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a b s t r a c t

This paper introduces a small-gain result for interconnected orthant-monotone systems for which no
matching condition is required between the partial orders in input and output spaces. Previous results
assumed that the partial orders adopted would be induced by positivity cones in input and output spaces
and that such positivity cones should fulfill a compatibility rule: namely either be coincident or be
opposite. Those two configurations correspond to positive feedback or negative feedback cases. We relax
those results by allowing arbitrary orthant orders.

A linear example is provided showing that the small-gain iteration used for the negative feedback case
is not sufficient for global attractivity under mixed feedback. An algebraic characterization is given of the
new small-gain condition, generalizing a result known in the negative feedback case. An application is
given to nonlinear protein networks with one positive and one negative feedback loop.
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1. Introduction

Monotone dynamical systems [1] and monotone control sys-
tems [2] are important classes of models used in various appli-
cations, particularly in the emerging field of systems biology. The
defining property is the preservation of a partial order for the so-
lutions of the system (precise definitions to be given later). This
property has rich consequences in terms of the possible dynamical
behaviors that monotone systems may exhibit. For instance, ac-
cording to the celebrated ‘Generic Convergence Theorem’ by
Hirsch [1], under mild irreducibility assumptions the generic
bounded solution of an autonomous monotone system converges
towards the set of equilibria. In the case of nonlinear control mod-
els, perhaps the simplest example is that of a cooperative control
system, defined by the equations

ẋ = f (x, u), y = h(x), (1)

under the assumption that ∂ fi
∂xj
(x, u) ≥ 0, ∂ fi

∂uk
(x, u) ≥ 0 for every

i, j = 1, . . . , n, i ≠ j, k = 1, . . . ,m, and every x ∈ X ⊆ Rn,
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u ∈ U ⊆ Rm. A more general definition of monotone systems will
be discussed below, although in that case a change of variables can
be used to bring the system into this form. Regarding the output
function h(x), assume that there exist s1, . . . , sm ∈ {−1, 1}, such
that for all k = 1, . . . ,m, i = 1, . . . , n, and x ∈ X:

sk
∂hk

∂xi
(x) ≥ 0.

This last equation departs from established results in the litera-
ture of control monotone systems, which has been divided into
two groups of results. Using the above notation, in positive feed-
back input–output (I/O) systems one assumes that si = 1, i =

1, . . . ,m [3], whereas in negative feedback systems the assumption
is that si = −1, i = 1, . . . ,m [2]. Each of the two assumptions has
led to a number of papers that determine the qualitative behavior
of the closed loop system

ẋ = f (x, h(x)) (2)

under specific circumstances (see below) as well as a number of
applications e.g. [4–8]. For a system withm inputs and outputs, all
2m combinations of orthant matches are allowed in our newmixed
feedback framework, compared to the two special cases studied
previously. The goal of this paper is to provide sufficient conditions
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for the global asymptotic stability of (2) in themixed feedback case,
as well as for more general monotone systems.

As a general hypothesis, the system (1) is assumed to converge
globally towards a unique steady state γ X (u) under any time-
invariant input u ∈ U; the function γ (u) = h(γ X (u)) is called
the steady-state I/O characteristic of the system.

Under thenegative feedback framework, if the discrete iteration
induced by the map γ has a unique globally asymptotically stable
fixed point, then (2) also has a globally asymptotically stable steady
state. We refer to this theorem as a small-gain theorem, and the
global convergence of the discrete iteration

uk+1 = γ (uk) (3)

towards a unique fixed point is called the small-gain condition. In
the linear single-input, single-output case the small-gain condition
is equivalent to |γ ′(0)| < 1, hence the name of the theorem. The
small-gain theorem allows to prove the global asymptotic stability
of systems that are not themselves monotone but can be described
as the interconnection of monotone systems. The small-gain
condition is necessary as well as sufficient provided one is willing
to allow for arbitrary delays in the feedback loop (see below). The
result was first proved in [2] for one input, then generalized to
systems with multiple inputs and outputs and reaction–diffusion
systems [9], multi-valued I/O characteristics [10], and oscillatory
systems [11]. See also [12,13].

In the positive feedback case, the main result can be described
as establishing a bijection between the stable fixed points of the
discrete iteration (3) and the stable steady states of (2) [3]. A
generalization tomultiple-input,multiple-output (MIMO) systems
of the result concerning positive feedback interconnections can be
found in [14]. In particular, if the small-gain condition holds, then
there is a unique fixed point for the I/O characteristic map, and the
closed loop interconnection has a unique globally asymptotically
stable steady state. The positive feedback framework has also been
generalized and applied to various specificmodels in [6,15], among
others.

In the positive feedback case the function γ is monotonically
increasing, that is, if u ≤ v (defined componentwise) then γ (u) ≤

γ (v). Similarly, the function γ (γ (u)) is monotonically increasing
in the negative feedback case, and this fact is fundamental for the
proof of the small-gain theorem. In themixed feedback framework,
it can be shown using the chain rule that sk∂γk/∂uj ≥ 0 for every
k = 1, . . . ,m, j = 1, . . . ,m. As a possible strategy for a proof
in the mixed feedback case, one might think that γ k is monotone
increasing for sufficiently large k. As a simple counterexample,
suppose that γ (u) = Au, where

A =


0.5 0.5
−1 −1


.

This function can be the mixed feedback I/O characteristic of a
system with s1 = 1, s2 = −1. However Aq

= (−0.5)q−1A for
every q ∈ N, which is not monotonically increasing. Hence the
argument used in the proof of the small-gain theorem cannot be
simply generalized using higher powers in the mixed feedback
case.

It should be stressed that the results presented here constitute
a significant extension and unification of two lines of research.
Results for monotone control systems under positive and negative
feedback, while similar, have remained separate during the decade
since the papers [2,3] were first published. The nature of the
feedback (positive or negative) in general cannot be changed by
carrying out simple coordinate transformations, and the proof of
the stability results for positive and negative feedback use different
techniques. The extension of the small-gain result to positive
feedback systems, as well as to systems that have mixed feedback,
can provide a framework for further integration of the two types
of results.

Using a linear counterexample, it is shown that the original
small-gain condition fails to imply the global attractivity of the
closed loop system in the mixed feedback case (Section 8). On the
other hand a different iteration is proposed here for the mixed
feedback case, involving a pair of inputs and thus raising the
dimensionality of the associated discrete system to 2m. A new
small-gain condition is proposed, namely that the iterations of
this 2m-dimensional map converge globally towards a single fixed
point. An algebraic system of 2m equations is also derived and
shown to be equivalent to the new small-gain condition. This
algebraic system is a generalization of the results developed by
Cosner [16] and later in [9] for the negative feedback case, which
also convert the m-dimensional small-gain condition into a 2m
dimensional system of equations.

The case of one positive and one negative input (m = 2)
is considered as a special case, and the small-gain condi-
tion is reduced in that case to studying the iterations of a
1-dimensional, possibly multi-valuedmap. Lemma 2 and the main
result, Theorem 1, together lead to a unified generalization of the
SISO theorems proved in both original papers [2,3] for monotone
systems under positive and negative feedback. An application is
given to the double feedback loop with one positive and one neg-
ative cycle, in the context of protein networks with Hill function
nonlinearities.

2. Problem formulation

Monotone control systems are usually defined on subsets of
Euclidean space. Denote the state space by X ⊆ Rn, the input space
by U ⊆ Rm and the output space by Y ⊆ Rp. Input signals are
assumed to be measurable, locally essentially bounded functions
of time u : R+

0 → U , and U denotes the set of all such input
signals. The setY is similarly defined and consists of all continuous
functions y : R+

0 → Y . An orthant set is a subset of Euclidean space
of the form S = S1 × · · · × Sk, where each Si is either R+

0 or R−

0 .
Consider orthant sets KU ⊆ Rm, KX ⊆ Rn, and KY ⊆ Rp. Partial
orders can be defined on U , X and Y by letting for all u1, u2 ∈ U ,
x1, x2 ∈ X , y1, y2 ∈ Y :

u1 ≥KU u2 ⇔ u1 − u2 ∈ KU

x1 ≥KX x2 ⇔ x1 − x2 ∈ KX

y1 ≥KY y2 ⇔ y1 − y2 ∈ KY .

To simplify notations we may omit the subscript ≥{KU ,KX ,KY } when
clear from the context.

We define a (time-invariant) I/O control system in the usual way
to be given by a state space X , a set of inputs U, an output map
h : X → Y , and a function ϕ : R≥0 × X × U → X with the
following properties:
1. ϕ(0, x0, u) = x0, for all x0 ∈ X and all u ∈ U;
2. ϕ(t1, ϕ(t2, x0, u), σt2u) = ϕ(t1 + t2, x0, u), for all t1, t2 ≥ 0, all

x0 ∈ X and all u ∈ U. The operator σt : U → U denotes the
shift by t units backwards in time, that is (σtu)(s) = u(s + t),
and U is assumed to be closed under this operator.

One can think ofϕ(t, x0, u) as the solution of the systemwith initial
condition x0 and input u at time t , and of h(x) as the readout of the
system at state x ∈ X . Each initial condition x0 and input u ∈ U
produces an output function y(t) = h(ϕ(t, x0, u)), and y ∈ Y.

Definition 1. An I/O control system is orthant-monotone with
respect to the order sets KU , KX , KY if for every x1, x2 ∈ X and
u1, u2 ∈ U,

u1(t)≥KU u2(t) ∀ t ≥ 0, x1 ≥KX x2
⇒ ϕ(t, x1, u1)≥KX ϕ(t, x2, u2) ∀ t ≥ 0. (4)
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It is also assumed that the map h is orthant-monotone, that is

x1 ≥KX x2 ⇒ h(x1)≥KY h(x2).

Notice that in this definition it is equivalent to write u1(t)≥KU
u2(t) for almost every t ≥ 0, since u ∈ U can be re-defined ar-
bitrarily on a set of measure zero. By combining the two equa-
tions in this definition, if u1(t)≥KU u2(t) for (almost) all t ≥ 0 and
x1 ≥KX x2, it follows that y1(t)≥KY y2(t) for every t ≥ 0, where
yi(t) = h(ϕ(t, xi, ui)).

From now on we will restrict our attention to the special case
of an I/O orthant-monotone control system arising from a forward-
complete system of ordinary differential equations,

ẋ = f (x, u) y = h(x), (5)

where f : X̃ × U → Rn is defined in some open neighborhood X̃
of X and is locally Lipschitz continuous in x and jointly continuous
in x and u, while h : X → Y is a continuous readout map. In this
case ϕ(t, x0, u) is the solution of the system at time t with initial
condition x0 ∈ X and input u ∈ U. Let KU , KX , KY be orthant cones
as before, and let α ∈ {−1, 1}m be such that KU = {u ∈ Rm

|αiui ≥

0, i = 1, . . . ,m}. Let β ∈ {−1, 1}n, δ ∈ {−1, 1}p characterize KX ,
KY respectively in the same way. It was proved in [2] that system
(5) satisfies (4) if f is differentiable and its partial derivatives satisfy

βiβj
∂ fi
∂xj
(x, u) ≥ 0, βiαk

∂ fi
∂uk

(x, u) ≥ 0, (6)

for every i, j = 1, . . . , n, i ≠ j, k = 1, . . . ,m, x ∈ X , and u ∈ U . The
monotonicity of a differentiable function h is equivalent to

βiδℓ
∂hℓ
∂xi

(x) ≥ 0, (7)

for all i = 1, . . . , n, ℓ = 1, . . . , p, and x ∈ X . In fact, a
change of variables can be carried out to bring the system into
the cooperative form αk = βj = δℓ = 1, as described in [2].
However when dealing with non-monotone interaction networks
as described below, it will be necessary to consider the more
general case with negative interactions.

We are now ready to define the notion of steady-state I/O
characteristic.

Definition 2. An I/O control system admits a steady-state I/O
characteristic if, for each constant input signal u ∈ U, there exists
a unique ȳ ∈ Y , such that for every x0 ∈ X the output y(t) satisfies

lim
t→∞

y(t) = ȳ.

Moreover themap γ : U → Y that to each input value u associates
the corresponding asymptotic output value ȳ is assumed to be
continuous. This map γ is called the steady-state I/O characteristic
of the system.

It is easy to prove that γ (·) is, for any I/O orthant-monotone
system, an orthant-monotone map.

An I/O control system is said to admit an input-state character-
istic if for every constant input signal u ∈ U and every x0 ∈ X , the
solution x(t) = ϕ(t, x0, u) converges towards a value γ X (u). It is
also assumed that γ X

: U → X is a continuous function.
In the following we consider interconnected I/O orthant-

monotone systems of the form

ẋ1 = f1(x1, u1), h1(x1) = y1 = u2,
ẋ2 = f2(x2, u2), h2(x2) = y2 = u1,

(8)

where X1 ⊆ Rn1 ,U1 ⊆ Rm1 , Y1 ⊆ Rp1 and X2 ⊆ Rn2 ,U2 ⊆

Rm2 , Y2 ⊆ Rp2 respectively. Also, to make sense of (8) we assume
that Y2 ⊆ U1, Y1 ⊆ U2, and that p2 = m1, p1 = m2.
Together, this interconnection forms a single system of differential
equations defined on X1 ×X2. Assume that f1, f2, h1, h2 are globally
Lipschitz, and that Xi is forward invariant under ẋi = fi(xi, u0)
for every constant input u0 ∈ Ui. Then for every initial condition
(x1(0), x2(0)) the system has a unique solution (x1(t), x2(t))
defined for all t ≥ 0 [2]. The outputs yi(t) ∈ Yi are defined as
before.

For technical reasons, which will become clear later, we ask
thatU1, X1, Y1,U2, X2, Y2 be closed boxes, that is cartesian products
of possibly unbounded closed real intervals. If the variable xi is
defined on the interval R−

0 , then a change of variable x̄i = −xi
allows x̄i to lie in the range R+

0 . However it also changes the sign
of all edges involving xi in the network. Allowing for more general
state spaces gives more flexibility to the resulting network.

We do not assume, however, that KU1 = ±KY2 nor that KU2 =

±KY1 , and that is the main point of departure of the present paper
with respect to previous small-gain results in the literature. We
denote by Λ12 and Λ21, diagonal matrices of suitable dimensions
with diagonal entries in {−1, 1} so that
KU1 = Λ21KY2 , KU2 = Λ12KY1 . (9)
It is useful in the following developments to introduce the notion
of interval for a partially ordered space. Given a partial order≤, we
define the set [a, b] = {x : a ≤ x ≤ b}, in analogy to intervals of
the real line. As we will need more than one partial order even for
the same underlying Euclidean space, it is convenient to specify
as a subscript the order associated to a particular interval set.
Accordingly we let [a, b]K denote the interval a, b as defined by
considering the partial order induced by K .

An easy but essential step in the following developments is to
realize that, for the case of orthant-induced orders, intervals are
always closed boxes. Moreover, it is possible to express any given
box as an interval regardless of the adopted partial order.

Lemma 1. Let K1, K2 ⊂ Rm be orthants, and let the diagonal matrix
Λ with entries in {−1, 1} be such that K2 = ΛK1. Let Λ+ =

max{Λ, 0}, interpreted coordinate-wise, andΛ− = −min{Λ, 0} =

I −Λ+. Then for a≤K2 b,

[a, b]K2 = [Λ+a +Λ−b,Λ+b +Λ−a]K1 . (10)

Proof. Suppose first that K1 = (R+

0 )
m, and set s1, . . . , sm ∈

{−1, 1} such that K2 = {u ∈ Rm sixi ≥ 0}. Then also Λ =

diag(s1, . . . , sm). One can think of [a, b]K2 as the set of points u ∈

Rm such that each ui lies between ai and bi. That is,

[a, b]K2 = {u ∈ Rm
| ai ≤ ui ≤ bi if si = 1, bi ≤ ui ≤ ai if si = −1}

= {u ∈ Rm
|Λ+a +Λ−b≤K1 ui ≤K1 Λ+b +Λ−a}

= [Λ+a +Λ−b,Λ+b +Λ−a]K1 .

For the case of general K1, suppose thatM is a diagonal matrix with
diagonal entries in {−1, 1}, such that K 1 := (R+

0 )
m

= MK1. Define
K 2 = MK2. Then

K2 = MK2 = MΛK1 = MΛMK 1 = ΛK 1.

For any a≤K2 b, it holds Ma≤K2
Mb, and by the first part of the

proof

[Ma,Mb]K2
= [Λ+Ma +Λ−Mb,Λ+Mb +Λ−Ma]K1

.

Notice that M[u, v]K = [Mu,Mv]MK for any orthant K and
any u≤K v. Multiplying the above equation by M , the result
follows. �

Define the function η : R2m
→ R2m, η(a, b) := (Λ+a +

Λ−b,Λ+b +Λ−a) = (η1(a, b), η2(a, b)). In this way

[a, b]K2 = [η1(a, b), η2(a, b)]K1 . (11)
It is worth pointing out that for symmetric intervals this takes

the simpler form:
[−a, a]K2 = [−Λa,Λa]K1 . (12)
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Regarding the interconnection in (8) and using the notation in
(9), define η1 and η2 using the matrices Λ = Λ12 and Λ = Λ21
respectively.

3. Main result

We are now ready to state our main result. We define a gener-
alized discrete iteration analogous to the discrete iteration (3), and
we assume as the new small-gain condition that the solutions of
this iteration converge towards a unique fixed point of the associ-
ated discrete map.

Theorem 1. Consider a well-posed feedback interconnection of I/O
orthant-monotone systems (8), and assume that every solution
(x1(t), x2(t)) is bounded. Suppose both I/O systems admit continuous
steady-state I/O characteristics γ 1

: U1 → Y1 and γ 2
: U2 → Y2

as well as continuous input-state characteristics. Define the discrete
iteration that given u−

1 (0)≤KU1
u+

1 (0) in U1 calculates input and
output values for every k = 0, 1, 2, . . . as follows:

y−

1 (k) = γ 1(u−

1 (k)), y+

1 (k) = γ 1(u+

1 (k)),
(u−

2 (k), u
+

2 (k)) = η1(y−

1 (k), y
+

1 (k)),
y−

2 (k) = γ 2(u−

2 (k)), y+

2 (k) = γ 2(u+

2 (k)),
(u−

1 (k + 1), u+

1 (k + 1)) = η2(y−

2 (k), y
+

2 (k)).

(13)

Here η1, η2 are as described in (11). Provided that for all initial
conditions u−

1 (0), u
+

1 (0) the discrete iteration converges towards
a unique fixed point (ū, ū), the closed-loop system is globally
convergent. Namely, for every solution (x1(t), x2(t)) of (8), the
functions yi(t) = hi(xi(t)) fulfill

lim
t→∞

(y1(t), y2(t)) = (γ 1(ū), ū).

Also, every state solution (x1(t), x2(t)) converges towards a unique
globally attractive steady state.

Notice that u−

1 (k+1)≤KU1
u+

1 (k+1) according to this iteration.
The proof of Theorem 1 will rely on two results. In the following,
given a closed set B denote by d(p, B) := mins∈B d(p, s), where
d(p, s) is the L∞ metric in Euclidean space.

Remark 1. Small-gain theorems are a classical tool in the study
of interconnected systems, [17]. A considerable body of literature
has been developed around this theme, by exploiting the so called
Input-to-State Stability framework. Two seminal contributions in
this respect are [18,19], where the Small-Gain Theorem was first
derived in a trajectory-based and Lyapunov-based formulation,
respectively. More recently, a considerable effort has been devoted
to generalizing these conditions to the case ofmultiple systems, see
for instance [20–22], and/or to relaxing it to the case of integrally
Input-to-State Stable subsystems, [23,24] as well as dealing with
various ISS formulations, [25].

While the results in this paper only deal with the simple case of
two subsystems, we believe that similar ideas could be extended
to the case of multiple feedback loops. On the other hand, some
peculiar advantages of focusing on monotone systems to state
small-gain results are the following:

1. They can be formulated on spaces that are products of closed
intervals and therefore not necessarily diffeomorphic to Eu-
clidean space (this occurs rather frequently in biological sys-
tems).

2. Input–output gains are derived directly from steady-state In-
put–output characteristics, rather than from Lyapunov-like dis-
sipation inequalities, removing the need to look for Lyapunov
functions.
3. As a consequence, small-gain conditions tend to be tighter, and
in fact become necessary if one is willing to allow for arbitrary
delays in interconnections or in the case of positive feedback
systems.

4. Gain functions are not necessarily symmetric with respect to
the equilibrium of interest and small-gain conditions are for-
mulated as nonlinear iterations rather than compositions of
K∞ functions.

5. Coping with uncertainty is somewhat easier as one may study
convergence of the small-gain iterationwithout explicit knowl-
edge of the fixed point this is converging to (in other words we
avoid the usual assumption that the equilibrium should be at
0). For instance, if one of the systems is affected by uncertainty
whichpotentiallymay shift the equilibriumposition, this is only
going to affect its own input–output steady state characteristic,
and not the gains of both subsystems.

Lemma 2. Suppose given an orthant-monotone system with contin-
uous steady-state I/O characteristic γ . Let u ∈ U be such that
limt→∞ d(u(t), [u−, u+

]KU ) = 0. Let y(t) = h(ϕ(t, x, u)), where
x ∈ X is an arbitrary initial condition. Then

lim
t→∞

d(y(t), [γ (u−), γ (u+)]KY ) = 0. (14)

Proof. Notice that if B = B1 ×· · · Bk is a box set, d(p, B) < α if and
only if d(pi, Bi) < α for every i = 1, . . . , k. Let ε > 0 be given, and
let δ > 0 be such that d(v, u±) < δ implies d(γ (v), γ (u±)) < ε/2,
where u±

= u+, u−. Such δ exists by continuity of γ . Let w be in
the interior of KU such that |w| < δ, and set u−−

= u−
−w, u++

=

u+
+w. Thus [u−, u+

]KU is contained in the interior of [u−−, u++
]KU

and d(u−−, u−) < δ, d(u++, u+) < δ. By assumption, there exists
t1 > 0 such that t > t1 implies u(t) ∈ [u−−, u++

]KU .
Now define the new input u1 = σt1u, the state x1 = ϕ(t1, x, u),

and the output y1 = σt1y(t) = h(ϕ(t, x1, u1)). Also let y−−(t) =

h(ϕ(t, x1, u−−)), y++(t) = h(ϕ(t, x1, u++)), where with a slight
abuse of notation we have identified the input values u−− and u++

with the corresponding constant signals. By orthant-monotonicity,

y−−(t)≤KY y1(t)≤KY y++(t) ∀ t ≥ 0. (15)

By definition of steady-state I/O characteristic y−−(t) →

γ (u−−) and y++(t) → γ (u++) as t → ∞. Hence there exists
t2 such that

d(y1(t), [γ (u−−), γ (u++)]KY ) ≤ ε/2 ∀ t ≥ t2.

On the other hand given that d(γ (u±±), γ (u±)) < ε/2,

d(y1(t), [γ (u−), γ (u+)]KY ) ≤ ε ∀ t ≥ t2.

By definition of y1, this is equivalent to the statement

d(y(t), [γ (u−), γ (u+)]KY ) ≤ ε ∀ t ≥ t1 + t2. �

The following corollary is known as the converging input,
converging state property for I/O monotone systems, and it is
included here for completeness; see also [2,26].

Corollary 1. Suppose that a given orthant-monotone system admits
a continuous input-state characteristic γ X . Let u ∈ U converge
towards ū ∈ U. Then for every x0 ∈ X, x(t) = ϕ(t, x0, u) converges
towards γ X (ū).

Proof. Define the auxiliary output set Ỹ = X with the identity
output function h̃(x) = x. Since γ (u) = γ X (u), this function is
also continuous. Let u−

= u+
= ū. By Lemma 2, y(t) converges

towards γ (ū). But y(t) = ϕ(t, x0, u) = x(t), so x(t) converges
towards γ X (ū). �

We are now ready to prove the main result.
Pick x = (x1, x2) ∈ X1 × X2, and let y(t) = (y1(t), y2(t)) be

the corresponding output response, with y1 ∈ Y1 and y2 ∈ Y2.
By assumption y1 and y2 are defined for all t ≥ 0 and bounded.
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Given the interconnection rules, so are also u1 and u2. Hence,
exploiting the fact that U1 is a box, there exist u1, ū1 such that
u1(t) ∈ [u1, ū1]KU1

for all t ≥ 0.
Denote y

1
= γ 1(u1), ȳ1 = γ 1(ū1). By Lemma 2, y1(t) →

[y
1
, ȳ1]KY1 as t → ∞. Set (u2, ū2) = η1(y

1
, ȳ1). Hence, by

Lemma 1, u2(t) → [u2, ū2]KU2
as t → ∞. By setting y

2
=

γ 2(u2), ȳ2 = γ 2(ū2) and applying Lemma 2 once more we get
y2(t) → [y

2
, ȳ2]KY2 as t → ∞. Defining (u′

1, ū
′

1) = η2(y
2
, ȳ2),

by Lemma 1 this is equivalent to u1(t) → [u′

1, ū
′

1]KU1
.

Denote u−

1 (0) = u1, u
+

1 (0) = ū1, so that u−

1 (1) = u′

1, u
+

1 (1) =

ū′

1 according to the iteration (13). By induction one can show that
for any k, as t increases it holds that:
u1(t) → [u−

1 (k), u
+

1 (k)]KU1 .

As by assumption the discrete iteration (13) converges to a fixed
point (ū, ū) of its associated map, we have that for any ε > 0 it is
possible to choose k large enough, so that |u1(t) − ū| ≤ 2ε for all
sufficiently large t . As ε > 0 is arbitrary, u1(t) → ū. This shows
that y2(t) → ū. A similar argument can be employed to show that
y1(t) → γ 1(ū). Notice that this argument in particular implies that
γ 2

◦ γ 1(ū) = ū.
Finally, consider the state solution of the system given by

ẋi = fi(xi, ui) with initial condition xi(0), for i = 1, 2. Since
ui are converging inputs, the state functions x1(t), x2(t) are also
convergent towards the unique states γ 1,X (ū) and γ 2,X (γ 1(ū))
respectively, by Corollary 1. �

It is worth pointing out that, unlike classical small-gain
theorems such as [18], boundedness of solutions is assumed rather
than being a consequence of the small-gain condition. This was
remarked also in [2], where additional technical assumptions are
provided to ensure boundedness for the case of monotone systems
of differential equations in feedback.

Let usmention that the positive feedback case corresponds here
toΛ12 = Im1 ,Λ21 = Im2 . As η

i(a, b) = (a, b), i = 1, 2, the iteration
(13) decouples into two identical and non-interacting subsystems.
Instead, the negative feedback case amounts to Λ12 = Im1 and
Λ21 = −Im2 . In this case, η1(a, b) = (a, b) and η2(a, b) =

(b, a). Iteration (13) looks coupled and seems to depart from the
original criterion proposed in [2]. However, even iterates of (13)
exhibit the desirable decoupled structure of two identical non-
interacting subsystems. This allows one to reduce the dimension
of the iteration from 2m1 to justm1 and restate the results in terms
of the iteration originally proposed in [2].

Remark 2. It is worth pointing out that an evenmore general class
of systems fulfilling the small-gain theoremare those forwhich the
properties expressed in Lemma 2 and Corollary 1 hold, regardless
of any monotonicity assumptions.

Single interconnection. The same argument can be carried out for
the interconnection of a single I/O orthant-monotone systemunder
unity feedback rather than the interconnection of two separate
systems in (8). Let U ⊆ Rm be a box set, X ⊆ Rn a state space,
and Y ⊆ U . For orthant cones KU ⊆ Rm, KX ⊆ Rn, KY ⊆ Rm,
consider an I/O orthant-monotone system (5) closed under unity
feedback, forming the closed loop interconnection
ẋ = f (x, u), h(x) = y = u. (16)
Let Λ be a diagonal matrix such that KU = ΛKY , and η defined as
in (11) such that
[a, b]KY = [η1(a, b), η2(a, b)]KU . (17)
Suppose that the system has steady state I/O characteristic γ ,
and consider the discrete iteration that given u−(0)≤KU u+(0)
calculates
y−(k) = γ (u−(k)), y+(k) = γ (u+(k)),
(u−(k + 1), u+(k + 1)) = η(y−(k), y+(k)). (18)
Proposition 1. Given system (16) admitting bounded solutions,
assume that the discrete iteration (18) converges towards a unique
fixed point (ū, ū) of the associated discrete map. Then the solutions
x(t) of (16) are globally convergent towards a unique steady state,
and y(t) := h(x(t)) → ū as t → ∞.

The proof of this proposition is analogous to that of Theorem 1.
This simpler framework will be used in the next section for further
analysis of the convergence of the iteration (18). It should be clear
that ū satisfies the fixed point properties ū = γ (ū) and (ū, ū) =

η(γ (ū), γ (ū)).
Notice that the single interconnection case can also represent

the original double interconnection system, by using u1 as the
input and defining a single orthant-monotone system as the
cascade
ẋ1 = f1(x1, u1), h1(x1) = y1 = u2,
ẋ2 = f2(x2, u2), h2(x2) = y2.
However, this can only be done when the order in the output y1
matches the order in the input u2, i.e. if KY1 = KU2 . If these two
orders are incompatible, then the open loop cascade is not itself
an orthant-monotone system. Also notice that in some exceptional
scenarios it is possible for the overall system to be orthant-
monotone even if both input and output orders are incompatible.
As an example see the bipartite network discussed in Fig. 1 of [5].

In a similar way as in Proposition 1, longer interconnections of
three or more I/O orthant-monotone systems forming a cycle can
be shown to satisfy the same small-gain result.

4. Algebraic equivalence

The key hypothesis of our proposed small-gain results is the so-
called small-gain condition, namely that the iterations of a certain
discrete function converge globally towards a unique fixed point.
In this section we introduce an algebraic system of equations, such
that the small-gain condition holds if and only if the algebraic
system has a unique solution. We carry out this analysis in the
single interconnection framework of Proposition 1.

Let KU , KY be two orthants of Rm. Recall that U ⊆ Rm is a box
set, and that γ : U → U is a continuous function such that a≤KU b
implies γ (a)≤KY γ (b), for any variables a, b ∈ U . Although γ is the
steady-state I/O characteristic of an I/O orthant-monotone system,
it can also be considered here abstractly.

We first citewithout proof a result by Dancer [27] in the context
of finite-dimensional orthant-monotone systems, which will be
used shortly.

Lemma 3. Let K ⊆ Rp be an orthant of Rp, and B ⊆ Rp closed.
Suppose that T : B → B is a continuous function such that x≤K y
implies T (x)≤K T (y). Assume that the system un+1 = T (un) has
bounded solutions, and that each omega limit set ω(x) can be K-
bounded from below and above. Then for every x ∈ B there exists a
fixed point E of T such that ω(x)≤K E.

A symmetric statement also holds that for every x ∈ B there
is a fixed point E of T such that ω(x)≥K E. In particular, if T has a
unique fixed point E, then all solutions must converge towards it.

Recall thatΛ is anm×m diagonalmatrixwith entries in {−1, 1}
on the diagonal, such that KY = ΛKU . Define Λ+ = max{Λ, 0},
Λ− = −min{Λ, 0}, and η1(a, b) = Λ+a + Λ−b, η2(a, b) =

Λ+b+Λ−a, as in Lemma 1. Define the function F : U×U → U×U
by
F(a, b) := η(γ (a), γ (b)).
Notice that the induced discrete-time system

(a(k + 1), b(k + 1)) = F(a(k), b(k)) (19)
corresponds to the iteration map in (18), involving the unit
feedback interconnection of a single I/O system as described in the
end of the previous section. Then we have the following result.
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Proposition 2. Suppose that γ has a unique fixed point e, and that
every solution of the discrete system (19) is bounded. The following
statements are equivalent:
(1) All solutions of (19)with initial condition a(0)≤KU b(0) converge

towards (e, e).
(2) For every a≤KU b,

a = Λ+γ (a)+Λ−γ (b), b = Λ+γ (b)+Λ−γ (a)
implies a = b = e. (20)

Proof. Define A = {(a, b) ∈ U × U | a≤KU b}. Then (2) can be
rephrased as stating that the only fixed point of F in A is (e, e). It is
clear in this way that (1) implies (2).

Let a≤KU b. Then γ (a)≤KY γ (b), and moreover η1(γ (a), γ (b))
≤KU η2(γ (a), γ (b)) by Lemma 1. Therefore

a≤KU b implies F1(a, b)≤KU F2(a, b), (21)

where F(a, b) = (F1(a, b), F2(a, b)). The idea now is to identify
a stronger monotonicity condition that is satisfied by the map F
itself. For (a, b), (c, d) ∈ A, define a nonstandard orthant order on
Rm

× Rm using the cone L = KU × (−KU), that is (a, b)≤L(c, d) if
a≤KU c, d≤KU b.

Let (a, b), (c, d) ∈ A. We show that

(a, b)≤L(c, d) implies F(a, b)≤L F(c, d).

In order to prove this, notice that a≤KU c ≤KU d≤KU b, so that
γ (a)≤KY γ (c)≤KY γ (d)≤KY γ (b). For every x such that γ (c)≤KY x
≤KY γ (d), it holds γ (a)≤KY x≤KY γ (b), and therefore F1(a, b)
≤KU x≤KU F2(a, b) by Lemma 1. Since x = F1(c, d) and x =

F2(c, d) satisfy this property, again by Lemma 1, it follows
F1(a, b)≤KU F1(c, d)≤KU F2(c, d)≤KU F2(a, b). But this means
F(a, b)≤L F(c, d).

Another way to think about this monotonicity condition is
to regard F(a, b) as a transformation of order intervals, sending
the order interval [a, b] into the interval [F1(a, b), F2(a, b)]. The
monotonicity condition essentially means that F preserves set
inclusion, that is [c, d] ⊆ [a, b] implies [F1(c, d), F2(c, d)] ⊆

[F1(a, b), F2(a, b)].
Define the set Be := {(a, b) ∈ U × U|a≤KU e≤KU b}. Then Be is

invariant under F : if a≤KU e≤KU b, then γ (a)≤KY e≤KY γ (b), and
therefore F1(a, b) ≤ e ≤ F2(a, b).

The convergence of the iterations of F towards the unique fixed
point is an application of Lemma3. Firstwe prove that all iterations
of F in Be converge towards (e, e). The continuousmap F : Be → Be
has bounded solutions, preserves the order ≤L and has a unique
fixed point by (2). If C ⊆ Be is a compact set, the Dancer lemma
requires that C be bounded from above and below in Be. Here C is
≤L-bounded fromabove by (e, e). It is also≤L-bounded frombelow
by (â, b̂), where â = inf{a | (a, b) ∈ C}, b̂ = sup{b | (a, b) ∈ C}

are calculated using the order ≤KU . Both of these sets are compact
by compactness of C , so that â, b̂ are both elements of the box U
and (â, b̂) ∈ Be. By the Dancer lemma, all the iterates with initial
condition in Be must converge towards (e, e).

Finally we prove the more general result that all iterations of
F in A converge towards (e, e). Let (c, d) ∈ A, and let (a, b) ∈ Be
such that a ≤ c ≤ d ≤ b. Then the iterates (a(k), b(k)) of (a, b)
converge towards (e, e) by the proposition above. Also, the iterates
(c(k), d(k)) of (c, d) satisfy a(k) ≤ c(k) ≤ d(k) ≤ b(k) by the
≤L-ordering property of F . The conclusion follows. �

This equivalence nicely generalizes that found by Cosner [16]
and also in [9] for the negative feedback case, namely that the
small-gain theorem is satisfied whenever there is a unique fixed
point of γ and the equations a = γ (b), b = γ (a) imply a = b = e.
In the negative feedback case Λ− = I and Λ+ = 0, so the two
conditions are equivalent. The following result is cited without
proof from [9], see Corollary 7 in that reference.
Lemma 4. Suppose that ẋ = f (x, u), y = h(x) is an I/O orthant-
monotone system under negative feedback, for U = [u0,∞)KU :=

{u ∈ Rm
| u0 ≤KU u}, and that the open loop system has input-state

characteristic γ X . Assume that there is no pair u≤KU v, u ≠ v, such
that γ (u) = v, γ (v) = u. Let X0 =


u∈U [γ X (u0), γ

X (u)]KU .
Then all solutions of the closed loop system with initial condition in
X0 converge towards a unique steady state x∗ ∈ X0.

It is interesting to consider the special case of a linear function
γ : Rm

→ Rm, e = 0. In this case F is also a linear function, and
the boundedness of solutions of (19) ensures that ρ(F) ≤ 1, where
ρ denotes the spectral radius. Condition (2) states that 1 is not an
eigenvalue of F . Condition (1) states that ρ(F) < 1, or equivalently,
that no eigenvalue λ has magnitude 1. The equivalence between
(1) and (2) follows from the monotonicity condition on F using the
Perron–Frobenius theorem.

5. The simple mixed feedback case

Since Theorem 1 and the closely related Proposition 1 gener-
alize statements for positive and negative feedback systems, the
simplest nontrivial special case must involve at least two inputs
and outputs, one under positive feedback and one under negative
feedback. This leads to the special case of a single feedback inter-
connection (16) with m = 2, KU = (R+

0 )
2, KY = R−

× R+. In this
case we calculate

Λ =


−1 0
0 1


, Λ+ =


0 0
0 1


, Λ− =


1 0
0 0


.

Set γ = (γ1, γ2), which is not to be confused with the steady-state
I/O characteristic functions γ 1, γ 2 in Theorem 1. The left side of
Eq. (20) can be written as
a1
a2


=


0

γ2(a)


+


γ1(b)
0


,

b1
b2


=


0

γ2(b)


+


γ1(a)
0


,

that is

a1 = γ1(b1, b2)
a2 = γ2(a1, a2)

b1 = γ1(a1, a2)
b2 = γ2(b1, b2).

(22)

The same matrix Λ, and therefore the same Eq. (22), would
be obtained if one had used instead KU = R−

× R+, KY =

(R+

0 )
2. The current choice of the cones means that the real-

valued function γ1(·, ·) is decreasing on both its arguments while
γ2(·, ·) is increasing on both of them. In a sense this special case
embodies the general case, since one can permute the coordinates
as necessary and use vectors for the variables ai, bi. The following
lemmaoffers a systematicway to solve the above nonlinear system
of equations, assuming u2 = γ2(u1, u2) has a unique solution for
any given u1.

Lemma 5. Suppose m = 2, KU = (R+

0 )
2, KY = R−

× R+, the
function γ : U → U is continuous and bounded, a ≤ b implies
γ (a)≤KY γ (b), and γ has a unique fixed point e. Assume that
(i) For every u1 ≥ 0, the equation u2 = γ2(u1, u2) has a unique

solution u2 denoted by ψ(u1).
(ii) Using the notation S(u1) := γ1(u1, ψ(u1)), the equation u1 =

S(S(u1)) has a unique solution.
Then all solutions of the discrete iteration (19) converge towards
(e, e).

Proof. The lemma is proved by verifying that Eq. (22) implies a =

b = e and using Proposition 2. First some comments regarding the
fixed point e. Since e2 = γ2(e1, e2), then ψ(e1) = e2. But then
e1 = γ1(e1, e2) = γ1(e1, ψ(e1)) = S(e1). In particular e1 is the
solution of u1 = S(S(u1)).
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Now assume that a, b ∈ U satisfy (22). Then one can solve the
bottom two equations given a1, b1 i.e. a2 = ψ(a1), b2 = ψ(b1).
Since

b1 = γ1(a1, ψ(a1)) = S(a1), a1 = γ1(b1, ψ(b1)) = S(b1),

it follows that a1 = S(S(a1)). By assumption (ii), a1 = e1. But then
b1 = S(a1) = e1, a2 = ψ(e1) = e2, and b2 = ψ(e1) = e2.
Therefore a = b = e. �

In the case that solutions of the equation y = γ2(x, y) are
generally not unique, one can still carry out a similar argument
using multi-functions. Denote ψ(u1) to be the set

ψ(u1) := {u2 | u2 = γ2(u1, u2)},

and similarly

S(u1) := {γ1(u1, u2) | u2 ∈ ψ(u1)}.

Lemma 6. Suppose m = 2, KU = (R+

0 )
2, KY = R−

× R+, the
function γ : U → U is continuous and bounded, a ≤ b implies
γ (a)≤KY γ (b), and γ has a unique fixed point e. Using the above
multi-function notation, assume that
(i) |ψ(e1)| = 1, i.e. the set ψ(e1) contains exactly one element.
(ii) The equation u1 ∈ S(S(u1)) has a unique solution.

Then all solutions of the discrete iteration (19) converge towards
(e, e).

Proof. The equation u1 ∈ S(S(u1)) is meant in the sense of multi-
functions, i.e. it is satisfied if there exist u1, u2 such that u1 ∈ S(u2),
u2 ∈ S(u1). Once again we first note that e1 is a solution of this
equation. This is because e2 ∈ ψ(e1) and e1 = γ1(e1, e2) ∈ S(e1).

Next assume Eq. (22). Then b1 ∈ S(a1), a1 ∈ S(b1), and so both
a1 and b1 satisfy u1 ∈ S(S(u1)). Therefore by (ii), a1 = b1 = e1.
Now by (i), u2 = γ2(e1, u2) must have the unique solution e2.
Therefore a2 = b2 = e2, and a = b = e. �

It is interesting to compare this result (and its implication using
Proposition 1)with the existingwork on SISO positive and negative
feedback systems. In the negative feedback case this result implies
a version of the SISO small-gain theoremusing the so-called Cosner
condition and studied in [9,16].

Corollary 2. Consider a SISO orthant-monotone system ẋ1 = f̄1(x1,
u1), h(x1) = y1 = u1 under the negative feedback interconnection
K̄U = R+, K̄Y = R−. Assume that the bounded I/O characteristic γ̄
has a fixed point e1 and that u1 = γ̄ (γ̄ (u1)) implies u1 = e1. Then
all solutions of the system converge towards a steady state.

Proof. One can trivially introduce an input u2 into the system
which does not actually influence the solutions, to create a new
orthant-monotone system (16) with m = 2 as in Lemma 2. The
new steady-state I/O characteristic has the form γ1(u1, u2) =

γ̄ (u1), γ2(u1, u2) = e2 for any fixed e2. Assumption (i) is
automatically satisfied, since in fact ψ(u1) ≡ e2 is a single-
valued function. Clearly S(u1) = γ̄ (u1), and assumption (ii) holds.
By Lemma 2 the iterations of the extended small-gain function
converge towards a unique fixed point. By Proposition 1, the result
follows. �

The same lemma also implies a special case of the positive
feedback result for SISO orthant-monotone systems as described
in [3]. For more work on multi-valued functions in the context of
I/O monotone systems see the more recent papers [6,15].

Corollary 3. Consider a SISO orthant-monotone system ẋ2 = f̄2(x2,
u2), h(x2) = y2 = u2 under positive feedback e.g. K̄U = R+,
K̄Y = R+. Assume that the bounded I/O characteristic γ̄ has a unique
fixed point e2. Then all solutions of the system converge towards a
steady state.
Fig. 1. The network topology of the system of differential equation (23)–(25).

Proof. Once again introduce a mute input u1, to create a mixed
feedback orthant-monotone system as in Lemma 2. Now the
steady-state I/O characteristic satisfies γ1(u1, u2) = e1 for arbi-
trary fixed e1, and γ2(u1, u2) = γ̄ (u2). For any fixed u1, ψ(u1) =

{u2 | γ̄ (u2) = u2} = {e2}, therefore assumption (i) is satisfied.
Moreover S(u1) = {e1} is constant, thus (ii) is also satisfied. By
Lemma 2, the iterations of the extended small-gain function con-
verge towards a unique steady state. By Proposition 1, once again
the result follows. �

6. Example: double loop network

Consider a system of n differential equations of the following
form, which can represent a network of interacting proteins:

ẋ1 = c1
xh1k−1

xh1k−1 + Q h1
1 + xh1n

+ α1 − d1x1, (23)

ẋk = ck
xhk1

xhk1 + Q hk
k

+ αk − dkxk, (24)

ẋi = ci
xhii−1

xhii−1 + Q hi
i

+ αi − dixi, i ≠ 1, k. (25)

Here k is fixed, 1 < k < n, and i varies between 2 and
n, excluding k. This system consists of two feedback loops, one
negative and one positive, as described in Fig. 1, where the node
Xi represents the ith system. Both loops meet at the node X1. All
individual interactions are positive, except that xn has an inhibitory
effect on the rate of production of x1 and it displayed in the figure
using a blunt end.

There has been much interest in the mathematical biology lit-
erature regarding double loop protein regulatory systemswith one
positive and one negative cycle. While single negative feedback
loop systems can present oscillations [28], an additional positive
feedback loop provides desirable features such as robustness [29]
and the ability to tune amplitude and frequency separately [30].
Positive–negative loops also underlie many excitable systems, for
instance bacterial competence [31]. Hill function nonlinearities
xh/(xh + Q h) are a function of choice for such systems since they
saturate, allow to tune ultrasensitive behavior, and can be imple-
mented through enzymatic reactions [32].

The open loop control system that we associate to the above
network is

ẋ1 = c1
uh1
1 uh1

2

uh1
1 uh1

2 + Q h1
1 uh1

1 + 1
+ α1 − d1x1, (26)

ẋk = ck
xhk1

xhk1 + Q hk
k

+ αk − dkxk, (27)

ẋi = ci
xhii−1

xhii−1 + Q hi
i

+ αi − dixi, i ≠ 1, k, (28)

along with the output h(x) = (1/xn, xk−1) and the feedback in-
terconnection (u1, u2) = h(x). It is straightforward to verify that
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Fig. 2. Simulation of the system (23) using parameter values n = 5, k = 4, ci = 1, αi = 0.2, Qi = 0.5, hi = 4, di = 0.75, for i = 1, . . . , n. (a) Graph of the multi-valued
function S(u1) as well as its composition S2(u1) = S(S(u1)). (b) Several solutions of the 1D iterated inclusion vq+1 ∈ S(vq). (c) Several solutions of xn(t) given random initial
conditions.
this system is I/O monotone with respect to the orthant cones
KU = (R+

0 )
2, KX = (R+

0 )
n, KY = R−

× R+. Also, the closed loop of
this system is the original double loop network.

Given fixed (u1, u2), it is clear that this system converges
towards a single steady state, since the open system can be seen
as a cascade of linear systems (with nonlinear interconnections).
For instance, x1 converges towards x1 =

1
d1
(c1

(u1u2)h1
(u1u2)h1+(Q1u1)h1+1

+

α1) =: r1(u1, u2). Setting ri(z) :=
1
di
(ci zhi

zhi+Q
hi
i

+ αi) for i ≠ 1, at

steady state

x1 = r1(u1, u2),

x2 = r2 ◦ r1(u1, u2), . . . , xk−1 = rk−1 ◦ · · · ◦ r1(u1, u2)
=: q(u1, u2).

Similarly xn = rn ◦ . . . ◦ rk ◦ r1(u1, u2) =: p(u1, u2). The output of
the system is

γ (u1, u2) = h(1/xn, xk−1) = (1/p(u1, u2), q(u1, u2)).

This function satisfies a ≤ b → γ (a)≤KY γ (b) by the
construction of the I/O orthant-monotone system.

Corollary 4. Consider the double loop network described in (23)–
(25). Suppose that the function γ (u1, u2) = (1/p(u1, u2), q(u1, u2))
has a fixed point e, and that the equation u2 = q(e1, u2) has a unique
solution. Define the multi-function

S(u1) =


1

p(u1, u2)

u2 solution of q(u1, u2) = u2


.

If the inclusion u1 ∈ S(S(u1)) has a unique solution, then the double
loop network is globally attractive towards a single steady state.

Proof. Once again, the inclusion u1 ∈ S(S(u1)) is meant to be
satisfied if there exists u2 such that u1 ∈ S(u2), u2 ∈ S(u1).
The fact that the equation u2 = q(e1, u2) has a unique solution,
together with the uniqueness of the inclusion u1 ∈ S(S(u1)) imply
that the fixed point e is unique. Lemma 6 can be applied for this
system, noting that S(u1) is as defined in that lemma and that γ is
a bounded function. Therefore all solutions of the discrete iteration
(13) converge towards (e, e).

Given the linear degradation terms and the boundedproduction
rates for each variable, it is easy to see that the solutions of the
closed loop (23)–(25) are uniformly bounded. By Theorem 1, this
system is globally attractive towards a single steady state. �

In particular, if S(u1) is single-valued, the inclusion u1 ∈

S(S(u1)) becomes a standard equation u1 = S(S(u1)) as in
Lemma 5. But even if the equation u2 = q(u1u2) does not have a
unique solution u2 for all given u1, one can still conclude the global
attractivity of the system.
This reduces the analysis from an n-dimensional system of dif-
ferential equations to a single one-dimensional (multi-)function.
The analysis can be carried out computationally for a given set of
parameters, or also analytically for systems of smaller size.

Notice that the two loops join at a single node x1 in this system.
This is mostly a notational convenience, and a similar result can
be stated when the two loops have multiple variables in common.
Also, the exact terms used are not overly relevant, for instance
the first equation in the system could be e.g. of the form ẋ1 =

p1(xk−1) + q1(xn) − d1x1, where p1 and q1 are increasing and
decreasing functions respectively.

In Fig. 2 we illustrate this systemwith a numerical example. For
n = 5 and k = 4, the positive and negative feedback loops have
each length three. The function S(u1) is multi-valued in a range
of values of u1 (a), yet for e1 ≈ 0.63, it holds that S(e1) has a
unique value and S(e1) = e1. Hence q(e1, u2) = u2 has a unique
solution e2. Also, even though S is not constant, S2(u1) is almost
a constant function, and it has a unique fixed point. The diagonal
line represents the identity function. In (b) several solutions of
the inclusion map vq+1 ∈ S(vq) are displayed. Notice that for the
same initial condition 0.5 there can be multiple values at t = 1.
Corollary 4 shows that the solutions of the associated systemmust
converge globally, as illustrated with several initial conditions in
(c).

This analysis illustrates underwhat conditions the assumptions
of Theorem 1 and Proposition 1 are satisfied. The application
usually encountered is that of a closed loop system ż = g(z) to
be decomposed as the interconnection of I/O monotone systems,
in a similar way as it was carried out above. The deletion of an
edge on a negative (positive) feedback loop in the network will
lead to a negative (positive) feedback interconnection. The fact
that mixed feedback is allowed provides greater flexibility in the
decomposition of the system. A flexible choice of edges to be cut
can alsomake it easier for the resulting open loop system to have a
steady-state I/O characteristic, which is another of the conditions
of the theorem. The small-gain condition was reduced here to an
algebraic condition (in the single interconnection case), which is
easier to verify. Finally, the condition that the solutions of the
system be bounded can be ensured in various ways, for instance
by introducing bounded expression rates and linear degradation
rates, as is often the case in gene regulatory networks.

7. Linear systems

The case of linear systems deserves special attention, as
Theorem 1 is original, to the best of our knowledge, even in the
case of finite dimensional orthant-monotone linear systems:

ẋ = Ax + Bu y = Cx. (29)
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To characterize the monotonicity property for a linear system
one can use the same infinitesimal conditions described in
Eqs. (6), (7), except that all partial derivatives in this case are
constant. For example, this system ismonotonewith respect to the
positive orthant orders if and only if all non diagonal entries of A
are nonnegative and all entries of B, C are nonnegative.

The steady-state I/O characteristic γ : U → Y is trivially the
map γ (u) = Γ u with

Γ = −CA−1B.

As a consequence of monotonicity Γ KU ⊆ KY . It is clear from the
proof of Theorem 1 that in the case of linear systems since U and
Y are Euclidean spaces, it is possible to define iteration (13) by
only considering symmetric intervals [−a, a]; in fact the iteration
maps (for systems with odd characteristics) preserve symmetric
intervals. Hence, exploiting the simpler formula (12) one may
recast (13) as follows:

u(k + 1) = Λ21Γ2Λ12Γ1u(k),

where, for the sake of simplicity, we did not explicitly write
the iteration for the interval [−u(k), u(k)], but only for one of
its extremes. Here Λ12,Λ21 are defined as in Eq. (9); see also
Theorem 2 below for the definition of Γ1,Γ2. The condition that
the latter be a converging iteration amounts to:

ρ(Λ21Γ2Λ12Γ1) < 1. (30)

The following result holds for linear systems:

Theorem 2. Consider the following interconnected systems:

ẋ1 = A1x1 + B1u1 u2 = y1 = C1x1
ẋ2 = A2x2 + B2u2 u1 = y2 = C2x2

(31)

with A1 and A2 Hurwitz matrices, whose exponentials preserve the
cone KX1 and KX2 , respectively. Moreover, we assume that B1KU1 ⊂

KX1 , C1KX1 ⊂ KY1 and B2KU2 ⊂ KX2 , C2KX2 ⊂ KY2 . Under such as-
sumptions Γ1 = −C1A−1

1 B1 and Γ2 = −C2A−1
2 B2 define orthant-

monotone maps, fulfilling Γ1KU1 ⊂ KY1 and Γ2KU2 ⊂ KY2 . Then,
provided condition (30) holds, the system (31) is asymptotically sta-
ble.

Let now define diagonal matrices ∆1, ∆2, Θ1, Θ2 with entries
in {−1,+1} such that KU1 = ∆1(R+

0 )
m1 , KU2 = ∆2(R+

0 )
m2 ,

KY1 = Θ1(R+

0 )
p1 and KY2 = Θ2(R+

0 )
p2 . With the above notation

Λ12 = ∆2Θ1 andΛ21 = ∆1Θ2. Notice moreover that Γ1KU1 ⊂ KY1
impliesΘ1Γ1KU1 ⊂ (R+

0 )
p1 . HenceΘ1Γ1∆1(R+

0 )
m1 ⊂ (R+

0 )
p1 . This

means that Θ1Γ1∆1 is a non-negative matrix, and in particular
Θ1Γ1∆1 = |Γ1| (where | · | denotes componentwise absolute
value). Similar considerations apply toΘ2Γ2∆2 = |Γ2|. The small-
gain condition (30) can be equivalently written as:

1 > ρ(Λ21Γ2Λ12Γ1) = ρ(∆1Θ2Γ2∆2Θ1Γ1)

= ρ(Θ2Γ2∆2Θ1Γ1∆1)

= ρ(|Γ2||Γ1|). (32)

Since for linear SISO orthant-monotone systems the impulse
response is sign-definite, then the absolute value of the DC-gain
equals the L2 (as well as the L∞) induced gain [3]. Notice, then,
that condition (32) can be interpreted as the spectral radius of the
product of L2 induced gain matrices being less than one, which is
a classical small-gain result for the case of linear systems (see for
instance Theorem 7 in [33]).

8. Linear systems: an example

We show below by means of an example how the result can be
used.We also point out that in general the absolute values |Γ2| and
|Γ1| cannot be avoided, namely the condition that ρ(Γ2Γ1) < 1 is
not enough to guarantee stability for the case of orthant-monotone
systems in feedback. This may be counter-intuitive as for the
positive feedback case (as well as for the negative feedback one)
there is no need to introduce absolute values (indeed for positive
feedback Γ2 and Γ1 can be taken to be both positive without loss of
generality, whereas in the case of negative feedback Γ1 and Γ2 can
be taken to be of opposite sign, but this is no concern as spectral
radius is invariant with respect to sign inversions). Consider the
following matrices:

A1 =

−1 0 1 0
0 −1 0 1
0 0 −1 0
0 0 0 −10

 B1 =

 0 0
0 0
1 1
10 10



A2 =

−1 0 1 0
0 −1 0 1
0 0 −5 0
0 0 0 −1

 B2 =

 0 0
0 0
5 5

−1 −1


C1 =


1 0 0 0
0 1 0 0


C2 = γ


1 0 0 0
0 1 0 0


for some γ ≥ 0. Notice that these matrices define monotone
systemswith respect to the partial orders induced by the following
orthants: KX1 = (R+

0 )
4, KX2 = R+

0 × R−

0 × R+
× R−

0 , KU1 = KY1 =

KU2 = (R+

0 )
2, while KY2 = R+

× R−

0 . This can be verified using
the infinitesimal characterizations for orthant-monotonicity. The
DC-gain matrices are given by:

Γ1 =


1 1
1 1


Γ2 = γ


1 1

−1 −1


.

Computing the DC loop gain yields:

Γ2Γ1 = γ


2 2

−2 −2


.

Notice that Γ2Γ1 is a nilpotent matrix regardless of γ , so
that ρ(Γ2Γ1) = 0. If one could avoid using absolute values
in expressing the small-gain condition (32), this would mean
asymptotic stability of the interconnected system regardless of γ .
The characteristic polynomial of the closed-loop system reads:

χ(s) = s8 + 21 s7 + 155 s6 + 545 s5

+ (1065 − 44 γ ) s4 + (1231 − 168 γ ) s3

+ (841 − 204 γ ) s2 + (315 − 80 γ ) s + 50

which according to the Routh–Hurwitz criterion is asymptotically
stable (for non-negative γ ) if and only if γ ∈ [0, γ ⋆) with γ ⋆ ≈

1.9662. According to criterion (32), instead:

|Γ2| · |Γ1| = γ


2 2
2 2


,

which yields ρ(|Γ2| · |Γ1|) = 4γ . Then, according to Theorem 2
asymptotic stability of (31) holds provided |γ | < 1/4. There is a
significant gap between the value 1/4 (provided by the small-gain
theorem) and the true value γ ⋆ which renders the interconnected
system (31) unstable.

9. Time delays and the necessity of the small-gain condition

As highlighted in Section 8, stability intervals assessed by
means of the small-gain criterion can be rather conservative. One
situation in which the predictions of the small-gain theorem are
much tighter is the case of a positive feedback interconnection. In
that case the dynamics of the 2m-dimensional discrete iteration
is equivalent to that of the standard m-dimensional gain function.
And as shown in [3,14], the stable steady states of the closed
loop correspond to the stable fixed points of the gain function. If
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the small-gain condition fails, the gain function is likely to have
multiple stable fixed points, which implies that the closed loop
does not have a unique globally attractive steady state.

A similar scenario where the small-gain condition is necessary
for global convergence of the closed loop can be found if delays are
introduced in the system. An argument analogous to the proof of
Theorem1applieswhenarbitrary timedelays are considered in the
system interconnections, namely if the following interconnected
system is considered:

ẋ1 = f1(x1, u1), h1(x1) = y1,
ẋ2 = f2(x2, u2), h2(x2) = y2,
u2(t) = y1(t − τ1), u1(t) = y2(t − τ2),

(33)

for some nonnegative τ1, τ2.

Theorem 3. Consider a delay system (33) with bounded solutions,
interconnecting two I/O orthant-monotone systems. Assume that
the continuous steady-state I/O characteristics are well defined, and
consider the same iteration map (13) as in Theorem 1. If the iterations
of this discrete map are globally attractive towards a unique fixed
point, then every solution of (33) converges towards a unique steady
state, regardless of the value of τ1, τ2.

Proof. The underlying state space for this system is infinite
dimensional, and it can be defined to include all continuous
functions γ : [−τ3, 0] → X1 × X2, τ3 = max(τ1, τ2). The two
I/O orthant-monotone subsystems do not contain any delays, and
the theory previously developed applies to them.

Consider any solution x1(t), x2(t), and its corresponding inputs
and outputs ui(t), yi(t). Define u1, ū1, y1, ȳ1 as in the proof of
Theorem 1, and use Lemma 2 to prove that y1(t) → [y

1
, ȳ1]KY1

as t → ∞. Define (u2, ū2) = η1(y
1
, ȳ1). Even in the presence of

a delay, Lemma 1 still applies to show that u2(t) → [u2, ū2]KU2
as

t → ∞. This process can be repeated iteratively in the same way
as in Theorem 1 to obtain the result. �

See also [9] for a more detailed discussion of the delay case for
the standard small-gain theorem.

We argue next that if one is willing to allow for arbitrary time-
delays as in Theorem 3 in the loop, then the small-gain condition
(30) is also necessary for stability. We prove the following
proposition.

Proposition 3. Consider the linear system:

ẋ1(t) = A1x1(t)+ B1u1(t), y1(t) = C1x1(t)
ẋ2(t) = A2x2(t)+ B2u2(t), y2(t) = C2x2(t),

(34)

where A1, B1, C1 and A2, B2, C2 are as in Theorem 2. We consider
the following delayed interconnections, where ui

j and yij are the
components of the vectors uj and yj respectively:

ui
1(t) = yi2(t − τ i1) uk

2(t) = yk1(t − τ k2 ) (35)

with i = 1, . . . ,m1, k = 1, . . . ,m2 and τ i1, τ
k
2 nonnegative reals.

Assume that ρ(Λ21Γ2Λ12Γ1) > 1. Then there exist values of τ i1 ≥ 0
and τ k2 ≥ 0, and T > 0 such that the system (34) admits a periodic
solution of period T .

Proof. Define G1(ω) = C1(jω − A1)
−1B1 and G2(ω) = C2(jω −

A2)
−1B2. Notice that G1(ω) → 0 as ω → ∞, and the same applies

to G2(ω). Clearly G1(0) = Γ1 and G2(0) = Γ2. By continuity of
Gi, i = 1, 2 and of the spectral radius ρ(·), there exists ω̄ > 0 such
that:

ρ(Λ21G2(ω̄)Λ12G1(ω̄)) = 1. (36)

Let λ21(ω) = diag[. . . e−jωτ i1 . . .] for i = 1, 2, . . . ,m1 and λ12(ω)
= diag[. . . e−jωτ k2 . . .] for k = 1, 2, . . . ,m2. Clearly there exist
nonnegative τ i1 and τ
k
2 so that λ12(ω̄) = Λ12 and λ21(ω̄) = Λ21. By

definition of ω̄ in (36) we have:

ρ(λ21(ω̄)G2(ω̄)λ12(ω̄)G1(ω̄)) = 1.

Notice that λ21(ω̄)G2(ω̄)λ12(ω̄)G1(ω̄) can be interpreted as the
loop-gain transfer function of (34) with the delayed interconnec-
tion (35) evaluated for s = jω̄. Hence, by standard arguments,
the linear system (34), (35) admits a sinusoidal solution of period
1/(2πω̄). �

As already remarked, Theorem 2 and its generalization to the
delay case are true for general linear systemsprovided thematrices
[Γ1]ij and [Γ2]ji in condition (32) represent the L2 induced gains
from input j to output i and from output i to input j respectively
j = 1, . . . ,m1, i = 1, . . . ,m2. The necessity result stated in
Proposition 3 is however new and in fact false for general linear
systems even in the SISO case. To see this, consider the simple
example described below.

Example 1. Consider the transfer functions given below:

G1(s) =
γ

1 + s
G2(s) =

1 + s
(1 + 0.1s)2

where γ is a positive parameter. We want to study stability of the
following closed-loop transfer function:

1
1 + G1(s)G2(s)e−sτ

corresponding to an interconnection of G1 and G2 in closed
loop, where τ indicates the sum of the delays at the loop
interconnections. Notice that:

G1(s)G2(s) =
γ

(1 + 0.1s)2
.

This is a low-pass filter, hence the L2 induced gain equals the DC
gain γ . Asymptotic stability for arbitrary delays holds provided
γ < 1. Let us now compute the stability estimates provided by the
small-gain theorem. For G1(s) the L2-induced gain equals the DC
gain γ . However, for the second transfer function, the maximum
of |G2(jω)| is achieved at ω = 2

√
2 and equals |G2(j2

√
2)| = 5/3.

This means that the small-gain theorem only predicts stability up
to γ < 3/5, giving a conservative estimate of the stability region
under arbitrary delays. Of course there is no state-space realization
of G2 that satisfies the monotonicity conditions in Theorem 2.

10. Conclusion

We generalized existing small-gain theorems for orthant-
monotone MIMO systems connected in feedback. The results
improve on existing literature as they do not assume any
compatibility between the orthant-induced orders pertaining to
input and output spaces of interconnected components. Though
themethods are new also for linear systems, in that they arise from
a different point of view, the conditions achieved in this case boil
down to classical L2 or L∞ small-gain results.
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