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We consider the problem of estimating a signal,
which is known -- or assumed -- to be constant on each

of the members R,,...,R of a partition of a square
1 m

lattice into m unknown regions, from the observation
of the signal plus Gaussian noise. This is a nonlinear
estimation problem, for which it is not appropriate to
use the conditional expectation as the estimate. We
show that, at least in principle, the "maximum likeli-
hood estimator" (MLE) proposed by Geman and Geman lends
itself to numerical computation using the annealing
algorithm. We argue that the MLE by itself can be,
under certain conditions (low signal to noise ratio), a
very unsatisfactory estimator, in that it does worse
than just deciding that the signal was zero. However,
if combined with a rule which we propose, for deciding
when to use and when to ignore it, the MLE can provide
a reasonable suboptimal estimator. We then discuss
preliminary numerical data obtained using the annealing
method. These results indicate that: (a) the anneal-
ing algorithm performs remarkably well, and (b) a
criterion can be formulated in terms of quantities
computed from the observed image (without using a
priori knowledge of the signal-to-noise ratio) for
deciding when to keep the MLE.

§1. The setting.

For a positive integer n, we use An to denote

the n by n integer lattice, i.e. the set of pairs
(i,j) of integers between 1 and n. The members of
An are called sites. The nearest neighbors of a site

s = (i,j) are the sites s = (i,i-1), s, = (i-1,3),

sy = (i,3+1), s, = (i+1,j). We write s~s' to indi-
cate that s and s' are nearest neighbors. The
diagonal neighbors of s are the sites s9 = (i-1,j-1), '

1

d = (i+1,§+1), si = (i+1,3-1). A

s
2
region is a subset of An'

= (i-1,j+1), sg
An edge is a segment that

joins two nearest neighbors. A region R is connected
if any two points of R can be joined by a path which
consists of edges joining pairs of points of R. A
region R 1is simply connected if, whenever 7T 1is a
simple loop in R (i.e. a simple closed path made of
edges that join points of R), then all the points of
An that are enclosed by 7 are in R. We will be

particularly interested in regions that are both con-
nected and simply connected. We will refer to them as
csc regions. For a region R, we let p(R) denote the
number of points of R. We use e(R) for the number
of edges of R (i.e. of unordered pairs (s,s') € RxR
with s~s'). A square of R 1is a square whose four
edges are edges of R. We use s(R) to denote the
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number of squares of R.

Let R be a nonempty connected region. It can be
proved that the R is simply connected if and only if

p(R)-e(R)+s(R) = 1. 1)

For any given n, let 6(n) denote the number of
connected simply connected regions of the n by n
lattice. We need the following bounds, communicated to
us by M. Aizenman.

LEMMA 1. There are constants Cl’ 02 such that
l<C1<C2<2 and
2 2
n n
Cl < 8(n) f—CZ for all n. (2)
2

Notice that 2" is exactly the number of arbi-
trary subsets of the lattice. The upper bound of (2)
is actually a bound on the number of connected regions.
We omit the proof of (2), but it is important to remark
that the lower bound depends on the existence of a
large number of very "irregular'" connected simply con-
nected regions, whose boundaries are simple closed
loops that nearly fill the whole lattice.

An m-partition is a finite sequence
P = (Rl,...,Rm) of pairwise disjoint regions such that
R.U...UR = A . (Some of the R
1 m n i

m~-partition is connected if all its regions are con-

may be empty.) An

nected. A simply connected m-partition is defined
similarly. (The empty set is connected and simply con-
nected.) A csc partition is one where all the regions

are connected and simply connected. A csc partition
with background (cscb partition) is one where all the

Ri are csc except possibly for Rl. We use the nota-

tions Part(m,n), Partcsc(m,n), Partcscb(m,n) to

denote, respectively, the class of all, all csc, all
cscb m-partitions of An.

An image is a real-valued function on An' The
set of all images, denoted by RA, is therefore an

nz-dimensional linear space. If P 1is an m-partition,
then an image X is P-constant if it is constant on
each region of P. For any m-partition P, let Sp

Then SP

is a linear subspace of RA of dimension k(P), where
k(P) 1is the number of nonempty regions of P.

denote the space of all P-constant images.

Sm denote the union of all
Also, we

For any given m, let
the subspaces S,, for all m-partitions P.

m,csc m,csch
’

let S S denote the union of those SP

that correspond, respectively, to csc or cscb

Sm,cscgsm,cscbgsm' As m

m-partitions. Clearly



A
varies, each of the three families of subsets of R D

defined above increases with m. Notice that the Sm,

Sm,csc’ Sm’CSCb are unions, and not spans, of linear

subspaces, and so they are not themselves linear sub-
2

=n").

spaces (except for m=1 and m

The estimation problem that we are interested in

is as follows: given is an observed Z € RA which,
for some small m, is thought to be of the form X+U,
with U a Gaussian noise and X 1in one of the sets

Sm, Sm,csc’ Sm’CSCb. The objective is to estimate X.

To make this more precise, we must specify a probabi-
lity distribution on the set of possible X's. The
following is a natural choice: we suppose that (i) an
integer K between 1 and m 1s chosen at random, so
that the probability that K = k 1is some given number
Pk» (ii) having chosen K, we select a K-partition P
at random, such that k(P) = K, (iii) having selected
P, we let X be in SP and distributed according to

some density function on SP'

The numbers p, can be taken to be all equal, or-
in the spirit of Statistical Mechanics - proportional to
e_Ck for some c¢ > 0. This latter choice penalizes

partitions with too many regions. The particular par-
tition P in step (ii) may be allowed to be arbitrary,
or may be restricted to be csc or cscb; further, one
may let all the allowed P have the same probability,
or one can choose the probabilities so as to give high-
er weights to certain preferred regions. For instance,
proceeding once again as in Statistical Mechanics, one
can make the probability of P proportional to

e_a|P|, where o 1is a constant and |P| 1is the
perimeter of P - defined simply as the number of pairs
(s,s') of nearest neighbors for which s and s' are
in different regions of P. (This has the effect of
making very irregular regions less likely. However,
this also tends to give too much weight to partitions
where all but one of the regions are very small. One
can counter this shortcoming by adding a priori con-
straints on the sizes of the regions, or by including
extra exponential factors in the probabilities.)

Finally, once P = (Rl,...,RK) has been selected
choosing X

C seeesCy
regions. This can be done for instance by letting the
ey be uniformly distributed on some interval, or

amounts to choosing the constant values
that X 1is going to have on each of the

Gaussian.

As for the noise, we can take it to be Gaussian
and white, or we can assume it to be correlated.

As an illustration, consider the case where m = 2
and the regions are unrestricted. Let X, U, Z be the
image, noise and observation, respectively. Then X

is specified by giving a partition P = (Rl,Rz) and

the values e1s € of X on Rl’ R2' The probability
space is identifked with the product
Part (2,n) XIRZ xR B, and the joint density of X and Z

can be taken to be

-H(P,e,,c,,y)
1 1°72
p(P,C19C2’Y) = ﬁe (3)

where
1

2
5 1 1

(y(s)-c?
267 i=1 seRi

1 2, 2
H(P,cl,cz,y)-ggi(c1+cz) +

769

+ a 1-vy card(Rl)ocard(Rz).
seRl,s'eRZ

(4)
s~s'

Here o, Y, 0, 8 are constant, and N is a nor-
malization constant. (This choice of p corresponds
to taking Py = 0, Py = 1, i.e. not making a separate

K=1 or 2. The

discrete decision whether to take
constants O, 6 measure the power of the signal and
the noise. The last two terms respectively penalize
large perimeters - assuming o > 0 - and partitiomns
into regions of very unequal sizes - if y > 0 - .)

In practice, the computation of N 1is a nearly impos-
sible task but, fortunately, the Metropolis algorithm
(cf. [4]) makes it possible to generate samples of this
distribution without having to know N.

The function H of (4) is called the Hamiltonian.
The choice made in this example corresponds to taking
¢, and <, Gaussian, and letting the noise be uncor-

1
related. If, instead, we want to assume c and c

1
to be uniformly distributed on some interval
we simply omit the first term, but restrict

to be defined only for Cys S in I.

makes perfect sense even when 1

line, i.e. when 02 = +», but the probabilistic inter-
pretation is lost because N becomes infinite.)

2
I, then
p and H

(Actually, H

is the whole real

§2. The estimation problem.

It is well known that, no matter what
are, the "best estimate'" of X given Z is the condi-
tional expectation E(X|Z). However, it is also well
known that this estimator has some obvious drawbacks.
For instance, because it is defined as an integral, the
conditional expectation is often hard to compute. (In
image processing problems, these integrals are sums
over all possible configurations, and can seldom be
evaluated.) An even more serious difficulty with con-
ditional expectations is the following. Even if X 1is
known to take values on some (nonconvex) subset S of
a linear space, the values of E(XiZ) will in general
fail themselves to be in S. (As a trivial illustra-
tion, consider the case of a random variable X, uni-
formly distributed on a sphere, U an independent
Gaussian vector-valued random variable, and 2 X+U.)
In our case, we encounter precisely this situation,

m
because the sets Sm, sm,csc’ S sesch

convex, and we definitely want our estimate for
lie in one of these sets.

X and 2

are clearly not
X to

A general methodology for dealing with estimation
problems of this type in the image processing setting
has been proposed by Geman and Geman [1]. Roughly,
the method proposed involves four steps, namely:

(1) model the images or objects to be detected as
Gibbs states, i.e. let the probability of a configura-
tion o be proportional to e~ , where H - the
Hamiltonian - is a function on the set of all configu-
rations; (2) make a model for the noise so that the
joint probability of an image o and observation

-H(0)-K(o,0°PS)

is given by e for some function

o]
obs
K, (3) let the "conditional Hamiltonian' be defined as

HC(O,OObS) = H(o)+K(0,OObS), and use as the estimate
for o given Gobs a value of o0 which minimizes
HC (i.e. the "maximum likelihood estimator", hence-

forth abbreviated as MLE); finally (4) use the anneal-
ing algorithm to compute the above minimum.



Naturally, the justification of each of these
steps raises a different set of questions. It is clear
that, in our formulation of the model in §1, we have
essentially followed the prescriptions of Steps 1 and
2, and we will not pursue the justification problem for
these steps. Steps 3 and 4, however, require some fur-
ther analysis, because some of the issues involved are
particularly critical for our estimation problem. We
begin by discussion Step 3. The problems regarding the
use of the annealing algorithm will be touched upon
later.

There is no general reason for believing that
"maximum likelihood" estimators in the above sense are
optimal or even reasonable. They clearly are so for
linear Gaussian problems, where they happen to agree
with the usual conditional expectations, but once non-
linearity or nongaussianness if allowed in they can
have fairly undesirable properties. For instance, let
X be a real random variable with density

4 2
VX | X
a7t i
N e , where v >0 and N 1is a normalization
constant. Let U be Gaussian (0,1) and independent

from X. Let Z = X+U. Let
likelihood" estimator for
R GRY)

- 2
if v is sufficiently large, then 1E(|x-x[2) >E(X]4).

X be the "maximum
X given Y, i.e.

Then a simple computation shows that,

This says that X 1is worse, in the mean square sense,
than the trivial estimator X* which consists of just
taking X* = 0 no matter what the observed value of 7
is. For an even simpler example involving a discrete
X, let X take values -1, 0, 1 with equal probabi-

lity. Let U be Gaussian (0,02), and independent
from X. Let Z = X+U. The MLE consists of esti-
mating X to be the member of {-1,0,1} which is
closest to Z. If is large, the mean square error
is worse than if we just estimate X to be zero.

Given that the MLE is not in general satisfactory,
the question arises as to whether it is reasonable_ for
our particular problem. At the moment we are not yet
able to perform a complete rigorous analysis, but we
will now discuss a model problem - which resembles our
more complicated situations -~ where explicit calcula-
tions are possible.

Let n be a positive integer, and let X be an

Rn—valued random variable determined as follows. An
integer k € {1,...,n} is chosen at_random, with
uniform probability, and then a value of the coordinate

2 .
X is chosen with a normal (0,0") distribution,

while the other coordinates are set equal to zero. So
X 1is concentrated on L = LlLJ...L)Ln, where Li
denotes the i-th axis, and its density is
2 2 n
- -1 - 2
l/zn e x| /20 . (Here |x[2 = 3 Xi') Let
i=1
n . . . . 2
U be R -valued Gaussian noise with variance €, and
independent from X. Let Z = X+U, and consider the
problem of estimating X given Z. The joint density

(ZWOZ)

of X and Z, on the product L“Rp, is given by
e—h(x,z) times a constant, where

2 1
x|

+ = a2 ()
26

1
h(x,z) = —
20

The mean square optimal estimate X of X given
Z 1is obtained by choosing, for each =z, the vector

%X € L that minimizes the integral

770

f}x—xfze-h(x’z)dlx, (6)
L
where we write d_x

1
dimensional integral.

to emphasize that (6) is a one-

An explicit computation shows

that x 1is obtained as follows: first we find an
index k such that |zk[ = max{|z,|: j = 1,...,n}.
Then we set J
A wk(z)zk
X =0T (7
1w, (2)
j=1

and we set all the other coordinates equal to zero.
The weights wj are given by

az,
wj(Z) =e J, (8)

2
ag
"zj_z’o= 2 2"
26 g +6

where

The MLE XML is even easier to compute. We get
it by choosing k exactly as above, but then taking
(XML)k = ozk.
again set equal to zero.)

(Naturally, the other coordinates are

Notice that both X and XML agree on the choice

of k, and this choice does not depend on the values of
¢ and 6. That is, there is a certain amount of qua-
litative information (namely, which axis X was on)

which is given as correctly by QML as by i. More-

over, this information does not depend on the strength
of the signal relative to the noise. On the other
hand, X does something subtle that QML entirely

tak X
X akes  x
portion of Zp» X does look at the other zj's in

misses: while to be a definite pro-

order to decide how much of 2, is going to be alotted

to ;k' If zZ, is very large, but the other zj's are

very small, i.e. if 2z 1lies in a narrow cone about Lk

then X will assume that the observation comes pri-
marily from the signal, and will estimate the signal to
be almost as large as z. If, on the other hand, all
the z_ are roughly equal, so that =z is very far

from any of the axes, then X will realize the noise
must have been very large, and will therefore not take
its own choice of k too seriously, and opt instead
for guessing that the signal was very small, and there-
fore k was very uncertain anyhow. In the limiting

case o > 1, both X and XMLE reduce to the obvious

estimate X = Z, which equals X, so that both X and

§ML have zero mean square error. In the other
limiting case, as p > 0, both X and XML go to O.
However, it can be proved that, when p is small
enough, then E(|§ML—X!2) > E(|X|2), i.e. %ML is

worse than just taking X to be zero. (This is of

course not true for X, because X is optimal, and so
it is better than the zero estimator.) This suggests

that there is a cutoff point p such that, for o > R

A

XML is worth using in that, for instance, it does

better than the zero estimator, but for p < p then

~

XMEL should be ignored. If we want to estimate k, we



(i.e. find the axis to which is

k

based on whether 0 > p or p < p. The first of the
two decisions clearly does not depend on knowing p.
It would be desirable if the second one could also be
made independently of p. For this, a Bayesian
approach would be needed to estimate p from the
observed Z. On the other hand, it is intuitively
clear that, if a value 2z has been observed for the
random variable Z which happens to be very close to
one of the axes, then this is very unlikely to have
happened because of the noise, and one would tend to
believe that p was large. Similarly, if many zj'

s
are large, then p

can first use XML z

closest) and then decide to accept this or not

is more likely to have been small.

We now argue heuristically and attempt to show
that something like the preceding analysis should apply
to our original estimation problem. We consider the

case m = 2 and take a Hamiltonian of the form (4),
with o =7y = 0. Moreover, we assume that all images
are first normalized by subtracting their mean over the

lattice, so that all images have mean zero and there
are no nontrivial constant images. Then each partition
P € Part(2,n) gives rise to a one-dimensional subspace
SP of the space of all images. The analogy with the

above simplified model is apparent, except for the fact
that we are now dealing with a more general collection
Zn of subspaces than the set of axes. Moreover, Zn

is actually much larger, since the ambient space has

dimension nz—l but the number of partitions behaves
2

like e°" for some c¢ > 0, as Let us assume

that the analysis of our model problem still applies

here. The MLE is obviously (and rigorously) obtained

by first finding the subspace SP to which the

is closest and then finding the con-
on the regions of P. The parti-
is, simply, the one such that, if

Rl
¢,

i

n > «.

observed image Z
stant values of X
tion P = (RI’RZ)
E2
respectively, then the
R,
i
Then the constants
of

we take to be the means of Z on and R2

o
image with values on the

will best approximate Z in the mean square sense.

c.,, C are taken to be multiples
1 2,22
by the factor o7 /o"+6". The

0, where p

optimum estimator, if we believe the analogy with the
model problem, would be given exactly like the MLE,

Cl’ Cos

except that the ¢, would have to be multiplied by an

extra factor. However, this factor would involve, in

2
. . CWQ(Z)
its denominator, a sum of terms e where, for

each partition Q, WQ(Z) denotes the norm of the

orthogonal projection of Z on S Since the sum

Q"
would be over all partitions, it is clear that compu-
ting the optimum estimator is likely to be much harder
than computing the MLE. On the other hand, we know
that the MLE is an overoptimistic estimator, in that it
gives a multiple of the optimum estimator by a factor
> 1. Hence it should be possible to improve upon the
MLE by making a rough estimate of the extra factor.
this effect, we propose the following heuristic argu-
ment. Suppose we have k one-dimensional subspaces of

To

Rp, where p 1is very large, and k grows with p.
Suppose the subspaces are '"uniformly distributed". One
can then estimate the area of the piece of the (p-1)-
dimensional unit sphere that consists of those points
that are closest to one particular subspace. This area
is roughly equal to Ap/k, where Ap is the area of

the (p-1)-dimensional unit sphere. Since

774

Ap = N we see that the area equals ~ If
re;) kf(i)
this piece of sphere is actually a (p-1)-dimensional
p-1
disc of radius r, then its volume is —— A -1 i.e.
p-1 P
p-1_2
25———1———. So r roughly equals l/kl/p. As p ~ o,
p-1
pr (5
r will stay bounded away from O and 1 if k goes
like CP for some C > 1, and then r will approach
1/C. 1In our estimation problem, p is nz, and k is

the number of partitions. For the case of unrestricted

FoL
3 K
about Z—of the sample variance of a typical purely ran-

2
partitions, k = 2%, and so This says that

dom image should appear to be explainable by assuming
that the image is P-constant for some partition P.
For csc partitions a similar conclusion should hold,
because Lemma 1 tells us that k also behaves like an

exponential of n2 The constant C 1is smaller, how-
ever, so that there will still be a definite, but
smaller, fraction of the variance that will appear to
be explainable by approximating by a signal that is
constant on a 2-partition. (For unrestricted parti-
tions, one can obtain directly a better estimate, and
show that the fraction of the variance that will be

accounted for by a 2-constant approximation is

T
This just follows from the fact that E(|Xl) = V2T if
X 1is normal (0,1).) So, if we compute the best
approximating 2-partition P, we will typically reduce
the variance by a fixed factor, and when this happens
no particular significance should be attached to P.
However, if a much larger reduction results, then it is
likely to mean that the power of the signal relative
to the noise was large, and P really tells us some-
thing about the signal.

The preceding heuristic argument also suggests
that, if we were to choose smaller classes of parti-
tions, whose sizes grow less than exponentially in
then for large n no significant reduction of the
variance would be achieved for a typical random image,
and any observed reduction would be significant.

n2,

Thus, we suggest the following procedure. First
compute the MLE, but then estimate the signal as
follows: let Y be the image obtained from the MLE,
so that Y = pY*, where Y* 1s the orthogonal projec-

tion of the observation Z on some space SP. If o

5} then keep Y. Otherwise,
to be zero. If o, 6§ are not known,
in (4), and compute the MLE, which
Y*. Then determine the ratio

is larger than a certain
just estimate X
just take ¢ = «
will be equal to

Z-Y* E .
[EAla

some number x (which should be about equal to 0.34
for the unrestricted case, and larger for the csc
case), then regard P as a good estimate of the par-
tition for the original signal. If the ratio is lar-
ger than x, estimate X to be zero.

If this ratio is significantly smaller than

§3. Computing the MLE by the annealing method.

The numerical calculation of the MLE is possible,
at least in principle, using the annealing algorithm.
To see this we must show: (a) that the classes of
partitions considered here are ''connected by
switchings", in the sense that we can connect any two



partitions in the class by means of a sequence of
switchings at single sites, without ever leaving the
class, (b) that the possible switchings that can be
made at a site can be recognized by purely local con-
siderations, and (c) that the change in the value of
the Hamiltonian can be calculated locally. (Strictly
speaking, (b) and (c) are not necessary, since the
annealing procedure is in principle applicable to mini-
mization problems on arbitrary finite sets. However,
in practice, for image problems, one needs (b) and (c)
if one is to avoid having to carry out searches over
the whole lattice at each basic iteration step.) The
truth of (a) and (b) is completely trivial for unre-
stricted partitiomns.

For csc partitions more work is required, but the
conclusion is the same. (For example, to decide
whether or not one can switch a site s from Region 1
to Region 2, one has to make sure that adding s to 2
will keep 2 a csc region. Checking whether 2 re-
mains connected is easy, for this will happen if and
only if 2 was empty or at least one nearest neighbor
of s was already in it. Once this is done, the pre-
servation of simply connectedness is equivalent to the
condition that the left side of (1) does not change,
i.e. that adding s to Region 2 adds to it exactly one
more edge than it adds squares.)

The verification of (c) is quite easy, provided
that we allow ourselves to carry in the iterations the
size of each region and the sum of Z over each regiomn
(These numbers are easily updated at each basic itera-
tion by purely local computations.)

Once we know that annealing is in principle a pos-
sible method for computing P, we must consider whether
the computation actually works in practice, i.e.
whether the method will take us reasonably close to the
minimum in a realistic number of iterations. The
existing theorems on the convergence of the annealing
algorithm (cf., e.g., [2], [3]) do not suffice to esta-
blish this since, when the estimates obtained in these
theorems are applied to our problem, they give a number

of iterations that behaves like eCn , ¢ > 0. This
only shows that annealing is not worse than exhaustive
search, which is certainly a necessary but by no means
sufficient condition for an optimization method to be
worth using. In the absence of sharper theoretical
bounds, we can only attempt to answer the question
empirically. As we shall see, the results we have
obtained strongly suggest that, for our estimation
problem, the annealing algorithm works very well.

§4. Numerical results.

We run 25 trials, each consisting of: (a) gene-
ration of a partition P into two regions (with
Region 2 being csc) using the Metropolis algorithm,

(b) generation of a P-constant image X, by choosing
each of the two values of X to be Gaussian (0,02),
(¢) generation of an '"observed image" Z, by adding
uncorrelated Caussian noise to X, (d) two applications
of the annealing algorithms to compute the MLE, one
with "restricted switchings' (i.e. keeping Region 2
csc) and the other one unrestricted. The lattice was

28x28. The ratio 02/02+82 was made to vary from O
to 1. The Hamiltonian used in the annealing computa-
tion was that of (4), with o =y = 0. The first term
of the right side of (4) was omitted, since this term
has no effect on the determination of the partition.
Because of this, together with the fact that a=y=0,
we obtain a situation where, for the unrestricted case,
the optimization problem is in fact reducible to a
clustering problem, and can also be solved algorith-

772

mically in time O(nzlog n). Moreover, when

2,2 .2 . X
p=0"/0+8 is small, we can estimate a priori that

|[z-¥*|| should typically be about (1-—%ﬂ}z”. Thus we

get an independent test to see whether the annealing
algorithm is really computing the minimum.

The results show that, for smail p, and unre-
stricted switchings, the optimum computed by annealing
was very close to the predicted value. This suggests
that, for the problems considered here, annealing is
actually computing the optimum. Convergence was quite
fast: after 120 iterations (passes through the lat-
tice) no significant reduction in the value of h was

2
detected. Let Xr = HE:XEHE’ ur = Hziiéﬂ_,
Ik IP e

computed using restricted switchings. Let AU, Hy be

defined similarly, using unrestricted switchings. A
plot of Au against p shows that, for low values of

Py A
p = pﬁ~0.6, Au(p) becomes significantly smaller, and
The behavior of Xr

for Y*

is constant and its value is about 0.3. At

decreases to zero as p + 1.

appears to be similar, except that (a) the constant
value for small p 1is about 0.55, i.e. significantly
larger than the value for the unrestricted case, in
good agreement with our theoretical discussion, and

(b) the cutoff value of is probably lower, Of~0.5.

(Since A fluctuates more than Au’ the determina-

Ty

tion of pr is more uncertain.) Both Ur and u
u

decrease steadily as functions of p. The graphs go

through the value 1 at about p~0.4. This means
that, for p < 0.4, the MLE is worse than just taking
X =0. For p > 0.4, the MLE does better. If we do

not know p, we can get partial information by compu-
ting Au (or Ar). If Xu is significantly less than

0.3 (or Ar < 0.55), then this says that p 1is large

enough that the MLE must be taken seriously, and used
as an estimator for the signal.

We also run a series of trials in which the signal
was simply a dark square on a light background. In
this case, a similar behavior was observed. However,
another interesting phenomenon was noticed for the case
of very low noise. In some trials with restricted
switchings (i.e. with Region 2 - but not Region 1 -
required to be csc), the algorithm several times became
fixated on taking Region 2 to be the outer one and
Region 1 to be the square. Since Region 2 was required
to be csc, the end result was a square of ones on a
background of twos, except that there was a string of
ones joining the square to the boundary. Such a con-
figuration is clearly a local minimum which is not
global. However, this minimum is very close in value
to the global one, although very far in configuration
space. Going from this local minimum to the global
one would have required climbing a very high hill, and
the algorithm was unable to do it.

§5. Conclusion.

Our preliminary data indicate that, for the esti-
mation problem considered here, the annealing algorithm
works rather well to get quite close to the minimum in
a reasonably small number of iterations. However, the
phenomenon of 'getting trapped at a local minimum"
can occur, especially for restricted switchings.

(This shows that the imposition of constraints on con-
figurations, in order to obtain configurations with



special properties, also has the undesirable side
effect of making motion in configuration space more
difficult.)

As for the question of how the computed MLE can
be used to estimated the signal, the answer is more
complicated, as was shown before, but there clearly is
a range of values of p such that (a) one can assess
from the data whether p 1is in that range, and
(b) if p is in that range, then the MLE is good.
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