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Abstract

Persistence is the property, for differential equations in R
n, that solutions start-

ing in the positive orthant do not approach the boundary of the orthant. For

chemical reactions and population models, this translates into the non-extinction

property: provided that every species is present at the start of the reaction, no

species will tend to be eliminated in the course of the reaction. This paper pro-

vides checkable conditions for persistence of chemical species in reaction networks,

using concepts and tools from Petri net theory, and verifies these conditions on

various systems which arise in the modeling of cell signaling pathways.
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1 Introduction

One of the main goals of molecular systems biology is the understanding of cell behavior
and function at the level of chemical interactions, and, in particular, the characterization
of qualitative features of dynamical behavior (convergence to steady states, periodic
orbits, chaos, etc). A central question, thus, is that of understanding the long-time
behavior of solutions. In mathematical terms, and using standard chemical kinetics
modeling, this problem may be translated into the study of the set of possible limit
points (the ω-limit set) of the solutions of a system of ordinary differential equations.

Robustness

A distinguishing feature of this study in the context of cell biology, in contrast to more
established areas of applied mathematics and engineering, is the very large degree of
uncertainty inherent in models of cellular biochemical networks. This uncertainty is due
to environmental fluctuations, and variability among different cells of the same type, as
well as, from a mathematical analysis perspective, the difficulty of measuring the relevant
model parameters (kinetic constants, cooperativity indices, and many others) and thus
the challenge to obtain a precise model. Thus, it is imperative to develop tools that
are “robust” in the sense of being able to provide useful conclusions based only upon
information regarding the qualitative features of the network, and not the precise values
of parameters or even the forms of reactions. Of course, this goal is often unachievable,
since dynamical behavior may be subject to phase transitions (bifurcation phenomena)
which are critically dependent on parameter values.

Nevertheless, and surprisingly, research by many, notably by Clarke [10], Horn and
Jackson [29, 30], Feinberg [18, 19, 20], and many others in the context of complex balanc-
ing and deficiency theory, and by Hirsch and Smith [41, 26] and many others including
the present authors [2, 17, 3, 9] in the context of monotone systems, has resulted in the
identification of rich classes of chemical network structures for which such robust analysis
is indeed possible. In this paper, we present yet another approach to the robust analysis
of dynamical properties of biochemical networks, and apply our approach in particular
to the analysis of persistence in chemical networks modeled by ordinary differential equa-
tions. Our approach to study persistence is based on the formalism and basic concepts
of the theory of Petri nets. Using these techniques, our main results provide conditions
(some necessary, and some sufficient) to test persistence. We then apply these conditions
to obtain fairly tight characterizations in non-trivial examples arising from the current
molecular biology literature.

Persistence

Persistence is the property that, if every species is present at the start of the reaction,
no species will tend to be eliminated in the course of the reaction. Mathematically, this
property can be equivalently expressed as the requirement that the ω-limit set of any
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trajectory which starts in the interior of the positive orthant (all concentrations positive)
does not intersect the boundary of the positive orthant (more precise definitions are
given below). Persistence can be interpreted as non-extinction: if the concentration of a
species would approach zero in the continuous differential equation model, this means, in
practical terms, that it would completely disappear in finite time, since the true system
is discrete and stochastic. Thus, one of the most basic questions that one may ask
about a chemical reaction network is if persistence holds for that network. Also from a
purely mathematical perspective persistence is very important, because it may be used
in conjunction with other techniques in order to guarantee convergence of solutions to
equilibria. For example, if a strictly decreasing Lyapunov function exists on the interior
of the positive orthant (see e.g. [29, 30, 18, 19, 20, 42] for classes of networks where this
can be guaranteed), persistence allows such a conclusion.

An obvious example of a non-persistent chemical reaction is a simple irreversible
conversion A → B of a species A into a species B; in this example, the chemical A
empties out, that is, its time-dependent concentration approaches zero as t → ∞. This is
obvious, but for complex networks determining persistence, or lack thereof, is, in general,
an extremely difficult mathematical problem. In fact, the study of persistence is a classical
one in the (mathematically) related field of population biology, where species correspond
to individuals of different types instead of chemical units; see for example [22, 7] and
much other foundational work by Waltman. (To be precise, what we call “persistence”
coincides with the usage in the above references, and is also sometimes called “strong
persistence,” at least when all solutions are bounded, a condition that we will assume in
most of our main results, and which is automatically satisfied in most examples. Also,
we note that a stronger notion, “uniform” persistence, is used to describe the situation
where all solutions are eventually bounded away from the boundary, uniformly on initial
conditions, see [8, 44].) Most dynamical systems work on persistence imposes conditions
ruling out phenomena such as heteroclinic cycles on the boundary of the positive orthant,
and requiring that the unstable manifolds of boundary equilibria should intersect the
interior, and more generally studying the chain-recurrence structure of attractors, see
e.g. [27].

Petri nets

Basic ideas introduced by Carl Adam Petri in 1962 [38] led to the notion of a Petri
net, also called a place/transition nets, and they constitute a popular mathematical
and graphical modeling tool used for concurrent systems modeling [37, 47]. Our mod-
eling of chemical reaction networks using Petri net formalism is not in itself a new
idea: there have been many works, at least since [39],which have dealt with biochem-
ical applications of Petri nets, in particular in the context of metabolic pathways, see
e.g. [23, 28, 32, 35, 36, 46]. In this paper, we associate both a Petri net and a system of
differential equations to a chemical reaction network. The latter describes the behavior
of the concentrations of the chemicals in the network. We intend to draw conclusions
about the asymptotic behavior of the solutions of the system of differential equations,
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based on the graphical and algebraic properties of the associated Petri net. This is very
related to open questions which have been raised in recent works by Gilbert and Heiner
as well as Silva and Recalde, [24, 40], where a similar point of view is taken, of either
complementing discrete analysis by means of continuous techniques or integrating the
two approaches for a deeper understanding (see [16] for an introduction to continuous
Petri-Nets).

Although we do not use any results from Petri net theory, we employ several concepts
(siphons, P-semiflows, etc.), borrowed from that formalism and introduced as needed, in
order to formulate new, powerful, and verifiable conditions for persistence and related
dynamical properties.

Application to a common motif in systems biology

In molecular systems biology research, certain “motifs” or subsystems appear repeatedly,
and have been the subject of much recent research. One of the most common ones is
that in which a substrate S0 is ultimately converted into a product P , in an “activation”
reaction triggered or facilitated by an enzyme E, and, conversely, P is transformed back
(or “deactivated”) into the original S0, helped on by the action of a second enzyme F .
This type of reaction is sometimes called a “futile cycle” and it takes place in signaling
transduction cascades, bacterial two-component systems, and a plethora of other pro-
cesses. The transformations of S0 into P and vice versa can take many forms, depending
on how many elementary steps (typically phosphorylations, methylations, or additions
of other elementary chemical groups) are involved, and in what order they take place.
Figure 1 shows two examples, (a) one in which a single step takes place changing S0 into
S1, and (b) one in which two sequential steps are needed to transform S0 into S2, with
an intermediate transformation into a substance S1. A chemical reaction model for such

F

E

S0 S1

F

E

F

E

S S0 2S1

Figure 1: (a) One-step and (b) two-step transformations

a set of transformations incorporates intermediate species, compounds corresponding to
the binding of the enzyme and substrate. (In “quasi-steady state” approximations, a
singular perturbation approach is used in order to eliminate the intermediates. These
approximations are much easier to study, see e.g. [2].) Thus, one model for (a) would be
through the following reaction network:

E + S0 ↔ ES0 → E + S1

F + S1 ↔ FS1 → F + S0

(1)

(double arrows indicate reversible reactions) and a model for (b) would be:

E + S0 ↔ ES0 → E + S1 ↔ ES1 → E + S2

F + S2 ↔ FS2 → F + S1 ↔ FS1 → F + S0

(2)

4



where “ES0” represents the complex consisting of E bound to S0 and so forth.

As a concrete example, case (b) may represent a reaction in which the enzyme E
reversibly adds a phosphate group to a certain specific amino acid in the protein S0,
resulting in a single-phosphorylated form S1; in turn, E can then bind to S1 so as to pro-
duce a double-phosphorylated form S2, when a second amino acid site is phosphorylated.
A different enzyme reverses the process. (Variants in which the individual phosphory-
lations can occur in different orders are also possible; we discuss several models below.)
This is, in fact, one of the mechanisms believed to underlie signaling by MAPK cascades.
Mitogen-activated protein kinase (MAPK) cascades constitute a motif that is ubiquitous
in signal transduction processes [31, 33, 45] in eukaryotes from yeast to humans, and
represents a critical component of pathways involved in cell apoptosis, differentiation,
proliferation, and other processes. These pathways involve chains of reactions, activated
by extracellular stimuli such as growth factors or hormones, and resulting in gene expres-
sion or other cellular responses. In MAPK cascades, several steps as in (b) are arranged
in a cascade, with the “active” form S2 serving as an enzyme for the next stage.

Single-step reactions as in (a) can be shown to have the property that all solutions
starting in the interior of the positive orthant globally converge to a unique (subject to
stoichiometry constraints) steady state, see [4], and, in fact, can be modeled by monotone
systems after elimination of the variables E and F , cf. [1]. The study of (b) is much
harder, as multiple equilibria can appear, see e.g. [34, 12]. We will show how our results
can be applied to test consistency of this model, as well as several variants.

Organization of paper

The remainder of paper is organized as follows. Section 2 sets up the basic terminol-
ogy and definitions regarding chemical networks, as well as the notion of persistence,
Section 3 shows how to associate a Petri net to a chemical network, Sections 4 and 5
provide, respectively, necessary and sufficient conditions for general chemical networks.
In Section 6, we show how our results apply to the enzymatic mechanisms described
above. We present some conclusions and directions for future research in Section 8.

2 Chemical Networks

A chemical reaction network (“CRN”, for short) is a set of chemical reactions Ri, where
the index i takes values in R := {1, 2, . . . , nr}. We next define precisely what one means
by reactions, and the differential equations associated to a CRN, using the formalism
from chemical networks theory.

Let us consider a set of chemical species S := {Sj | j ∈ {1, 2, . . . ns}} which are the
compounds taking part in the reactions. Chemical reactions are denoted as follows:

Ri :
∑

j∈S

αijSj →
∑

j∈S

βijSj (3)
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where the αij and βij are nonnegative integers called the stoichiometry coefficients. The
compounds on the left-hand side are usually referred to as the reactants, and the ones
on the right-hand side are called the products, of the reaction. Informally speaking, the
forward arrow means that the transformation of reactants into products only happens in
the direction of the arrow. If also the converse transformation occurs, then, the reaction
is reversible and we need to also list its inverse in the chemical reaction network as a
separate reaction.

It is convenient to arrange the stoichiometry coefficients into an ns×nr matrix, called
the stoichiometry matrix Γ, defined as follows:

[Γ]ji = βij − αij, (4)

for all i ∈ R and all j ∈ S (notice the reversal of indices). This will be later used in
order to write down the differential equation associated to the chemical reaction network.
Notice that we allow Γ to have columns which differ only by their sign; this happens when
there are reversible reactions in the network.

We discuss now how the speed of reactions is affected by the concentrations of the
different species. Each chemical reaction takes place continuously in time with its own
rate which is assumed to be only a function of the concentration of the species taking
part in it. In order to make this more precise, we define the vector S = [S1, S2, . . . Sns

]′

of species concentrations and, as a function of it, the vector of reaction rates

R(S) := [R1(S), R2(S), . . . Rnr
(S)]′ .

Each reaction rate Ri is a real-analytic function defined on an open set which contains
the non-negative orthant Ons

+ = R
ns

≥0 of R
ns , and we assume that each Ri depends only

on its respective reactants. (Imposing real-analyticity, that is to say, that the function Ri

can be locally expanded into a convergent power series around each point in its domain,
is a very mild assumption, verified in basically all applications in chemistry, and it allows
stronger statements to be made.) Furthermore, we assume that each Ri satisfies the
following monotonicity conditions:

∂Ri(S)

∂Sj

=

{

≥ 0 if αij > 0
= 0 if αij = 0.

(5)

We also assume that, whenever the concentration of any of the reactants of a given
reaction is 0, then, the corresponding reaction does not take place, meaning that the
reaction rate is 0. In other words, if Si1 , . . . , SiN are the reactants of reaction j, then we
ask that

Rj(S) = 0 for all S such that [Si1 , . . . , SiN ] ∈ ∂ON
+ ,

where ∂ON
+ = ∂R

N
≥0 is the boundary of ON

+ in R
N . Conversely, we assume that reactions

take place if reactants are available, that is:

Rj(S) > 0 whenever S is such that [Si1 , . . . , SiN ] ∈ int[RN
≥0] ,
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where int[RN
≥0] denotes the interior of the orthant R

N
≥0.

A special case of reactions is as follows. One says that a chemical reaction network
is equipped with mass-action kinetics if

Ri(S) = ki

ns
∏

j=1

S
αij

j for all i = 1, . . . , nr .

Note that the exponents of each chemical participating in the reaction is the same as the
stoichiometric coefficient this chemical has in that reaction. This is a commonly used
form for the functions Ri(s) and amounts to asking that the reaction rate of each reaction
is proportional to the concentration of each of its participating reactants. The results in
this paper do not require this assumption; in a paper in preparation we will specialize
and tighten our results when applied to systems with mass-action kinetics.

With the above notations, the chemical reaction network is described by the following
system of differential equations:

Ṡ = Γ R(S). (6)

with S evolving in Ons

+ and where Γ is the stoichiometry matrix.

There are several additional notions useful when analyzing CRN’s. One of them is
the notion of a complex. We associate to the network (3) a set of complexes, Ci’s, with
i ∈ {1, 2, . . . , nc}. Each complex is an integer combination of species, specifically of the
species appearing either as products or reactants of the reactions in (3). We introduce
the following matrix Γ̃ as follows:

Γ̃ =











α11 α21 . . . αnr1 β11 β21 . . . βnr1

α12 α22 . . . αnr2 β12 β22 . . . βnr2

...
...

...
...

...
...

α1ns
α2ns

. . . αnrns
β1ns

β2ns
. . . βnrns











Then, a matrix representing the complexes as columns can be obtained by deleting from
Γ̃ repeated columns, leaving just one instance of each; we denote by Γc ∈ R

ns×nc the
matrix which is thus constructed. Each of the columns of Γc is then associated with a
complex of the network. We may now associate to each chemical reaction network, a
directed graph (which we call the C-graph), whose nodes are the complexes and whose
edges are associated to the reactions (3). An edge (Ci, Cj) is in the C-graph if and only if
Ci → Cj is a reaction of the network. Note that the C-graph need not be connected (the
C-graph is connected if for any pair of distinct nodes in the graph there is an undirected
path linking the nodes), and lack of connectivity cannot be avoided in the analysis. (This
is in contrast with many other graphs in chemical reaction theory, which can be assumed
to be connected without loss of generality.) In general, the C-graph will have several
connected components (equivalence classes under the equivalence relation “is linked by
an undirected path to”, defined on the set of nodes of the graph).

Let I be the incidence matrix of the C-graph, namely the matrix whose columns are
in one-to-one correspondence with the edges (reactions) of the graph and whose rows
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are in one-to-one correspondence with the nodes (complexes). Each column contains a
−1 in the i-th entry and a +1 in the j-th entry (and zeroes in all remaining entries)
whenever (Ci, Cj) is an edge of the C-graph (equivalently, when Ci → Cj is a reaction of
the network). With this notations, we have the following formula, to be used later:

Γ = Γc I . (7)

We denote solutions of (6) as follows: S(t) = ϕ(t, S0), where S0 ∈ Ons

+ is the initial
concentration of chemical species. As usual in the study of the qualitative behavior
of dynamical systems, we will make use of ω-limit sets, which capture the long-term
behavior of a system and are defined as follows:

ω(S0) := {S ∈ Ons

+ : ϕ(tn, S0) → S for some tn → +∞} (8)

(implicitly, when talking about ω(S0), we assume that ϕ(t, S0) is defined for all t ≥ 0
for the initial condition S0). We will be interested in asking whether or not a chemical
reaction network admits solutions in which one or more of the chemical compounds
become arbitrarily small. The following definition, borrowed from the ecology literature,
captures this intuitive idea.

Definition 2.1 A chemical reaction network (6) is persistent if ω(S0) ∩ ∂Ons

+ = ∅ for
each S0 ∈ int(Ons

+ ). 2

We will derive conditions for persistence of general chemical reaction networks. Our
conditions will be formulated in the language of Petri nets; these are discrete-event
systems equipped with an algebraic structure that reflects the list of chemical reactions
present in the network being studied, and are defined as follows.

3 Petri Nets

We associate to a CRN a bipartite directed graph (i.e., a directed graph with two types
of nodes) with weighted edges, called the species-reaction Petri net, or SR-net for short.
Mathematically, this is a quadruple

(VS, VR, E,W ) ,

where VS is a finite set of nodes each one associated to a species, VR is a finite set of
nodes (disjoint from VS), each one corresponding to a reaction, and E is a set of edges
as described below. (We often write S or VS interchangeably, or R instead of VR, by
identifying species or reactions with their respective indices; the context should make the
meaning clear.) The set of all nodes is also denoted by V

.
= VR ∪ VS.

The edge set E ⊂ V ×V is defined as follows. Whenever a certain reaction Ri belongs
to the CRN:

∑

j∈S

αijSj →
∑

j∈S

βijSj , (9)
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we draw an edge from Sj ∈ VS to Ri ∈ VR for all Sj’s such that αij > 0. That is,
(Sj, Ri) ∈ E iff αij > 0, and we say in this case that Ri is an output reaction for Sj.
Similarly, we draw an edge from Ri ∈ VR to every Sj ∈ VS such that βij > 0. That is,
(Ri, Sj) ∈ E whenever βij > 0, and we say in this case that Ri is an input reaction for
Sj.

Notice that edges only connect species to reactions and vice versa, but never connect
two species or two reactions.

The notion of an SR-net is very closely related to that of an SR-graph in [14, 15]. The
only difference is that an SR-net is a directed graph, while an SR-graph is not, and that
reversible reactions in an SR-net are represented by two distinct reaction nodes, while
only one reaction node appears in the SR-graph for a reversible reaction.

The last element to fully define the Petri net is the function W : E → N, which
associates to each edge a positive integer according to the rule:

W (Sj, Ri) = αij and W (Ri, Sj) = βij .

Several other definitions which are commonly used in the Petri net literature will be
of interest in the following. We say that a row or column vector v is non-negative, and
we denote it by v � 0 if it is so entry-wise. We write v � 0 if v � 0 and v 6= 0. A
stronger notion is instead v � 0, which indicates vi > 0 for all i.

Definition 3.1 A P-semiflow is any row vector c � 0 such that c Γ = 0. Its support is
the set of indices {i ∈ VS : ci > 0}. A Petri net is said to be conservative if there exists
a P-semiflow c � 0. 2

Notice that without loss of generality a P-semiflow has integer components since the en-
tries of Γ are integers. Notice also that P-semiflows for the system (6) correspond to non-
negative linear first integrals, that is, linear functions S 7→ cS such that (d/dt)cS(t) ≡ 0
along all solutions of (6) (assuming that the span of the image of R(S) is R

nr). In
particular, a Petri net is conservative if and only if there is a positive linear conserved
quantity for the system. (Petri net theory views Petri nets as “token-passing” systems,
and, in that context, P-semiflows, also called place-invariants, amount to conservation
relations for the “place markings” of the network, that show how many tokens there are
in each “place,” the nodes associated to species in SR-nets. We do not make use of this
interpretation in this paper.)

Definition 3.2 A T-semiflow is any column vector v � 0 such that Γ v = 0. A Petri
net is said to be consistent if there exists a T-semiflow v � 0. 2

The notion of T-semiflow corresponds to the existence of a collection of positive
reaction rates which do not produce any variation in the concentrations of the species.
In other words, v can be viewed as a set of fluxes that is in equilibrium ([46]). (In Petri
net theory, the terminology is “T-invariant,” and the fluxes are flows of tokens.)
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A chemical reaction network is said to be reversible if each chemical reaction has an
inverse reaction which is also part of the network. (This is different from the meaning
reversibility has in the Petri net literature.) Biochemical models are most often non-
reversible. For this reason, a far milder notion was introduced [29, 30, 18, 19, 20]: A
chemical reaction network is said to be weakly reversible if each connected component
of the C-graph is strongly connected (meaning that there is a directed path between
any pair of nodes in each connected component). In algebraic terms, weak reversibility
amounts to existence of v � 0 such that Iv = 0 (see Corollary 4.2 of [21]), so that in
particular, using (7), also Γv = ΓcIv = 0. Hence a chemical reaction network that is
weakly reversible has a consistent associated Petri net (the converse is in general not
true, see for instance Example 1).

A few more definitions are needed in order to state our main results.

Definition 3.3 A nonempty set Σ ⊂ VS is called a siphon if each input reaction associ-
ated to Σ is also an output reaction associated to Σ. A siphon is minimal if it does not
contain (strictly) any other siphons. 2

For later use we associate a particular set to a siphon Σ as follows:

LΣ = {x ∈ Ons

+ |xi = 0 ⇐⇒ i ∈ Σ}.

The set LΣ is therefore characterized as the set of concentration vectors whose entries
are zero if (and only if) the corresponding chemical species are in the siphon Σ.

It is also useful to introduce a binary relation “reacts to”, which we denote by �,
and we define as follows: Si � Sj whenever there exists a chemical reaction Rk, so that

∑

l∈S

αklSl →
∑

l∈S

βklSl

with αki > 0, βkj > 0. If the reaction number is important, we also write

Si �
k Sj

(where k ∈ R). With this notation, the notion of siphon can be rephrased as follows:
Z ⊂ S is a siphon for a chemical reaction network if for every S ∈ Z and k ∈ R such
that S̃k := {T ∈ S : T �

k S} 6= ∅, it holds S̃k ∩ Z 6= ∅.

4 Necessary Conditions

Our first result will relate persistence of a chemical reaction network to consistency of
the associated Petri net.

Theorem 1 Let (6) be the equation describing the time-evolution of a conservative and
persistent chemical reaction network. Then, the associated Petri net is consistent.
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Proof. Let S0 ∈ int(Ons

+ ) be any initial condition. By conservativity, solutions satisfy
cS(t) ≡ cS0, and hence remain bounded, and therefore ω(S0) is a nonempty compact set.
Moreover, by persistence, ω(S0) ∩ ∂Ons

+ = ∅, so that R(S̃0) � 0, for all S̃0 ∈ ω(S0). In
particular, by compactness of ω(S0) and continuity of R, there exists a positive vector
v � 0, so that

R(S̃0) � v for all S̃0 ∈ ω(S0) .

Take any S̃0 ∈ ω(S0). By invariance of ω(S0), we have R(ϕ(t, S̃0)) � v for all t ∈ R.
Consequently, taking asymptotic time averages, we obtain:

0 = lim
T→+∞

ϕ(T, S̃0) − S̃0

T
= lim

T→+∞

1

T

∫ T

0

ΓR(ϕ(t, S̃0)) dt (10)

(the left-hand limit is zero because ϕ(T, S̃0) is bounded). However,

1

T

∫ T

0

R(ϕ(t, S̃0)) dt � v

for all T > 0. Therefore, taking any subsequence Tn → +∞ so that there is a finite limit:

lim
n→+∞

1

Tn

∫ Tn

0

R(ϕ(t, S̃0)) dt = v̄ � v .

We obtain, by virtue of (10), that Γ v̄ = 0. This completes the proof of consistency, since
v̄ � 0.

5 Sufficient Conditions

In this present Section, we derive sufficient conditions for insuring persistence of a chem-
ical reaction network on the basis of Petri net properties.

Theorem 2 Consider a chemical reaction network satisfying the following assumptions:

1. its associated Petri net is conservative;

2. each siphon contains the support of a P-semiflow.

Then, the network is persistent.

We first prove a number of technical results. The following general fact about differ-
ential equations will be useful.

For each real number p, let sign p := 1, 0,−1 if p > 0, p = 0, or p < 0 respectively,
and for each vector x = (x1, . . . , xn), let sign x := (sign x1, . . . , sign xn)′. When x belongs
to the closed positive orthant R

n
+, sign x ∈ {0, 1}n.
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Lemma 5.1 Let f be a real-analytic vector field defined on some open neighborhood of
R

n
+, and suppose that R

n
+ is forward invariant for the flow of f . Consider any solution

x̄(t) of ẋ = f(x), evolving in R
n
+ and defined on some open interval J . Then, sign x̄(t) is

constant on J .

Proof. Pick such a solution, and define

Z := {i | x̄i(t) = 0 for all t ∈ J} .

Relabeling variables if necessary, we assume without loss of generality that Z = {r +
1, . . . , n}, with 0 ≤ r ≤ n, and we write equations in the following block form:

ẏ = g(y, z)

ż = h(y, z)

where x′ = (y′, z′)′ and y(t) ∈ R
r, z(t) ∈ R

n−r. (The extreme cases r = 0 and r = n
correspond to x = z and x = y respectively.) In particular, we write x̄′ = (ȳ′, z̄′)′ for the
trajectory of interest. By construction, z̄ ≡ 0, and the sets

Bi := {t | ȳi(t) = 0}

are proper subsets of J , for each i ∈ {1, . . . , r}. Since the vector field is real-analytic,
each coordinate function ȳi is real-analytic (see e.g. [43], Proposition C.3.12), so, by the
principle of analytic continuation, each Bi is a discrete set. It follows that

G := J \
r

⋃

i=1

Bi

is an (open) dense set, and for each t ∈ G, ȳ(t) ∈ inter R
r
+, the interior of the positive

orthant.

We now consider the following system on R
r:

ẏ = g(y, 0) .

This is again a real-analytic system, and R
r
+ is forward invariant. To prove this last

assertion, note that forward invariance of the closed positive orthant is equivalent to the
following property:

for any y ∈ R
r
+ and any i ∈ {1, . . . , r} such that yi = 0, gi(y, 0) ≥ 0.

Since R
n
+ is forward invariant for the original system, we know, by the same property

applied to that system, that for any (y, z) ∈ R
n
+ and any i ∈ {1, . . . , r} such that yi = 0,

gi(y, z) ≥ 0. Thus, the required property holds (case z = 0). In particular, inter R
r
+

is also forward invariant (see e.g. [2], Lemma III.6). By construction, ȳ is a solution of

12



ẏ = g(y, 0), ȳ(t) ∈ inter R
r
+ for each t ∈ G, Since G is dense and inter R

r
+ is forward

invariant, it follows that ȳ(t) ∈ inter R
r
+ for all t ∈ J . Therefore,

sign x̄(t) = (1r, 0n−r)
′ for all t ∈ J

where 1r is a vector of r 1’s and 0n−r is a vector of n − r 0’s.

We then have an immediate corollary:

Lemma 5.2 Suppose that Ω ⊂ Ons

+ is a closed set, invariant for (6). Suppose that
Ω∩LZ is non-empty, for some Z ⊂ S. Then, Ω∩LZ is also invariant with respect to (6).

Proof. Pick any S0 ∈ Ω∩LZ . By invariance of Ω, the solution ϕ(t, S0) belongs to Ω for all
t in its open domain of definition J , so, in particular (this is the key fact), ϕ(t, S0) ∈ Ons

+

for all t (negative as well as positive). Therefore, it also belongs to LZ , since its sign is
constant by Lemma 5.1.

In what follows, we will make use of the Bouligand tangent cone TCξ(K) of a set
K ⊂ Ons

+ at a point ξ ∈ Ons

+ , defined as follows:

TCξ(K) =

{

v ∈ R
n : ∃kn ∈ K, kn → ξ and λn ↘ 0 :

1

λn

(kn − ξ) → v

}

.

Bouligand cones provide a simple criterion to check forward invariance of closed sets (see
e.g. [5]): a closed set K is forward invariant for (6) if and only if ΓR(ξ) ∈ TCξ(K) for all
ξ ∈ K. However, below we consider a condition involving tangent cones to the sets LZ ,
which are not closed. Note that, for all index sets Z and all points ξ in LZ ,

TCξ (LZ) = {v ∈ R
n : vi = 0 ∀ i ∈ Z} .

Lemma 5.3 Let Z ⊂ S be non-empty and ξ ∈ LZ be such that ΓR(ξ) ∈ TCξ(LZ).
Then Z is a siphon.

Proof. By assumption ΓR(ξ) ∈ TCξ(LZ) for some ξ ∈ LZ . This implies that [ΓR(ξ)]i = 0
for all i ∈ Z. Since ξi = 0 for all i ∈ Z, all reactions in which Si is involved as a reactant
are shut off at ξ; hence, the only possibility for [ΓR(ξ)]i = 0 is that all reactions in which
Si is involved as a product are also shut-off. Hence, for all k ∈ R, and all l ∈ S so that
Sl �

k Si, we necessarily have that Rk(ξ) = 0.

Hence, for all k ∈ R so that S̃k = {l ∈ S : Sl �
k Si} is non-empty, there must exist an

l ∈ S̃k so that ξl = 0. But then necessarily, l ∈ Z, showing that Z is indeed a siphon.

The above Lemmas are instrumental to prove the following Proposition:

Proposition 5.4 Let ξ ∈ Ons

+ be such that ω(ξ) ∩ LZ 6= ∅ for some Z ⊂ S. Then Z is
a siphon.
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Proof. Let Ω be the closed and invariant set ω(ξ). Thus, by Lemma 5.2, the non-empty
set LZ ∩ Ω is also invariant. Notice that

cl[LZ ] =
⋃

W⊇Z

LW .

Moreover, LW ∩ Ω is invariant for all W ⊂ S such that LW ∩ Ω is non-empty. Hence,

cl[LZ ] ∩ Ω =
⋃

W⊇Z

[LW ∩ Ω]

is also invariant. By the characterization of invariance for closed sets in terms of Bouli-
gand tangent cones, we know that, for any η ∈ cl[LZ ] ∩ Ω we have

ΓR(η) ∈ TCη(Ω ∩ cl(LZ)) ⊂ TCη(cl(LZ)) .

In particular, for η ∈ LZ ∩ Ω (which by assumption exists), ΓR(η) ∈ TCη(LZ) so that,
by virtue of Lemma 5.3 we may conclude Z is a siphon.

Although at this point Proposition 5.4 would be enough to prove Theorem 2, it is
useful to clarify the meaning of the concept of a “siphon” here. It hints at the fact,
made precise in the Proposition below, that removing all the species of a siphon from the
network (or equivalently setting their initial concentrations equal to 0) will prevent those
species from being present at all future times. Hence, those species literally “lock” a part
of the network and shut off all the reactions that are therein involved. In particular, once
emptied a siphon will never be full again. A precise statement of the foregoing remarks
is as follows.

Proposition 5.5 Let Z ⊂ S be non-empty. Then Z is a siphon if and only if cl(LZ) is
forward invariant for (6).

Proof. Sufficiency: Pick ξ ∈ LZ 6= ∅. Then forward invariance of cl(LZ) implies that
ΓR(ξ) ∈ TCξ(cl(LZ)) = TCξ(LZ), where the last equality holds since ξ ∈ LZ . It follows
from Lemma 5.3 that Z is a siphon.

Necessity: Pick ξ ∈ cl(LZ). This implies that ξi = 0 for all i ∈ Z ∪ Z ′, where Z ′ ⊂ S
could be empty. By the characterization of forward invariance of closed sets in terms of
tangent Bouligand cones, it suffices to show that [ΓR(ξ)]i = 0 for all i ∈ Z, and that
[ΓR(ξ)]i ≥ 0 for all i ∈ Z ′ whenever Z ′ 6= ∅. Now by (6),

[ΓR(ξ)]i =
∑

k

βkiRk(ξ) −
∑

l

αliRl(ξ) =
∑

k

βkiRk(ξ) − 0 ≥ 0 , (11)

which already proves the result for i ∈ Z ′. Notice that the second sum is zero because
if αli > 0, then species i is a reactant of reaction l, which implies that Rl(ξ) = 0 since
ξi = 0. So we assume henceforth that i ∈ Z. We claim that the sum on the right side of
(11) is zero. This is obvious if the sum is void. If it is non-void, then each term which
is such that βki > 0 must be zero. Indeed, for each such term we have that Rk(ξ) = 0
because Z is a siphon. This concludes the proof of Proposition 5.4.
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S1

ES0

S0

E

ES1

S2

FS2FS1

F

Figure 2: Petri net associated to reactions (2).

Proof of Theorem 2

Let ξ ∈ int(Ons

+ ) be arbitrary and let Ω denote the corresponding ω-limit set Ω = ω(ξ).
We claim that the intersection of Ω and the boundary of Ons

+ is empty.

Indeed, suppose that the intersection is nonempty. Then, Ω would intersect LZ , for
some ∅ 6= Z ⊂ S. In particular, by Proposition 5.4, Z would be a siphon. Then,
by our second assumption, there exists a non-negative first integral cS, whose support
is included in Z, so that necessarily cS(tn, ξ) → 0 at least along a suitable sequence
tn → +∞. However, cS(t, ξ) = cξ > 0 for all t ≥ 0, thus giving a contradiction.

6 Applications

We now apply our results to obtain persistence results for variants of the reaction (b)
shown in Figure 1 as well as for cascades of such reactions.

6.1 Example 1

We first study reaction (2). Note that reversible reactions were denoted by a “↔” in
order to avoid having to rewrite them twice. The Petri net associated to (2) is shown
if Fig. 2. The network comprises nine distinct species, labeled S0, S1, S2, E, F , ES0,
ES1, FS2, FS1. It can be verified that the Petri net in Fig. 2 is indeed consistent
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(so it satisfies the necessary condition). To see this, order the species and reactions by
the obvious order obtained when reading (2) from left to right and from top to bottom
(e.g., S1 is the fourth species and the reaction E + S1 → ES1 is the fourth reaction).
The construction of the matrix Γ is now clear, and it can be verified that Γv = 0 with
v = [2 1 1 2 1 1 2 1 1 2 1 1 ]′. The network itself, however, is not weakly reversible, since
neither of the two connected components of (2) is strongly connected. Computations
show that there are three minimal siphons:

{E,ES0, ES1},

{F, FS1, FS2},

and

{S0, S1, S2, ES0, ES1, FS2, FS1}.

Each one of them contains the support of a P-semiflow; in fact there are three independent
conservation laws:

E + ES0 + ES1 = const1,

F + FS2 + FS1 = const2, and

S0 + S1 + S2 + ES0 + ES1 + FS2 + FS1 = const3,

whose supports coincide with the three mentioned siphons. Since the sum of these three
conservation laws is also a conservation law, the network is conservative. Therefore,
application of Theorem 2 guarantees that the network is indeed persistent.

6.2 Example 2

As remarked earlier, examples as the above one are often parts of cascades in which
the product (in MAPK cascades, a doubly-phosphorilated species) S2 in turn acts as an
enzyme for the following stage. One model with two stages is as follows (writing S2 as
E? in order to emphasize its role as a kinase for the subsequent stage):

E + S0 ↔ ES0 → E + S1 ↔ ES1 → E + E?

F + E? ↔ FS2 → F + S1 ↔ FS1 → F + S0

E? + S?
0 ↔ ES?

0 → E? + S?
1 ↔ ES?

1 → E? + S?
2

F ? + S?
2 ↔ FS?

2 → F ? + S?
1 ↔ FS?

1 → F ? + S?
0 .

(12)

The overall reaction is shown in Fig. 3. Note – using the labeling of species and reaction
as in the previous example – that Γv = 0 with v = [v′

1 v′
1 v′

1 v′
1]

′ and v1 = [2 1 1 2 1 1]′, and
hence the network is consistent. There are five minimal siphons for this network, namely:

{E,ES0, ES1},

{F, FS2, FS1},

{F ?, FS?
2 , FS?

1},

{S?
0 , S

?
1 , S

?
2 , ES?

0 , ES?
1 , FS?

2 , FS?
1},
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S1

ES0

S0

E

ES1

FS2FS1

F

E*

ES0*

ES1*

S0*

S1*

S2*

F*

FS1*

FS2*

Figure 3: Petri net associated to reactions (12).

and

{S0, S1, E
?, ES0, ES1, FS2, FS1, ES?

0 , ES?
1}.

Each one of them is the support of a P-semiflow, and there are five conservation laws:

E + ES0 + ES1 = const1,

F + FS2 + FS1 = const2,

F ? + FS?
2 + FS?

1 = const3,

S?
0 + S?

1 + S?
2 + ES?

0 + ES?
1 + FS?

2 + FS?
1 = const4,

and

S0 + S1 + E? + ES0 + ES1 + FS2 + FS1 + ES?
0 + ES?

1 = const5.

As in the previous example, the network is conservative since the sum of these con-
servation laws is also a conservation law. Therefore the overall network is persistent, by
virtue of Theorem 2. It is worth pointing out that the number of minimal siphons of
a network may grow even exponentially with the size of the network. For large scale
networks, it becomes therefore crucial to obtain algorithms for the determination of all
minimal siphons in order to automatically check the assumptions of Theorem 2. The pa-
per [13] presents one such algorithm, together with some numerical and analytical results
dealing with problem complexity.
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M2F*

M2FMyF

MtF

ME MyE

MtE

M M2

ME*

My

Mt

Figure 4: Petri net associated to the network (13).

6.3 Example 3

An alternative mechanism for dual phosphorilation in MAPK cascades, considered in [34],
differs from the previous ones in that it becomes important at which sites the two phos-
phorylations occur. (These take place at two different sites, a threonine and a tyrosine
residue). The corresponding network can be modeled as follows:

M + E ↔ ME → My + E ↔ MyE → M2 + E
M + E ↔ ME? → Mt + E ↔ MtE → M2 + E
M2 + F ↔ M2F → My + F ↔ MyF → M + F
M2 + F ↔ M2F

? → Mt + F ↔ MtF → M + F.

(13)

See Fig. 4 for the corresponding Petri net. This network is consistent. Indeed, Γv = 0
for the same v as in the previous example. Moreover it admits three siphons of minimal
support:

{E,ME,ME?,MyE,MtE},

{F,MyF,MtF,M2F,M2F
?},

and

{M,ME,ME?,My,Mt,MyE,MtE,M2,M2F,M2F
?,MtF,MyF}.

Each of them is also the support of a conservation law, respectively for M ,E and F
molecules. The sum of these conservation laws, is also a conservation law and therefore
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the network is conservative. Thus the Theorem 2 again applies and the network is
persistent.

6.4 Example 4

We give next an example of Reaction Network which cannot be analyzed by means of
our results; this is a chemical reaction network for which siphons and P-semiflow do not
coincide:

2A + B → C → A + 2B → D → 2A + B. (14)

Notice that there is only one conservation law for the network, namely A+B +3C +3D;
there are, however, 2 non trivial siphons {A,C,D} and {B,C,D}, none of which contains
the support of the unique P-semiflow. Hence, Theorem 2 cannot be applied to network
(14); on the other hand, the associated Petri Net is consistent and numerical evidence
shows that the network is indeed persistent when simulated with reaction rates expressed
according to mass-action kinetics. Specific criteria which exploit this additional structure
of the system are currently under investigation. This trivial example shows that indeed
even very simple examples can violate the assumptions of our main result; it is therefore
remarkable that fairly complex examples taken from the biochemical literature can indeed
be treated by means of such analytical tools.

7 Discrete vs. Continuous persistence results

As a matter of fact, and this was actually the main motivation for the introduction of Petri
Nets in [38], each Petri Net (as defined in Section 3) comes with an associated discrete
event system, which governs the evolution of a vector M , usually called the marking of
the net. The entries of M are non-negative integers, in one-one correspondence with the
places of the network, i.e. M = [m1,m2, . . . ,mns

]′ ⊂ N
ns , and the mis, i = 1 . . . ns, stand

for the number of “tokens” associated to the places S1 . . . Snp
. In our context, each token

may be thought of as a molecule of the corresponding species. Once a certain initial
condition M0 ⊂ N

ns has been specified for a given net, we have what is usually called
a marked Petri Net, In order to define dynamical behavior, one considers the following
firing rules for transitions R:

1. a transition R can fire whenever each input place of R is marked with a number of
tokens greater or equal than the weight associated to the edge joining such a place
to R (in our context a reaction can occur, at a given time instant, only provided that
each reagent has a number of molecules greater or equal than the corresponding
stoichiometry coefficient); we call such transitions enabled.

2. when a transition R fires, the marking M of the network is updated by subtracting,
for each input place, a number of tokens equal to the weight associated to the
corresponding edge, while for each output place a number of tokes equal to the
weight of the corresponding edge is added.
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Together with a rule that specifies the timing of the firings, this specifies a dynamical
system describing the evolution of vectors M ∈ N

ns . There are several ways to specify
timings. One may use a deterministic rule in which a specification is made at each
time instant of which transition fires (among those enabled). Another possibility is to
consider a stochastic model, in which firing events are generated by a random processes
with exponentially decaying probability distributions, with a specified rate λ. The timing
of the next firing of a particular reaction R might depend on R as well as the state vector
M . In this way, an execution of the Petri Net is nothing but a realization of a stochastic
process (which is Markovian in an appropriate space).

The main results in Sections 4 and 5 are independent of the type of kinetics assumed
for the chemical reaction network (for instance mass-action kinetics or Michaelis-Menten
kinetics are both valid options at this level of abstraction). This also explains, to a great
extent, the similarity between our theorems and their discrete counterparts which arise in
the context of liveness’s studies for Petri Nets and Stochastic Petri Nets (liveness can be
seen indeed as the discrete analog of persistence for ODEs, even though its definition is
usually given in terms of firing of transitions rather than asymptotic averages of markings,
see [47] for a precise definition).

It is well known that the following Necessary condition for Liveness holds:

Liveness of a PN ⇒ Consistence of the PN.

Notice the similarity of the above implication with the statement of Theorem 1. Also
in its discrete stochastic counter-part, the result can be thought of as a consequence of
ergodicity of the associated Markov chain.

The discrete counter-parts of Theorem 2 are more subtle. In particular, we focus
our attention on the so called Siphon-Trap Property which is a sufficient condition for
liveness of conservative Petri Nets, and actually a complete characterization of liveness
if the net is a “Free Choice Petri Net” (this is known as Commoner’s Theorem, [25] and
[11]):

Theorem 3 Consider a conservative Petri Net satisfying the following assumption:

each (minimal) siphon contains a non-empty trap.

Then, the PN is alive.

Notice the similarity between the assumptions and conclusions in Theorem 2 and
in Theorem 3. There are some subtle differences, however. Traps for Petri-Nets enjoy
the following invariance property: if a trap is non-empty at time zero (meaning that at
least one of its places has tokens), then the trap is non-empty at all future times. In
contrast, in a continuous set-up (when tokens are not integer quantities but may take
any real value), satisfaction of the siphon-trap property does not prevent (in general)
concentrations of species from decaying to zero asymptotically. This is why we needed
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a strengthened assumption 2., and asked that each siphon contains the support of a P-
semiflow (which is always, trivially, also a trap). In other words, in a continuous set-up
the notion of a trap looses much of its appeal, since one may conceive situations in which
molecules are pumped into the trap at a rate which is lower than the rate at which they
are extracted from it, so that, in the limit, the trap can be emptied out even though it
was initially full. A similar situation never occurs in a discrete set-up since, whenever a
reaction occurs, at least one molecule will be left inside the trap.

8 Conclusions

In ecology, persistence is the property of an ecosystem to asymptotically preserve non-
zero populations of all the species which are present at the initial time. In the present
paper we obtain both necessary and sufficient conditions for persistence in chemical
reaction networks under a general monotonicity assumption for the reaction rates. The
conditions are stated in terms of graphical and algebraic properties of Petri nets which
are associated to the chemical reaction network. In a subsequent paper we will present
tighter results for networks in which all reaction rates are of mass action type. The
result presented here may also serve as a preliminary step towards the construction of
a systematic Input/Output theory for chemical reaction networks, by allowing systems
with inflows and outflows.
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