhibited by x3 as represented by the
decreasing function µ/(1 + kx3).

The model (45)-(47) is of the form (12) with

fi(xi) =
bixi

ci + xi
, gi(xi) =

di(1− xi)
ei + (1− xi)

, i = 1, 2, 3,

hi(xi) = xi, i = 1, 2, h3(x3) =
µ

1 + kx3
. (48)

Because the underlying graph is cyclic with each link l = 1, 2, 3 connecting
source i = l to sink i = l+1(mod3), and because h3(·) is strictly decreasing,
the dissipativity matrix E in (18) is of the form (10) and, as proved in [1],
its diagonal stability is equivalent to the secant criterion (9). However,
unlike the model (7) of [1] which disallows state products, Theorem 1 above
accommodates the functions gi(xi), and is applicable to (45)-(47).

To reduce conservatism in the estimates for γi in Theorem 1 we follow
Remark 2 and further restrict the intervals [0, 1] in which xi’s evolve by
noting that h3(x3) takes values within the interval [ µ

1+k , µ]. Because h3(x3)
is the input to the x1-subsystem, and because the function θi : [0, 1] → [0,∞)
defined by

θi(xi) :=
fi(xi)
gi(xi)

, (49)

is strictly increasing, it follows from the bounds on the input signal that
the interval X1 = [x1,min, x1,max] := [θ−1

1 (µ/(1 + k)), θ−1
1 (µ)] is an invariant

and attractive set for the x1-subsystem. Since x1 and x2 serve as inputs to
the x2- and x3-subsystems respectively, the same conclusion holds for the
intervals X2 = [x2,min, x2,max] and X3 = [x3,min, x3,max], where

xi,min := θ−1
i (xi−1,min) xi,max := θ−1

i (xi−1,max) (50)

i = 2, 3. With the following coefficients from [37]:

b1 = e1 = c1 = b2 = 0.1, c2 = e2 = c3 = e3 = 0.01,
b3 = 0.5, d1 = d2 = d3 = 1, µ = 0.3,

we obtained γi’s numerically by maximizing the left-hand side of (44) on Xi

for various values of the parameter k. This numerical experiment showed
that the secant condition γ1γ2γ3 < 8 is satisfied in the range k ≤ 4.35 (for
k = 4.36 we get γ1γ2γ3 = 11.03). Reference [37] gives a small-gain estimate
k ≤ 3.9 for stability, and shows that a Hopf bifurcation occurs at around
k = 5.1. The estimate k ≤ 4.35 obtained from Theorem 1 thus reduces the
gap between the unstable range and the small-gain estimate.
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Example 2. The recent paper [38] presents topological differences in the
MAPK network for PC-12 cells depending on whether the cells are activated
with epidermal or neuronal growth factors (see Figure 2), and relates the
resulting difference in the dynamic behavior to the change in functionality
(proliferation or differentiation). Theorem 1 is applicable to appropriate
extensions of the model (45)-(47) to the topologies in Figure 2 assuming that
multiple inputs can be synthesized additively in this model (see Section 6
for a further discussion of this assumption) so that, for example, the second
term in the x2-subsystem (46) may be modified as

d2(1− x2)
e2 + (1− x2)

(
x1 +

µ2

1 + k2x3

)
(51)

to account for the new inhibitory feedback from x3. For the feedback configu-

x1 x2 x3

1 2

3

4

(a)

x1 x2 x3

1 2

3

4

(b)

x1 x2 x3

1 2

3

4

5

(c)

Figure 2. Feedback configurations observed in [38] for
MAPK networks in PC-12 cells. The nodes x1, x2, and
x3 represent Raf-1, Mek1/2, and Erk1/2, respectively. The
dashed links indicate negative feedback signals. Depending
on whether the cells are activated with (a) epidermal or (b)
neuronal growth factors, the feedback from Erk1/2 to Raf-1
changes sign. (c) An increased connectivity from Raf-1 to
Erk1/2 is noted in [38] when neuronal growth factor activa-
tion is observed over a longer period.

rations (a) and (b) in Figure 2, the dissipativity matrices obtained according
to (18) are:

Ea =




− 1
γ1

0 0 −1
1 − 1

γ2
−1 0

0 1 − 1
γ3

0
0 1 0 − 1

γ4


 Eb =




− 1
γ1

0 0 1
1 − 1

γ2
−1 0

0 1 − 1
γ3

0
0 1 0 − 1

γ4


 . (52)

The following lemma derives necessary and sufficient conditions for their
diagonal stability:
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Lemma 1. The matrix Ea in (52) is diagonally stable iff γ1γ2γ4 < 8, and
Eb is diagonally stable iff γ1γ2γ4 < 1.

Proof. Note that the 3× 3 principal submatrix Ẽa obtained by deleting the
third row and column of Ea exhibits the cyclic form (10) for which diagonal
stability is equivalent to γ1γ2γ4 < 8 from the secant criterion. Likewise, the
corresponding submatrix Ẽb of Eb is of the form (10) with the upper right
element −1 replaced by +1. Because all diagonal entries of Ẽb are negative
and off-diagonal entries are nonnegative, it follows from [39, Theorem 2.3]
that this submatrix is diagonally stable iff the principal minors of −Ẽb are
all positive. Checking the positivity of these principal minors, we obtain the
diagonal stability condition γ1γ2γ4 < 1. Because principal submatrices of
a diagonally stable matrix are also diagonally stable we conclude that the
conditions γ1γ2γ4 < 8 and γ1γ2γ4 < 1 for the diagonal stability of Ẽa and
Ẽb are necessary for the diagonal stability of the full matrices Ea and Eb,
respectively. To prove that they are also sufficient, we note that both Ea and
Eb possess the property that their entries (2, 3) and (3, 2) are of opposite sign,
and all other off-diagonal entries in the third row and column are zero. This
means that, if the principal submatrix obtained by deleting the third row
and column is diagonally stable then so is the full matrix. (To see this, let
the diagonal Lyapunov solution for the submatrix be D̃ = diag{d1, d2, d4},
and choose d3 = d2 in D = diag{d1, d2, d3, d4} for the full matrix so that
all off-diagonal entries in the third rows and columns of DEa + ET

a D and
DEb + ET

b D are zero.) 2

We next study the dissipativity matrix

Ec =




− 1
γ1

0 0 1 0
1 − 1

γ2
−1 0 0

0 1 − 1
γ3

0 1
0 1 0 − 1

γ4
1

0 0 0 1 − 1
γ5




(53)

for the feedback configuration in Figure 2(c). The principal submatrix Ẽc

obtained by deleting the third row and column exhibits nonnegative off-
diagonal entries and, thus, its diagonal stability is equivalent [39, Theorem
2.3] to the positivity of the principal minors of −Ẽc, which results in the
condition:

γ1γ2γ4 + γ4γ5 < 1. (54)
Because principal submatrices of a diagonally stable matrix are also diag-
onally stable, (54) is necessary for the diagonal stability of the full matrix
Ec. In contrast to our analysis for Ea and Eb however, we cannot conclude
sufficiency of this condition for the diagonal stability of Ec because the en-
tries (3, 5) and (5, 3) of the deleted row and column do not have opposite
signs (cf. proof of Lemma ??). In fact, in Figure 3 we demonstrate the
gap between the necessary condition (54) and the exact diagonal stability
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region in the parameter space by fixing γ1 = 1, γ2 = γ5 = 0.5 (so that (54)
becomes γ4 < 1) and by plotting the region in the (γ3, γ4)-plane in which di-
agonal stability is confirmed numerically by a linear matrix inequality (LMI)
solver. This feasibility region is indeed narrower than γ4 < 1 which means
that, unlike the feedback configurations (a) and (b), diagonal stability for
the configuration in Figure 2(c) is affected by the magnitude of the gain γ3.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

γ4

γ3

Figure 3. Diagonal stability region for (53) in the (γ3, γ4)-
plane when the other gains are fixed at γ1 = 1, γ2 = γ5 = 0.5.
With these values the necessary condition (54) is γ4 < 1
which is wider than the exact region (shaded).

Example 3. A common form of feedback inhibition in metabolic networks
occurs when several end metabolites in different branches of a pathway in-
hibit a reaction located before the branch point [18, 40]. As an example of
this situation we consider the network in Figure 4 where the end metabo-
lites with concentrations x4 and x6 inhibit the formation of x1 from an initial
substrate x0. Assuming that x0 is kept constant, and that its conversion to
x1 is regulated by two isofunctional enzymes each of which is selectively
sensitive to x4 or x6, we represent this network as in (12):

ẋ1 = −f1(x1) + h4(x4) + h7(x6)
ẋ2 = −f2(x2) + h1(x1)
ẋ3 = −f3(x3) + h2(x2)
ẋ4 = −f4(x4) + h3(x3) (55)
ẋ5 = −f5(x5) + h5(x2)
ẋ6 = −f6(x6) + h6(x5),

where the functions h4(x4) and h7(x6) are decreasing due to the inhibitory
effect of x4 and x6, while hl(·), l = 1, 2, 3, 5, 6 and fi(·), i = 1, · · · , 6 are
increasing.

Rather than study specific forms for these functions, we assume that A1
and A2 hold, and that γl’s exist as in (44). An application of Theorem 1
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x1 x2

x3 x4

x5 x6

1
2

3

4

5

6

7
Figure 4. Feedback inhibition in a branched network. The
dashed links 4 and 7 indicate negative (inhibitory) feedback
signals. The dissipativity matrix obtained from (18) for this
network is (56).

then proves global asymptotic stability of the equilibrium if the dissipativity
matrix

E =




− 1
γ1

0 0 −1 0 0 −1
1 − 1

γ2
0 0 0 0 0

0 1 − 1
γ3

0 0 0 0
0 0 1 − 1

γ4
0 0 0

1 0 0 0 − 1
γ5

0 0
0 0 0 0 1 − 1

γ6
0

0 0 0 0 0 1 − 1
γ7




(56)

is diagonally stable. Note that the 4 × 4 principal submatrices obtained
by deleting row-column pairs {5, 6, 7} and {2, 3, 4} each exhibit a cyclic
structure for which, as shown in [1], diagonal stability is equivalent to the
secant criteria

γ1γ2γ3γ4 < sec(π/4)4 = 4 and γ1γ5γ6γ7 < 4, (57)

respectively. Because principal submatrices of a diagonally stable matrix
are also diagonally stable, we conclude that (57) is a necessary condition for
the diagonal stability of (56). In fact, we prove the following necessary and
sufficient condition:

Lemma 2. The matrix E in (56) is diagonally stable if and only if

γ1γ2γ3γ4 + γ1γ5γ6γ7 < sec(π/4)4 = 4 . (58)

Proof. We prove the sufficiency of this condition as a consequence of a more
general fact. Consider the following diagonal matrix:

D = diag
(

1 ,
γ3γ4

2
,

γ4

γ2
,

2
γ2γ3

,
γ6γ7

2
,

γ7

γ5
,

2
γ5γ6

)
(59)
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and the matrix
M := ET D + DE.

We will prove that condition (58) implies that M ≤ 0. Diagonal stability
of E follows from this claim in view of the following argument: Given any
γi’s satisfying the constraint (58), we can find γ̃i > γi that still satisfy the
constraint, and under this transformation E gets transformed to Ẽ = E+∆,
where ∆ is some positive diagonal matrix. Now let D̃ be defined for Ẽ as
in (59) with γi’s replaced by γ̃i’s. Since ET D̃ + D̃E < ẼT D̃ + D̃Ẽ = M̃ ,
and since M̃ ≤ 0, it follows that ET D̃ + D̃E < 0, which means that E is
diagonally stable.

To prove that (58) implies M ≤ 0, we let Eε := E−εI for each ε > 0, and
show that Mε = ET

ε D+DEε is negative definite for small enough ε > 0. By
continuity, this last property implies that M ≤ 0. In order to check negative
definiteness of Mε, we consider the principal minors µi(ε), i = 1, . . . , 7 of
Mε, and ask that they all have sign (−1)i for small ε > 0. Each µi is a
polynomial of degree ≤ 7 on ε and, upon lengthy calculations omitted here,
the determinant of Mε can be expanded as follows:

µ7(ε) =
8γ4γ7(γ5 + 2γ6 + γ7)(γ2 + 2γ3 + γ4)

γ1γ3
2γ3γ3

5γ6
∆ ε2 + O(ε3), (60)

where ∆ = γ1γ2γ3γ4 + γ1γ5γ6γ7 − 4. Similarly, we have:

µ6(ε) =
−2γ4γ

2
7(γ2 + 2γ3 + γ4)
γ1γ3

2γ3γ2
5

∆ ε + O(ε2),

µ5(ε) =
2γ4γ6γ7(γ2 + 2γ3 + γ4)

γ1γ3
2γ3γ5

∆ ε + O(ε2),

µ4(ε) =
−2γ4(γ2 + 2γ3 + γ4)

γ1γ3
2γ3

∆1 ε + O(ε2),

where ∆1 = γ1γ2γ3γ4 − 4,

µ3(ε) =
γ2
4

2γ1γ2
2

∆1 + O(ε),

µ2(ε) =
−γ3γ4

4γ1γ2
(∆1 − 4) + O(ε),

and
µ1(ε) = − 2

γ1
− 2ε.

Since ∆1 < ∆, we conclude that the matrix Mε is negative definite for all
small enough ε > 0 if and only if ∆ < 0. In particular, condition (58) implies
that M ≤ 0, as claimed.

Finally, we prove the necessity of (58) for the diagonal stability of E in
(56). To this end, we define Ê = diag (γ1, · · · , γ7) E which has all diagonal
components equal to −1, and characteristic polynomial equal to:

(s + 1)3[(s + 1)4 + k],
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where k := γ1γ2γ3γ4 + γ1γ5γ6γ7. For k ≥ 0, the roots of (s + 1)4 = −k

have real part ± 4
√

k/4 − 1; hence k < 4 is necessary for these real parts
to be negative. Because (58) is necessary for the Hurwitz property of Ê, it
is also necessary for its diagonal stability. Since diagonal stability of Ê is
equivalent to diagonal stability of E, we conclude that (58) is necessary for
the diagonal stability of E.

5. Stability of a compartmental model with diffusion. A compart-
mental model is appropriate for describing the spatial localization of pro-
cesses when each of a finite set of spatial domains (“compartments”) is well-
mixed, and can be described by ordinary differential equations. Instead
of the lumped model (12), we now consider n compartments, and repre-
sent their interconnection structure with a new graph in which the links
k = 1, · · · ,m indicate the presence of diffusion between the compartments
j = 1, · · · , n they interconnect. Although the graph is undirected, for nota-
tional convenience we assign an arbitrary orientation to each link and define
the n×m incidence matrix S as

sjk :=





+1 if node j is the sink of link k
−1 if node j is the source of link k
0 otherwise.

(61)

The particular choice of the orientation does not change the derivations
below.

We first prove a general stability result (Theorem 2 below) for a class of
compartmental models interconnected as described by the incidence matrix
S. We then apply this result in Corollary 1 to the situation where the
individual compartments possess dynamics of the form studied in Section 3.
We let

Xj := (xj,1, · · · , xj,N )T

be the state vector of concentrations xj,i in compartment j, and let Ẋj =
Fj(Xj) represent the dynamics of the jth compartment in the absence of
diffusion terms. Next, for each link k = 1, · · · ,m, we denote by

µk,i(xsink(k),i − xsource(k),i) (62)

the diffusion term for the species i, flowing from source(k) to sink(k), and
assume the functions µk,i(·), k = 1, · · · ,m, i = 1, · · · , N , satisfy

σµk,i(σ) ≤ 0, ∀σ ∈ R. (63)

Then, the coupled dynamics of the compartments become:

Ẋj = Fj(Xj) + (Sj,· ⊗ IN )µ((ST ⊗ IN )X) j = 1, · · · , n (64)

where Sj,· is the jth row of the incidence matrix S, IN is the N ×N identity
matrix, “⊗” represents the Kronecker product,

X := [XT
1 · · ·XT

n ]T (65)
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and µ : RmN → RmN is defined as

µ(z) := [µ1,1(z1) · · ·µ1,N (zN ) · · · µm,1(z(m−1)N+1) · · ·µm,N (zmN )]T . (66)

We now prove stability of the coupled system (64) under the assumption that
a common Lyapunov function exists for the decoupled models Ẋj = Fj(Xj),
j = 1, · · · , n, and that this common Lyapunov function consists of a sum of
convex functions of individual state variables:

Theorem 2.Consider the system (64) where the function µ(·) is as in (66)
and (63). If there exists a Lyapunov function V : RN → R of the form

V (x) = V1(x1) + · · ·+ VN (xN ) (67)

where each Vi(xi) is a convex, differentiable and positive definite function,
satisfying

∇V (x)Fj(x) ≤ −α(|x|) j = 1, · · · , n (68)
for some class-K function α(·), then the origin X = 0 of (64) is asymptot-
ically stable. If, further, V (·) is radially unbounded, then X = 0 is globally
asymptotically stable.

Proof. We employ the composite Lyapunov function

V(X) =
n∑

j=1

V (Xj), (69)

and obtain from (64) and (68):

V̇(X) ≤ −
n∑

j=1

α(|Xj |)+[∇V (X1) · · · ∇V (Xn)](S⊗IN )µ((ST⊗IN )X). (70)

We next rewrite the second term in the right-hand side of (70) as

(ST ⊗ IN )



∇V T (X1)

...
∇V T (Xn)







T

µ((ST ⊗ IN )X), (71)

and note from (61) that (71) equals

m∑

k=1

[∇V (Xsink(k))−∇V (Xsource(k))]




µk,1
...

µk,N


 (72)

where µk,i, i = 1, · · · , N , denotes the diffusion function (62), and the argu-
ment is dropped for brevity. Next, using (67), we rewrite (72) as

m∑

k=1

N∑

i=1

[∇Vi(xsink(k),i)−∇Vi(xsource(k),i)]µk,i. (73)

Because Vi(·) is a convex function, its derivative ∇Vi(·) is a nondecreas-
ing function and, hence, ∇Vi(xsink(k),i)−∇Vi(xsource(k),i) possesses the same
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sign as (xsink(k),i − xsource(k),i). We next recall from the sector property
(63) that the function µk,i in (62) possesses the opposite sign of its argu-
ment (xsink(k),i − xsource(k),i). This means that each term in the sum (73) is
nonpositive and, hence, (70) becomes

V̇(x) ≤ −
n∑

j=1

α(|Xj |), (74)

from which the conclusions of the theorem follow. 2

Theorem 2 is applicable when each compartment is as described in Section
3, hl(·) satisfies (43), and gi(·)’s, i = 1, · · · , N , are nonincreasing functions.
This is because the Lyapunov construction (23) in Section 3 consists of a
sum of terms as in (67), each of which is convex when the derivative of (24)
is nondecreasing:

Corollary 1.Consider the system (64) where the function µ(·) is as in (66)
and (63), and Fj(x), j = 1, · · · , n, are identical and represent the right-hand
side of (12). If all assumption of Theorem 1 hold and if, in addition, hl(·)
satisfies (43), and gi(·)’s, i = 1, · · · , N , are nonincreasing functions, then
the equilibrium X = [x∗T , · · · , x∗T ]T is globally asymptotically stable.

6. Discussion and Conclusions. We have presented a passivity-based
stability criterion for a class of interconnected systems, which encompasses
the secant criterion for cyclic systems [1] as a special case. Unlike the result
in [1], we have further allowed the presence of state products in our model.
Our main result (Theorem 1) determines global asymptotic stability of the
network from the diagonal stability of the dissipativity matrix (18) which
incorporates information about the output strict passivity property (2) of
the subsystems, the interconnection structure of the network, and the signs
of the interconnection terms.

We wish to emphasize that our framework assumes that all subsystems
are additively interconnected, thus imposing a limitation on what types of
interconnections may be allowed. For example, if an enzyme E acts so as to
inhibit (allosterically or competitively) the binding of another enzyme F to
a substrate S, the multiplicative nature of this effect cannot be covered by
our mathematical results. On the other hand, many other effects can indeed
be modeled additively. In metabolic networks, for instance, the actions on a
substrate S by two isofunctional enzymes E and F is additive; on the other
hand, each of them may be separately influenced (positively or negatively)
by a downstream metabolite X and Y respectively. The dependence of the
rate of change of concentration of S upon the concentrations of X and Y
may well be nonlinear, but these effects are additive. As another example, in
protein signaling networks, an activating effect might be achieved through a
kinase, while a negative effect may be produced by tagging S for degradation,
or by an enzyme acting as a phosphotase, and such effects are again additive.
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Although diagonal stability can be checked numerically with efficient lin-
ear matrix inequality (LMI) tools [41], it is of interest to derive analytical
conditions that make explicit the role of the reaction rate coefficients on
stability properties. Indeed our earlier paper [1] showed that the diago-
nal stability of negative feedback cyclic systems is equivalent to the secant
criterion of [8, 14]. In Examples 2 and 3 we have derived similar analyti-
cal conditions for several other interconnection structures. Further studies
for deriving analytical conditions for practically important motifs would be
of great interest. Another research topic is to extend the stability result
for compartmental models with diffusion in Section 5 to partial differential
equation models. On this topic we have reported preliminary results ap-
plicable to cyclic systems in [42], and are currently studying more general
interconnection structures.
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