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Monotone Control Systems

David Angeli and Eduardo D. Sontagellow, IEEE

Abstract—Monotone systems constitute one of the most impor- mentary “modules” which appear repeatedly; see, e.g., [13]. Our
tant classes of dynamical systems used in mathematical biologywork reported here was motivated by the problem of studying
modeling. The objective of this paper is to extend the notion of one such module type (closely related to, but more general than,

monotonicity to systems with inputs and outputs, a necessary first . . S
step in trying to understand interconnections, especially including the example which motivated [29]), and the realization that the

feedback loops, built up out of monotone components. Basic defi- theory of monotone systems, when extended to allow for inputs,
nitions and theorems are provided, as well as an application to the provides an appropriate tool to formulate and prove basic prop-
study of a model of one of the cell's most important subsystems.  erties of such modules.

Index Terms—Cooperative systems, monotone systems, nnlinear The organizatiqn of this paper is as follows. |n_ Section II, we
stability, small-gain theorems. introduce the basic concepts, including the special case of coop-

erative systems. Section Il provides infinitesimal characteriza-
tions of monotonicity, relying upon certain technical points dis-
cussed in the Appendix. Cascades are the focus of Section IV,
NE OF THE mostimportant classes of dynamical systenasid Section V introduces the notions of static input—state and
in theoretical biology is that ahonotone system&mong input—output characteristics, which then play a central role in
the classical references in this area are the textbook by Smihle study of feedback interconnections and a small-gain the-
[27] and the papers [14] and [15] by Hirsh and [26] by Smal@rem—the main result in this paper—in Section VI. We return
Monotone systems are those for which trajectories preservéoahe biological example of MAPK cascades in Section VII. Fi-
partial ordering on states. They include the subclas®oper- nally, Section VIII shows the equivalence between cooperative
ativesystems (see, e.g., [1], [5], and [6] for recent contributiorgystems and positivity of linearizations.
in the control literature), for which different state variables re- We view this paper as only the beginning of a what should be
inforce each other (positive feedback) as well as more geneddruitful direction of research into a new type of nonlinear sys-
systems in which each pair of variables may affect each othet@mns. In particular, in [2] and [3], we present results dealing with
either positive or negative, or even mixed, forms (precise defiflositive feedback interconnections and multiple steady states,
tions are given below). Although one may consider systemsaﬁd associated hysteresis behavior, as well as graphical criteria
which constant parameters (which can be thought of as consti@itmonotonicity, and in [8] and [9], we describe applications to
inputs) appear, as done in [22] for cooperative systems, the cBgPulation dynamics and to the analysis of chemostats.
cept of monotone system has been traditionally defined only for
systems with no external input (or “controfnctions [I. MONOTONE SYSTEMS

The objective of this paper is to extend the notion of mono- \y,natone dynamical systems are usually defined on subsets
tone systems teystems W'th mpyts and'o'utpuﬁéhls is by N0 of ordered Banach (or even more general metric) spacesrAn
means a purely academic exercise, but it is a necessary first $1€Rd Banach spads a real Banach spad& together with a
in trying to underst_and interconnections, especially incmdir}ﬂstinguished nonempty closed sub&eof B, its positive cone
feedback loops, built up out of monotone components. The spaceB which we study in this paper will all be Euclidean

The successes of systems theory have been due in large @?‘chs; however, the basic definitions can be given in more gen-
to its ab|l|t.y to analyze complicated structures on the l_:)a3|§ 8 ality, and doing so might eventually be useful for applications
the behavior of elementary subsystems, each of which is “Nicgch as the study of systems with delays, as done in [27] for
in a suitable input-output sense (stable, passive, etc.), in CQ0stems without inputs.) The skt is assumed to have the fol-
junction with the use of tools such as the small gain theoremI ing properties: it is a cone, i.exk C K for a € Ry, it

characterize interconnections. . . : .
. is.convex (equivalently, sincK is a coneK + K C K), and
On the other hand, one of the main themes and chaIIenge%mmed i(e?{ n (—K%l — {0}. An orde{;g is then <)jefined

. INTRODUCTION

current molecular biology lies in the understanding of cell be;

haviori : q dfeedbacki s ; g:pl = xo iff 1 — 2o € K. Strict ordering is denoted by
avior in terms of cascade and feedback interconnections o ele- ., meaning that; > = andz; # 2. One often uses

as well the notationX and =, in the obvious sense:{ <
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bigger or equal than the corresponding coordinate-ofThis “z” to denote states (i.e., elementsXj as well as trajectories,
order on state spaces gives rise to the class of “cooperative dy#-for emphasis we sometimes ys@ossibly subscripted, and
tems” discussed later. However, other orthantR’irother than other Greek letters, to denote states. Similany,thay refer to
the positive orthank’ = R%, are often more natural in appli- an input value (element éf) or an input function (element of
cations, as we will see. Uso).

In view of our interest in biological and chemical applica- Definition 11.1: A controlled dynamical system : R>( x
tions, we must allow state—spaces to be nonlinear subsetsXof U, — X is monotondf the following implication holds
linear spaces. For example, state variables typically repreststall ¢ > 0:
concentrations, and hence must be positive, and are often sub-
ject to additional inequality constraints such as stoichiometry or %1 = t2, T1 = 22 = $(t,21,u1) = G, w2, u2).
mass preservation. Thus, from now on, we will assume given an
ordered Banach spaBeand a subseX of B which is the closure
of an open subset @. For instanceX = B, or, in an example
to be considered lateB = R? with the order induced by =

O
Viewing systems with no inputs as controlled systems for
which the input value spad¢ has just one element, one re-
covers the classical definition. This allows application of the
éich theory developed for this class of systems, such as theorems
. i ) ) juaranteeing convergence to equilibria of almost all trajectories,
tems is as follows: A dynamical systen: Ry x X — X for strongly monotone systems (defined in complete analogy to

IS mono;conelfl thf |rr1hEJI|r<]:at|0n_hoIds:x;(: 2 z ¢(t7_331h) Z  the concept for systems with no inputs); see [2] and [3].
¢(t, x2) forall ¢ > 0.If the positive cone issolid, i.e.,ithasa ~\ya |l also consider monotone systemvith outputsy =

nonempty interior (as is often the case in applications of mong z). These are specified by a controlled monotone system

tonicity; see, e.g., [31) one can also define a stricter ordering,(::](_:,ther with & monotongr; > » = h(z1) > h(zs)) map
21 > @y & @ —y € int(K). (For example, whel = R%,, 1, x _, 3 \where)), the set of measurement or output values,
this means that every coordinatexafis strictly larger thanthe ;o 5 subset of some ordered Banach spge We often use
corresponding coordinate of, in contrastto r; > x2” which e shorthand)(t, =, v) instead ofh(¢(t, z, u)), to denote the

means merely that some coordinate is strictly bigger while thei,t at time: corresponding to the state obtained from initial
restare bigger or equal.) Accordingly, one says that a dynamiggdte,: and inputu.

system¢ : R>o x X — X is strongly monotoné x; > x» From now on, we will specialize to the case of systems de-
implies thate(, z1) > ¢(t, z2) forall ¢ > 0. fined by differential equations with inputs

Next, we generalize, in a very natural way, the above defi-
nition to controlleddynamical systems, i.e., systems forced by &= f(z,u) Q)

some exogenous input signal. In order to do so, we assume given
a partially ordered input value spal@e Technically, we will as- (See [28] for basic definitions and properties regarding such sys-
sume that/ is a subset of an ordered Banach splge Thus, tems). We make the following technical assumptions. The map
for any pair of input values, andu, € U, we writeu; = u, [ is defined onX x U, whereX is some open subset &
wheneveru; — u» € K, whereK, is the corresponding pos-Which containsX, andB = R™ for some integer.. We assume
itivity cone in By,. In order to keep the notations simple, heréhat f(z, u) is continuous in(z, ) and locally Lipschitz con-
and later, when there is no risk of ambiguity, we use the sarfi@uous inz locally uniformly onu. This last property means
symbol () to denote ordered pairs of input values or pairs ¢hat for each compact subséts C X andC, C U there exists
states. some constarit such that f (¢, u) — f(¢,u)| < k|€ — ¢| for all
By an “input” or “control, ” we will mean a Lebesgue mea<:¢ € C1 and allu € C». (When studying interconections, we
surable functionu(-) : Rso — U which is essentially bounded,W'” also implicitly assume tha_f is Iocally Lipschitz in(z, u), _
i.e. there is for each finite interva), T] some compact subsetS° that the_z full system has unique solutions.) In order to obtain
O C U such that(t) € C for aimost allt € [0, T]. We denote a well-defined contr_olled dynamical system an we will as-
by U... the set of all inputs. Accordingly, given twey, u, € SUMe that the solution(t) = (t, zo, u) of & = f(z,u) with
Us,, we Writew, = us if ui(t) = us(t) for all ¢ > 0. (To be mmal cond|t|onfz(0) =0 IS deﬂnec_zl for aII_ |npu_t§y(.) and all
more precise, this and other definitions should be interpretedtﬁweSt 2 0. _Th's means that solutions with initial statesn
an “almost everywhere” sense, since inputs are Lebesgue-n} st he Qefmed . _aM Z. 0 (forward cor_nplet_eness) and that
surable functions). Aontrolled dynamical systera specified € setX is for\_/vard invariant. (Forward invariance af may
by a state spac& as before, an input séf, and a mapping be chec_ked using tangent cones at the boundary ,cdee the
¢ : R>o x X xU,, — X such that the usual semigroup properAppenle)' . .
ties hold. (Namelyg(0, 2. 1) = = andg(t, ¢(s, &, 1), n) = From now on, all systems will be assumed to be of this form
¢(s+t,z,v), wherev is the restriction ofi; to the interval0, s]
concatenated with, shifted to[s, co); we will soon specialize
to solutions of controlled differential equations). For systems (1) defined by controlled differential equa-
We interpreto (¢, €, u) as the state at timeobtained if the tions, we will provide an infinitesimal characterization of
initial state is¢ and the external input i&(-). Sometimes, when monotonicity, expressed directly in terms of the vector field,
clear from the context, we writer(¢, £, )" or just “z(¢)” in-  which does not require the explicit computation of solutions.
stead ofp (¢, ¢, v). When there is no risk of confusion, we useOur result will generalize the well-known Kamke conditions,

Il. I NFINITESIMAL CHARACTERIZATIONS
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discussed in [27, Ch. 3]. We denote := int X, the interior are interested in output-monotonicityzif > uy andzy > zo,

of X (recall that X is the closure ofV) and impose the then the outputs satisfy($(t, z1,u1)) = h(d(t, z2,us)) for

following approximability property(see [27, Rem. 3.1.4]): all ¢. This last property is equivalent to the requirement that

for all £1,& € X such thaté; > &, there exist sequences(¢(t, z1,u1), ¢(t, z2,us2)) € T', wherel is the set of all pairs of

{¢i},{¢8) C Vsuch thatti = ¢i forall i andéi — ¢ and  states{y, &) suchthak(é;) = k(&) inthe output-value order;

& — & asi — oo. note thaf is generally not of the forfi( K'). In order to provide
Remark 11l.1: The approximability assumption is very mild.a characterization for generll] we introduce the system with

It is satisfied, in particular, if the seX is convex, and, even state—spac& x X and input-value séi!?! whose dynamics

more generally, if it is strictly star-shaped with respect to some ] 2]

interior pointé,, i.e., forallé € X andallo < X < 1, it &= f(w,u) (4)

holds that\¢ + (1 — A)&. € V. (Convex sets with nonempty 4 given, in block form using = (21,25) € X x X and

mterlor have this property with respect to any po;i’mte V u = (u,up) € UP, asiiy = f(zy,w), &2 = f(z2,u2)

sinceAl +(1—=A)&x € @ := A+ (1-A)V C X (theinclusion 4 copies of the same system, driven by the differets). We

by convexity) and the s} is open because— A{+(1-A)niS il prove the following characterization, from which Theorem

an invertible affine n;applng.) Indeed_, suE)poseE?at& € K, 1 will follow as a corollary.

pick any sequenca’ ~ 1, and define¢; := A'§; + (1 = Theorem 2: System (1) is monotone if and only if, for all

A)é, for 5 = 1,2. These elements are W, they converge £1,6 €V

to & and&,, respectively, and eacft — & = X' (& — &) '

belongs tak becausdy is a cone. Moreover, a slightly stronger & =&, u mug = fm(g,u) € 7Tl (5)

property holds as well, for star-shap&dnamely: if¢1, & € X . .
are such thag, > & and if for some linear mag : R* — Returning to the case of orders induced by convex cones,

R¢ it holds thatL&;, = Lé, then the sequenceg:}, {€i} we remark that the conditions given in Theorem 1 may be
can be picked such thdit: : Lé for all i: this follolw’s frc?m equivalently expressed in terms of a generalization, to systems
e conetuction sincé(gl’i B 55)22 /\iL(é — &) = 0. For with inputs, of the property calleguasi-monotonicitysee, for
instanceZ might select those coordinates which belong in sonigstance, [17], [20], [23]-[25], [32], [33], and the references

subset/ C {1,....n}. This stronger property will be useful (N€rein): (1) is monotone if and only if
later, when we look at boundary points. O ¢ =&, w1 = up, (€ K* and (€, &) = (¢ &2)

The characterization will be in terms of a standard notion of S 6
tangent cone, studied in nonsmooth analysis:4.be a subset = (G, f(&1,u)) 2 (G, F(&2, u2)) ®)

of a Euclidean space, and pick aflyc S. Thetangent cone (it is enough to check this property fér — &, € 9K), where
to S at £ is the setZS consisting of all limits of the type x+ js the set of alt € R™ so that(¢,k) > 0 forall k € K.
lim; oo (1/1:)(& — &) such that; — & and#; N\, 0, where  The equivalence follows from the elementary fact from convex
“& ?f” means that; — ¢ asi — oo and that; € S for all analysis that, for any closed convex cdid@nd any element €

i. Several properties of tangent cones are reviewed in the A~ 7, K coincides with the set of € R™ such that{(,p) = 0

pendix. The main result in this section is as follows. and¢ € K* = (v,{) > 0. An alternative proof of Theorem
Theorem 1: System (1) is monotone if and only if, for all 1 for the case of closed convex conésshould be possible by
E,6 €V proving (6) first, adapting the proofs and discussion in [23].

Condition (6) can be replaced by the conjunction of: for all
§1 2 &y ur Zup = f(&,ur) — f(&o,u2) €Ty e, K (2) ¢ and alluy = wa, f(&u1) — f(€,u2) € K, and for allu,
61 = 521 and<<>£1> = <C7£2>’ <C f(§1U)> 2 <C7 f(£2u)> (a
similar separation is possible in Theorem 1).
The proofs of Theorems 1 and 2 are given later. First, we dis-
cuss the applicability of this test, and we develop several tech-
nical results.

Theorem 1 is valigven if the relation®; = x5 iff 1 — x4 € We start by looki i ial M= RY d
K" is definedwith respect to an arbitrary closed séf, not € start by looking at a special case, namgly= x>, an

— m 7 — m -
necesssarily a closed convex cone. Our proof will not use tﬁ%‘ - RtZO (with By, = R™). Such systems are calledopera
fact thatK is a closed convex cone. As a matter of fact, we mé&)’_?_hsysbemsd nts ofc th ints f hich
generalize even more. Let us suppose thaaritrary closed € boundary points are those paints for which some

subsel’ C X x X has been given and we introduce the relatior(f,oordiInate IS z€1o, SKtf — & € OK” means that, = &
for&,.6 € X and¢; = ¢ for at least one € {1,...,n}. On the other

hand, if¢, = & and¢éi = & fori € T and¢l > & for
b1 7 & & (&,6) el i € {1,...,n} \ I, the tangent coné;, _¢, K consists of all
those vectors = (v1,...,v,) € R® such that; > 0fori € I
We then define monotonicity just as in Definition Il.1. A partic-andv; is arbitrary inR otherwise. Therefore, (3) translates into
ularcase i’ = I'( K), for a closed sek” (in particular, aconvex the following statement:
cone), with(¢1,&2) € T'(K) ifand only if 1 — 25 € K. Suchan . .
abstract setup is useful in the following situation: suppose that= &2 and & =& and gy = up
the state dynamics are not necessarily monotone, but that we = fi&,u) — fi(€,u0) >0 (7)

or, equivalently

§1 =6 € 0K, uy = uz = f(&1,u1)—f(€2,u2) € Tg, ¢, K.
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holdlng fOf alls = 1,2,...n, all uy, uy €U, and a”fl,fg eV fi(fg,’u,g) - fi(fg,ul) as fol Z;":l(af‘/aul)(&ug +
(where f* denotes théth component off). In particular, for r(ug - ui))(ué - ui)dr foranyi = 1,2,...,n, ui,us € W,
systems with no inputs = f(x) one recovers the well-known and ¢;, ¢, € V. Pick anyi € {1,2,...,n}, ur,uy € W,
characterization for cooperativity (cf. [27])¢1 = &2 and¢i = and £1,& € V, and suppose the{tl = &, & = ¢, and
& implies f*(£1) > f'(§&2)" must hold for alli = 1,2,...n  4; > w, We need to show thafi(&s,us) < fi(&r,uq).
and all¢;, &> € V. Since the first integrand vanishes whgn = 4, and also
When X is strictly star-shaped, and in particular X Afi/oxi > 0 andé) — & < 0forj # 4, it follows that
is convex, cf. Remark Ill.1, one could equally well requirqi(g%ul) < fi(&1,uy). Similarly, the second integral formula
condition (7) to hold for all¢;,{> € X. Indeed, pick any gives us thayf?(&,, us) < f%(¢2,u;), completing the proof.m
§1 = &, and suppose th@t = &; fori € 1 a”dfi > &5 for  For systems without inputs, (8) is the well-known characteri-
i €{l,...,n} \ I. Pick sequencesf — & andés — & S0 zation (0f/9x9) > 0 for all i # j” of cooperativity. Interest-
that, for allk, &7, €5 € V, & = &5 and(éF) = (¢5)" fori € T ingly, the authors of [22] use this property, for systems as in (1)
(this can be done by choosing an appropriate projectian  put where inputs. are seen as constant parameters, as a defini-
Remark 11.1). Since the property holds for elements/inwe  tion of (parameterized) cooperative systems, but monotonicity
have thatf’ (¢, u1) > f(&5,up) forallk = 1,2,... and all with respect to time-varying inputs is not exploited there. The
i € 1. By continuity. taking limits as: — oo, we also have terminology “cooperative” is motivated by this property: the dif-
then thatf* (&1, u1) > f*(€2,u2). On the other hand, i also  ferent variables: have a positive influence on each other.
satisfies an approximability property, then by continuity one More general orthants can be treated by the trick used in

proves similarly that it is enough to check the condition (7) fqp7, Sec. 3.5]. Any orthank in R” has the formk (<), the set
u1, up belonging to the interio®) = intl{. In summary, we of all z € R" so that(—1 )%L > 0 for eachi = 1,....,n,

can say that ifX andi/ are both convex, then it is equivalent tagor some binary vector = (e1,...,e,) € {0, 1}n Note
check condition (7) for elements in the sets or in their respectiugyt K(c) — PRZ,, whereP : R" — R" is the linear

interiors. mapping given by the matri® = diag((—1),...,(=1)%").

One can also rephrase the inequalities in terms of the par&ilarly, if the cone K,, defining the order for/ is an
derivatives of the components ¢f Let us call a subsef of orthant K(®), we can view it asQRZ,, for a similar map
an ordered Banach spaogler-convex“p-convex” in [27]) if, () = diag((—1)%, ..., (=1)*"). Monotonicity ofi: = f(z,u)
for everyz andy in S with = = y and every0 < A < 1, the ynder these orders is equivalent to monotonicity ef g(z, v),
elementAz + (1 — \)y is in S. For instance, any convex sefyhere g(z,v) = Pf(Pz Qu), under the already studied
is order-convex, for all possible orders. We have the followingrders given byR%, andR?,. This is because the change of
easy fact, which generalizes [27, Rem. 4.1.1]. variablesz(t) = Pu(t), ( ) Qu(t) transforms solutions

Proposition 111.2: Suppose thall,, = R™, U satisfies an of one system into the other (amite versy, and bothP and
approximability property, and both and)V = intl/ are order- () preserve the respective ordets (= & is equivalent to
convex (for instance, these properties hold if bptandi/ are (P& > (P&) foralli € {1,...,n}, and similarly for input
convex). Assume thatis continuously differentiable. Then, (1)values) Thus, we conclude the fo||0W|ng

is cooperative if and only if the following properties hold: Corollary 11.3: Under the assumptions in Proposition 111.2,
o and for the orders induced from orthaft§*) and K(®), the
o (z,u) >0 VeeV,YueW, Vi#j (8) system (1) is monotone if and only if the following properties
ofi hold for alli # j:
aj(x,u)ZO Ve e X, YVu e W 9) o
v (=)= +s L (z,u) >0 VYzeV,VueW  (10)
foralli € {1,2,...n}and allj € {1,2,...m}. am]i
Proof: We will prove that these two conditions are equiv- (=1)%it% 8—f,-(:b‘-/ u)y>0 VzeX,VueWw (11)
alent to condition (7) holding for all= 1,2, ...n, all uy,us € ou!
W,andall§;, 2 € V. Necessity does not require the order-corfor all i € {1,2,...n} and allj € {1,2,...m}. O

vexity assumption. Pick any € V, v € W, and pairi # j. We Graphical characterizations of monotonicity with respect to
takeé; = &, u1 = uz = u, and&a(\) = £ + Aej, wheree; orthants are possible; see [3] for a discussion. The conditions
is the canonical basis vector having all coordingteg equal amount to asking that there should not be any negative (nonori-
to zero and itgjth coordinate one, with < 0 near enough to ented) loops in the incidence graph of the system.
zero so thatz(\) € V. Notice that, for all such\, & > &()\) Let us clarify the above definitions and notations with an
and¢i = &(N)* (infact, & = &(X) forall £ # j). Therefore, example. We consider the partial-orderobtained by letting
(7) gives thatf* (&1, u) > f'(é2(N), ) for all negative ~ 0. K = R<y x Rxo. Using the previous notations, we can write
A similar argument shows that (¢1,u) < fi(¢2(A),u) forall  this asK = K, wheree = (1,0). We will consider the
positive A &~ 0. Thus, f*(£3(X), u) is increasing in a neighbor- input spacé/ = Rx, with the standard ordering iR (i.e.,
hood of A = 0, and this implies (8). A similar argument estab#,, = Rs, or K, = K©®) with § = (0)). Observe that the
lishes (9). boundary points of the con& are those points of the forms
For the converse, as in [27], we simply use the Fundamengak (0,a) or ¢ = (—a,0), for somea > 0, and the tangent
Theorem of Calculus to writef*(&5,u1) — fi(&,u1) as cones are respectlveﬁj,K R<o x RandZ,K = R x Rxo,
fO i (0f 0x0) (& + (& — &) ui)(& — €)dr and  see Fig. 1. Under the assumptions of Corollary 1.3, a system
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¢(to, z,u) (with the sama, andty). The image ofx must con-
tain a neighborhoodV of ¢’ = «(¢); see, e.g., [28, Lemma
4.3.8]. Thus}¥ C X, whichmeansthal € intX, as desirea
Remark IIl.7: The converse of Lemma 111.6 is also true,
namely, if = f(x,u) is a system defined on some neigh-
borhood X of X and if V = intX is forward invariant
under solutions of this system, thek is itself invariant.
Q/ To see this, pick any € X and a sequenc¢’ — ¢ of
g elements ofV. For anyt, i, and u, ¢(t,&u) € V, so
B(t, €, u) = lim;_ oo P(t, €, u) € clos V = X. O
We introduce the closed sift?! consisting of all(wu, us) €
U x U such thatu; = us. We denote byjii] the set of all
possible inputs to the composite system (4) i.e., the set of all
Lebesgue-measurable locally essentially bounded functions
is monotone with respect to these orders if and only if the fold, c0) — U2 Since by Lemma 111.6 the interioy of X is

K

Fig. 1. Example of cone and tangents.

lowing four inequalities hold everywhere: forward invariant for (1), it holds thapl?l(¢, ¢, ) belongs to
V x V whenevek € V x V andu € Z/{[ ]
3_f1 <0 3_f2 <0 3_f1 <0 3_f2 >0, Observe that the definition of monotonicity amounts to the
0x? — Ozt ou ou requirement thatfor each¢ € T, and eachu € U2 the solu-

2I(t, &, u) of (4) with initial conditionz(0) = ¢ belongs
for all ¢ > 0 [forward invariance of" with respect to (4)].
Also, the sel’y :=T'((V x V) is closed relative t& x V. The
following elementary remark will be very useful.

Lemma I11.8: System (1) is monotone if and only if the set
Ty is forward invariant for the system (4) restricteditox ).
where the functiong; have strictly positive derivatives and sat- Proof: We must show that monotonicity is the same as:
isfy ;(0) = 0. The system is regarded as evoIving onthetrit ¢ Ty andu € ud = pP(t, &, u) € Ty forall t >
angleX = A := {[z',2%] : &' > 0,2> > 0,2 + 2> < 1}, 0.” Necessity is clear, since if the system is monotone then
which is easily seen to be invariant for the dynamlcs Such sygl(z, ¢,u) € T holds for all¢ € T' D Ty and allt > 0, and we
tems arise after restricting to the affine subspater z* + already remarked that?! (t,&,u) € V x V whenevet € T.

z? = 1 and eliminating the variable* in the set of three equa- Conversely, pick any¥ € T'. The approximability hypothesis
tionsi' = —ub(z') + b2(a%), i* = u91( ') — 62(z*) — provides a sequendg’} C Iy such thatt’ — ¢ asi — oo.
ublz(*) + 04(2?), i* = ubz(2*) — 04(2*), and they model an Fix anyw € 22 and anyt > 0. Then,$2/(¢, ¢, u) € Ty C T
important component of cellular processes; see, e.g., [12], [1f all i, so taking limits and using continuity @f2’ on initial

and the discussion in Section VII. (The entire system, befo&gndnmns gives thapl?l(t, &, u) € T, as required. ™
eliminatingz*, can also be shown d|rectly to be monotone by Lemma 111.9: For any¢ = (¢1,&) € T and anyu =

means Of the Change of coordinates= =", y» = o' + 2%, (y4;,uy) € U1, the following three properties are equivalent:
y3 = z* + 2* + 2. As such, it, and analogous higher d|men-

A special class of systems of this type is afforded by systemst%\
follows:

i’l = —’Uﬁl(l’l) + 02(1 — :L'l — 1’2) . 1 9
2 = uf3(1 — 2t — 22) — 4(2?) } = fa?,2%u) (12)

sional signaling systems, are “cooperative tridiagonal systems” f(&r,u1) — f(&2,u2) €Tg, e, K (23)

for which a rich theory of stability exists; this approach will be f[2](£ u) € TeTy (14)

discussed in future work.) The following fact is immediate from 2] ' ¢

the previous discussion: FE u) € TeT (19)
Lemma lIl.4: System (12) is monotone with respect to the ]

given orders. 0 Proof: Suppose that (13) holds, so there are sequences

Remark II1.5: One may also defineompetitive systeness ti \ Oand{'} € K such tha’ — & — ¢, and
those for whichu;, = wus andzy > o imply ¢(¢t, z1,u1) = 1, .
d(t, 2, us) for t < 0. Reversing time, one obtains the char- o (0" = (& = &)) = f(r, ) — f(€2,u2)  (16)
acterization: £, — & € 0K andu; > uy = f(&2,up) — ‘
f(&i,u1) € T¢, —¢, K7 or, for the special case of the positive or-asi — co. SinceV is open, the solutiom(t) = ¢(¢, &1, @) of
thant,(0f% /027 (z,u) < 0forallz € X and allu € U(i # j) @ = f(z,u) with inputa = w; and initial conditionz(0) = ¢&;
together with(9 f¢/ou’)(z,u) < 0forallz € X andallu € U  takes values i¥ for all sufficiently smallt. Thus, restricting to

foralli € {1,2,...n} and allj € {1,2,...m}. 0 a subsequence, we may without loss of generality assume that
We now return to the proof of Theorem 1. &=t ) isinV for all . Note that, by definition of solution,
Lemma IIl.6: The set) is forward invariant for (1), i.e., for a)(1/¢;)(§1 — &1) — f(&1,u1) asi — oo, and subtracting (16)

eaché € V and eachu € U, ¢(t,&,u) € Vforallt > 0. from this we obtain that )1 /¢;)(&5 — &§2) — f(€2, u2) asi —

Proof: Pick any¢ € V, u € U, andty > 0. Viewing oo, with €= ¢l —n'. Sinceti — ¢ andn® — & — & asi —
(1) as a system defined on an open set of stataghich con- oo, the sequencg, converges tg@, € V. Using once again that
tains X, we consider the mapping: V — B given bya(z) = Vs open, we may assume without loss of generalityghat V
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foralli. Moreovergi —¢&4 = 0 € K,i.e..& .= (&,¢1) e T'for  are of special interest. A simple sufficient condition for mono-
all 7, which means that isin T for all 7, and, from the previous tonicity of systems (17) is as follows.
considerations, cj1/t;)(& — &) — (f(é1,u1), f(&2,u2)) as Proposition 1V.1: Assume that there exist positivity cones
1 — 00, S0 that (14) is verified. Sincéy, C I', also (15) holds. K, Ks,...,Ky+1 (of suitable dimensions) so that each
Conversely, suppose that (15) holds. Then, there are eé-the x;-subsystems in (17) is a controlled monotone dy-
quences; N\, 0 and&l = (&,¢5) € T with €& — ¢ such namical system with respect to th€;-induced partial order
that c) holds. Sincé € V x V, we may assume without loss(as far as states are concerned) and with respect to the
of generality that! € I'y for all i, so that we also have (14).K;,1,..., Kx,1-induced partial orders as far as inputs are
Coordinate-wise, we have both a) and b), which subtracted arahcerned. Then, the overall cascaded interconnection (17) is
definingn® := ¢& — &i give (16); this establishes (13). ®  monotone with respect to the order induced by the positivity
coneK; x Ky X ... x Ky on states an& 1 on inputs.
A. Proofs of Theorems 1 and 2 Proof: We first prove the result for the cagé = 2: i =
Suppose that the system (1) is monotone, and fix any input{z1, z2,u), <2 = fa(z2,u). Let =; and > be the partial
value pairu® = (u?,u9) € U Lemma I11.8 says that the setorders induced by the conés;, K, and >, on inputs. Pick
T, is forward invariant for the system (4) restrictediiox V. any two inputsu® >, u’. By hypothesis we have, for each
This implies, in particular, that every solution of the differentiawo statest® = (£f,£5) and&® = (£7,€5), thatés >=o &5
equationi = f12(z,u0) with z(0) € Ty remains inl, for IMpliesa(t,£5,u®) =2 ¢a(t,&3,u) forall t > 0 as well as,
all t > 0 (where we think ofu® as a constant input). We mayfor all functionsz$ andz} thatéy >, €7 andz§ =, o4 implies
view this differential equation as a (single-valued) differentiah (, £, 5, u®) =1 ¢1(t, &3, 5, u") for all ¢ > 0. Combining
inclusions: € F(z) onV x V, whereF(¢) = {f21(¢,u°)}, for these, and definind( := K; x K and letting>= denote the
which the sef, is strongly invariant. Thus, Theorem 4 in thecorresponding partial order, we conclude that- ¢ implies
Appendix implies thatt'(¢) C T, for all € € Ty. In other ¢(t,€%,u®) = ¢(t, &, u’) for all ¢ > 0. The proof for arbitrary

words, (14), or equivalently (15) holds, at glle Ty, for the IV follows by induction. =
givenu = u°. Sinceu® was an arbitrary element 62!, (5)

follows. By Lemma I11.9,f (&1, ul) — f(&2,uy) € T, —¢, K for V. STATIC INPUT-STATE AND INPUT-OUTPUT

all (¢1,&) € Ty and thisu’. So, (2) also follows. CHARACTERISTICS

Conversely, suppose that (2) holds or (5) holds. By Lemma notion of “

Cauchy gain” was introduced in [29] to quantify
1.9, we know that (14) holds for al(¢;,&) € Ty and all

2l L amplification of signals in a manner useful for biological appli-
(u1,us) € U™, To show monotonicity of (1), we need t0 prove.ations. For monotone dynamical systems satisfying an addi-
thatl’o is invariant for the system (4?2]when restrictedioc V. yional property, it is possible to obtain tight estimates of Cauchy
So, pick anys? € Ty, anyu’ € Us, and anyt® > 0; We  gains. This is achieved by showing that the output vaj(es
must prove thatpl(t°,£%,u) € Ty. The input functionu’  ¢orresponding to an input(-) are always “sandwiched” in be-
being locally bounded means that there is some com ?Ct SulRRlen the outputs corresponding to two constant inputs which
C C U such thatu(t) belongs to the compact sub = bound the range of(-). This additional property motivated our
UPINC x C of By x By, for (almost) allt € [0,°]. We in-  |ooking at monotone systems to start with; we now start discus-
troduce the following compact-valued, locally bounded, and I1@ign of that topic.
cally Lipschitz set-valued functionf(¢) := {fI2(¢, u)lu € Definition V.1: We say that a controlled dynamical system
UZ'} on'V x V. We already remarked that (13) holds, i.e(1) is endowed with thetatic input—state characteristic
{ P& u)|u € U} C TeTy, for all (¢1,&) € Ty, soitis
true in particular tha¥'c(§) C 7¢I'y. Thus, Theorem 4 in the
Appendix implies thal’, is strongly invariant with respect to
Fe. Thus, sincex(-) = ¢l2(-, €0, u0) restricted td0, t°] satis-
fiesi € Fo(z), we conclude that(t°) € Iy, as required. if for each constant input(t) = @ there exists a (necessarily
Finally, we show that (2) and (3) are equivalent. Since (3) ique) globally asymptotically stable equilibriurh, ().
a particular case of (2), we only need to verify thiét,, u,) — FOr systems with an output map = h(z), we also define
féa,u3) € Te, ¢, K When¢; — & € int K. This is a conse- the static input—output characteristias k(@) = h(k.(2)),
quence of the general fact tHAtS = R” whenever is in the provided that an input—state characteristic exists and/that

ko() U — X

interior of a sefS. m continuous. O
The paper [22] (see also [21] for linear systems) provides
V. CASCADES OFMONOTONE SYSTEMS very useful results which can be used to show the existence of

input—state characteristics, for cooperative systems with scalar
inputs and whose state space is the positive orthant, and in
particular to the study of the question of whiep(a) is strictly
&1 = fi(w1,22,..., TN, u) positive.
&9 = fo(z2,...,zN,u) Remark V.2: Observe that, if the system (1) is monotone and
it admits a static input—state characterigtic thenk, must be

- nondecreasing with respect to the orders in questiorr: o

iy = fn(zy,u) (17) inU impliesk, (@) = k.(7). Indeed, given any initial statg

Cascade structures with triangular form
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monotonicity says thab(¢,&,w) > ¢(t,&,v) for all ¢, where Proposition V.5: If (1) is a monotone system which is en-

u(t) = @ andwv(t) = v. Taking limits ast — oo gives the dowed with a static input—state characterigtic thenk, is a

desired conclusion. O continuous map. Moreover for eaghe U, Z = k,(u), the fol-
Remark V.3: (Continuity ofk,) Suppose that for a system (1)lowing properties hold.

there is a mag,. : & — X with the property thak, (%) isthe 1) For each neighborhoaH of Z in X there exist a neigh-

unique steady state of the system= f(z, ) (constant input borhoodP, of z in X, and a neighborhoo€, of @ in 2/,

u = u). Whenk,, (@) is a globally asymptotically stable state for such thatp(t,&,u) € Pforallt > 0, all ¢ € Py, and all
i = f(x,u), asis the case for input-state characteristics, it fol-  inputsu such thatu(t) € Qo for all t > 0.

lows that the functiork, must be continuous, see Proposition 2) |f, in addition, the order on the state spates bounded,
V.5. However, continuity is always true provided only ttat then, for each input all whose values(t) lie in some in-
be locally bounded, i.e., that.(V') is a bounded set whenever terval[c, d] C U and with the property that(t) — @, and
V' C U is compact. This is becaugg has a closed graph, since allinitial statest € X, necessarily:(t) = ¢(t,&,u) — &

k.(u) = T means thaff(z,u) = 0, and any locally bounded ast — oo.

map with a closed graph (in finite-dimensional spaces) mustbe prgof: Consider any trajectory:(t) = ¢(t,&,u) as in

continuous. (Proof: suppose that — «, and consider the se- property 2. By Proposition V.4, we know that there is some

quencer; = k(u;); by local boundedness, it is only necessarnyompactC' C B such thatz(t) € C for all ¢ > 0. SinceX

to prove that every limit point of this sequence equal$i). s closed, we may assume tH&tC X. We are therefore in the

So, suppose that;, — z'; then(u;,,2;;) — (u,2’), so by the following situation: the autonomous systére= f(z, @) admits

closedness of the graph bf we know that(u, z’) belongs to 7 as a globally asymptotically stable equilibrium (with respect

its graph and, thuil =1x,as deSired). Therefore, local bOUndto the State_spacﬁ) and the trajector}t(.) remains in a com-

edness and, hence, continuitykf, would follow if one knows  pact subset of the domain of attraction {of= f(x, %) seen as

thatk,. is monotone, so tha([a, b]) is always bounded, evena system on an open subsefbivhich contains). The “con-

if the stability condition does not hold, at least if the order igerging input converging state” property then holds for this tra-

‘reasonable” enough, as in the next definition. Note thats  jectory (see [30, Th. 1] for details). Property 1 is a consequence

continuous whenevér, is, since the output maphas been as- of the same results. (As observed to the authors by G. Enciso,

sumed to be continuous. 0 the CICS property can be also verified as a consequence of “nor-
Under weak assumptions, existence of a static Input/Stafglity” of the order in the state—space). The continuity:pis

characteristic implies that the system behaves well with respgctéonsequence of Property 1. As discussed in Remark V.3, we

to arbitrary bounded inputs as well as inputs that converg@ly need to show that, is locally bounded, for which it is

to some limit. For convenience in stating results along thos@ough to show that for eachthere is some neighborhoag},

lines, we introduce the following terminology: the order &n of z and some compact subsetof X such that:,. () € P for

is boundedif the following two properties hold. 1) For eachall ;» € Q. Pick anyz, and any compact neighborhodtiof

bounded subse¥ C X, there exist two elemenis,b € Bz = k,(u). By Property 1, there exist a neighborhagof z in

such thatS C [a,b] = {z € X : @ 2 2 < b}. 2) For each X, and a neighborhoo@, of @ in ¢/, such that)(t, &, u,) € P

a,b € B, the sefa, b] is bounded. Boundedness is a very mildor all t > 0 whenevek € P, andu,,(t) = p with 1 € Q. In

assumption. In general, Property 1 holds if (and onlyAf) particular, this implies that, (12) = lim,_.e ¢(t, %, u,) € P,

has a nonempty interior, and Property 2 is a consequenceagfrequired. ]
K(—K = {0}. (The proof is an easy exercise in convex Corollary V.6: Suppose that the systein=f(z, ) with
analysis). outputy = h(z) is monotone and has static input-state and

Proposition V.4: Consider a monotone system (1) which isnput—output characteristids,, k,, and that the system =
endowed with a static input—state characteristic, and supp@ge, y) (with input value space equal to the output value space
that the order on the state spakeis bounded. Pick any input of the first system and the orders induced by the same positivity
u all whose valuesu(t) lie in some intervalc,d] C U. (For cone holding in the two spaces) has a static input—state charac-
example,u could be any bounded input, K is an orthant in teristic., it is monotone, and the order on its state spAds
R™, or more generally if the order i is bounded). Let(t) = bounded. Assume that the order on outpuisbounded. Then,
#(t, &, u) be any trajectory of the system corresponding to thise cascade system
control. Then{xz(t),t > 0} is a bounded subset of.

Proof: Letzy(t) = ¢(t, ¢, d), soz1(t) — ke(d) ast — &= f(z,u) y=h(z)
oo and, in particularg, (-) is bounded; so (bounded order), there z=g(z,y)
is someb € B such thatz;(¢) < b for all ¢ > 0. By mono-
tonicity, z(t) = ¢(¢,&,u) 2 ¢(t,&,d) = z1(t) < bfor all isamonotone system which admits the static input—state char-
t > 0. A similar argument using the lower bounan « shows acteristick(a) = (k. (@), k- (k,(@))). N
that there is some € B such thate < z(¢) for all . Thus Proof: Pick anya. We must show that(z) is a glob-
x(t) € la,b] for all ¢, which implies, again appealing to theally asymptotically stable equilibrium (attractive and Lyapunov-
bounded order hypothesis, that) is bounded. m stable) of the cascade. Pick any initial stége() of the com-

Certain standard facts concerning the robustness of stabiliysite system, and lett) = ¢..(¢, £, @) (input constantly equal
will be useful. We collect the necessary results in the next state-u), y(t) = h(z(t)), andz(t) = ¢.(¢,(,y). Notice that
ments, for easy reference. z(t) — z andy(t) = h(z(t)) — § = ky (@), SO viewingy as an
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input to the second system and using Property 2 in Proposition “ . u
V.5, we have that(t) — z = k.(k,(@)). This establishes at- '
tractivity. To show stability, pick any neighborhoofts and P,

of T andz respectively. By Property 1 in Proposition V.5, there
are neighborhoodB, andQ, such that € P, andy(t) € Qo oy
forallt > 0imply ¢.(¢,¢,y) € P, forallt > 0. Consider v uz
P := P, h~1(Qo), which is a neighborhood af, and pick
any neighborhood, of z with the property thad(¢, £, @) € Py
forall ¢ € P, and allt > 0 (stability of the equilibriumz). . . »
Then, for all(¢, ¢) € Py x Py, 2(t) = ¢u(t. €, @) € Py (in par- tics are nondecreasing, and for each initial condii@md each

ticular, z(t) € P,)forall t > 0, soy(t) = h(z(t)) € Qo and, bounded input(-), the following holds:

Fig. 2. Systems in feedback.

hence, alsa(t) = ¢.(¢,(,y) € Q. forall t > 0. [ ky (ting) < liminfy(t, €, u)
In analogy to what is usually done for autonomous dynam- oo
ical systems, we define th@-limit set of any functiona : < limsup y(t, &, u) < ky(usup).

t—+oo

[0,00) — A, whereA is a topological space (we will apply
this to state-space solutions and to outputsi)hg := {a € If, instead, outputs are ordered bythen the input—output static
A3 1), — +oo s.t. limg_ 400 (tx) = a} (in general, this set characteristic is nonincreasing, and for each initial condigion
may be empty). For inputs € U.., we also introduce the setsand each bounded input-), the following inequality holds:
L<[u] (respectively,L>[u]) consisting of allu € U such that
there arely, — +oo andpy, — p (k — +oo) with . € U
so thatu(t) > ur (respectivelyur > w(t)) for all t > . < limsup y(t,&,u) < ky(ting).
These notations are motivated by the following special case: t=too
Suppose that we consider a single-input—single-output (SISO) Proof: The proof of the first statement is imme-
system, by which we mean a system for whigh = R and diate from Proposition V.7 and the properties;,s ¢
By = R, taken with the usual orders. Given any scalar bounded: [u], usyp, € L>[u], liminf; ;oo y(t) € Q[y], and
inputu(-), we denoteu;,s := liminf, . u(t) andus,, := limsup,_, . y(t) € Q[y], and the second statement is proved
limsup, o, u(t). Then,ui,s € L<[u] andug,, € L>[u], inasimilar fashion. ]
as follows by definition of lim inf and lim sup. Similarly, both Remark V.9:1t is an immediate consequence of Proposition
liminf, 4 y(t) andlimsup,_,, . y(t) belong toQ[y], for V.8that, if a monotone system admits a static input—output char-
any outputy. acteristick, and if there is a claskx,, function~ such that
Proposition V.7: Consider a monotone system (1), with stati¢k(u) — k(v)| < v(Ju — v|) for all u, v (for instance, ifk is
input—state and input—output characteristigsand k,. Then, Lipschitz with constanp one may pick as the linear function

ky (Usup) < ltilnjnf y(tv 57 u)

for each initial conditiorf and each input, the solutionz(t) =  ~(r) = pr) then the system has a Cauchy gain (in the sense of
¢(t, &, u) and the corresponding outpytt) = h(xz(t)) satisfy  [29]) v on bounded inputs. O

by (L<[u]) < Qfz] < ks (L3 [u]) VI. FEEDBACK INTERCONNECTIONS

ky (L;[u]) <Qy] <k, (gg[u])_ In this section, we study the stability of SISO monotone

dynamical systems connected in feedback as in Fig. 2. Observe
that such interconnections need not be monotone. Based on
Proposition V.8, one of our main results will be the formulation
of a small-gain theorem for the feedback interconnection of a
system with monotonically increasing input—output static gain
(positive path) and a system with monotonically decreasing
input—output gain (negative path).

Proof: Pick any¢, u, and the corresponding-) andy(+),
and any element € L<[u]. Lett, — +oo, p, — p, with all
pr € U, andu(t) > uy for all ¢ > ¢.. By monotonicity of the
system, fort > t;, we have

z(t, & u) =3 (t — tg, o(te, & u), u(- + tr)) Theorem 3: Consider the following interconnection of two
= (t =ty (b, €,0), ) - (18) SISO dynamical systems:
= fo(z,w) y=h(z)
In particular, ifz(s¢) — ¢ for some sequencg, — oo, it i=f.zy) w=h(z) (19)

follows that¢ = limg—, o 2(s¢ — tg, x(tr, &, u), pr) = ku(pir)- .
Next, taking limits ast — oo, and using continuity of,, this With ¢, = ). andi{, = ). Suppose that
proves that > k. (u). This property holds for every elements 1) the first system is monotone when its inputs well as

¢ € Q[z] andp € L<[u], so we have shown that (L<[u]) =< outputy are ordered according to the “standard order”

Q[z]. The remaining inequalities are all proved in an entirely induced by the positive real semi-axis;

analogous fashion. [ | 2) the second system is monotone when its ingaordered
Proposition V.8: Consider a monotone SISO system (1), according to the standard order induced by the positive

with static input—state and input—output characteristict ) real semi-axis and its outputis ordered by the opposite

andk,(-). Then, the input—state and input—output characteris-  order, viz. the one induced by the negative real semi-axis;
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Y of (19). The fact thafz (¢, £), 2(¢,£)] — n now follows from
Stable cquilibrium Proposition V.5. [
K K, Remark VI.1:We remark that traditional small-gain the-
orems also provide sufficient conditions for global existence
and boundedness of solutions. In this respect, it is of interest to
notice that, for monotone systems, boundedness of trajectories
follows at once provided that at least one of the interconnected
% systems has a uniformly bounded output map (this is always
/7 the case for instance if the state space of the corresponding
system is compact). However, when both output maps are
unbounded, boundedness of trajectories needs to be proved
Fig. 3. Input-output characteristics im(y) plane: negative feedback. with different techniques. The following proposition addresses

. o o this issue and provides additional conditions which together
3) the respective static input-state characterigtics) and ith the small-gain condition allow to conclude boundedness

w

k- (-) exist (thus, the static input-output characteristicst trajectories. 0
ky(-) andk,(-) exist too and are respectively monotoni- e say that the input—state characteriéti¢.) is unbounded
cally increasing and monotonically decreasing); (relative toX) if for all ¢ € X there existu, uy € U so that

4) every solution of the closed-loop system is bounded. ;. (u,) = ¢ = k,(us).

Then, (19) has a globally attractive equilibrium provided that Lemma VI.2: Suppose that the system (1) is endowed with
the following scalar discrete time dynamical system, evolvirgh unbounded input—state static characteristic and that inputs

in Uy: are scalar§,, = R with the usual order). Then, for agye X
there existg € X so that for any input.
Uk+1 — (k‘w o k‘y) (uk) (20)
has a unique globally attractive equilibrium ¢(t, &, u) < max {& ke ( sup U(T)> } Vi >0. (23)
For a graphical interpretation of (20), see Fig. 3. Telo.

Proof: Equilibria of (19) are in one to one correspondencan analogous property holds witk replaced by> and sup’s
with solutions of., (k, (v)) = w, viz. equilibria of (20). Thus, replaced by inf’s.
existence and uniqueness of the equilibrium follows from the Proof: Let¢ € X be arbitrary. As:, is unbounded there
GAS assumption on (20). existsz such that < k, (@) := £. Pick any input. and anyty >
We need to show that such an equilibrium is globallg, and letu := sup. (o 4, u(7). There are two possibilitieg: <
attractive. Let{ € R"s x R": be an arbitrary initial con- % or ; > . By monotonicity with respect to initial conditions

dition and lety, := limsup,_ . y(t.¢) andy_ := andinputs, the first case yields

liminf; 4o y(¢,€). Then,wy := limsup,_,,  w(t,§) and _ _

w_ = liminf,_ -, w(t, §) satisfy by virtue of the second part Hto, &, u) = ¢(to, &, u) = €. (24)

of Proposition V.8, applied to the-subsystem So, we assume from now on that> . We introduce the input
ku(ys) < w- < wy < kul(y-). (21) U defined as followsU (t) := pforallt < to, andU(t) = u(t)

for ¢ > to. Notice thatU > w, and also thad(to, k. (), U) =

An analogous argument, applied to thesubsystem, yields: &, (), because the stakg (1) is by definition an equilibrium of
ky(w-) < y- < yq < ky(wy) and by combining this with & = f(z.u) andU(¢t) = p on the interval0, to]. We conclude

the inequalities forw andw_ we end up with that
ky (kw(y+)) <y— < ys < ky (ku(y-))- B(to, &, u) = ¢ (to, ke(),U)) = ky(p) (25)
By induction we have, after an even numBerof iterations of 5,4 (23) follows combining (24) and (25). The statementfor
the previous argument: is proved in the same manner. [
(ky 0 ko)™ (y_) < y— < yp < (ky 0 ku)?™(y3). Proposition 1V.3: Consider the feedback interconnection of

two SISO monotone dynamical systems as in (19), and assume
By lettingn — +oo and exploiting global attractivity of (20) that the orders in both state-spaces are bounded. Assume that the
we havey_ = y,. Equation (21) yieldsv_ = w,. Thus, there systems are endowed witmboundednput-state static char-

existsu, such that acteristicst,. () andk. (-) respectively. If the small gain condi-
B . tion of Theorem 3 is satisfied then solutions exist for all positive
= lim y(t,€) times, and are bounded.
k(@) = tlégloo w(t, §). (22) Clearly, the previous result allows to apply Theorem 3 also to

classes of monotone systems for which boundedness of trajec-
Let z. be the (globally asymptotically stable) equilibrium (fottories is nota priori known.
the z-subsystem) corresponding to the constant ingtit = « Proof: We show first that solutions are upper bounded.
andz. the equilibrium for thez-subsystem relative to the inputA symmetric argument can be used for determining a lower
w(t) = ky(u). Clearly,n := [z., z.] is the unique equilibrium bound. Let¢, ¢ be arbitrary initial conditions for the and =
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subsystems. Correspondingly solutions are maximally definemdshow thaty is lower bounded, and by symmetry the same ap-
over some intervgD, T'). Lett be arbitrary ifl0, 7). By Lemma  plies tow. Thus, over the intervdl, 7') thex andz subsystems
VI.2, (23) holds, for each of the systems. Moreover, composirge fed by bounded inputs and by monotonicity (together with
(23) (and its counterpart for lower-bounds) with the output mape existence of input—state static characteristics) this implies,
yields, for suitable constangsw, y, w which only depend upon by Proposition V.4, thal’ = +oo and that trajectories are uni-

& C formly bounded. [ |
y(t, &, w) < max {y, Ky (m[ax] w(7)>} (26) VIl. APPLICATION
T€[0,t
A large variety of eukaryotic cell signal transduction pro-
w(t, (,y) < max {w7 K (Tlél[Bnt] y(r )> } (27)  cesses employ “Mitogen-activated protein kinase (MAPK) cas-
cades,” which play a role in some of the most fundamental pro-
y(t, & w) > mm{ iy ( min w(ﬂ)} (28) cesses of life (cell proliferation and growth, responses to hor-
T€[0.1] mones, etc). A MAPK cascade is a cascade connection of three
w(t,¢,y) > m { w, (max (T)>}. (29) S_ISO systems, each OfWhICh. is (after restricting to stqchmmet-
T€[0,t] rically conserved subsets) either a one- or a two-dimensional

system; see [12] and [16]. We will show here that the two-di-

mensional case gives rise to monotone systems which admit

static 1/0O characteristics. (The same holds for the much easier
)} (30) one-dimensional case, as follows from the results in [29].)

After nondimensionalization, the basic system to be studied
and.substitgtion of (_28) into (30) yields (using tigto k., isa g 5 system as in (12), where the functighsare of the type
nonincreasing function) 0;(r) = (a;r/1 + b;r), for various positive constants andb; .

_ _ It follows from Proposition 1.4 that our systems (with outpQt
y(t, € w) < max {y’ by (@), Ky © Fu (y), are monotone and, therefoexery MAPK cascade is monotone
iy © Ky 0 iy ( min w(7)> } . (31) We claim, further, _thgt each such system hgs a static

T€[0,t] input—output characteristic. (The proof that we give is based on

a result that is specific to two-dimensional systems; an alterna-

tive argument, based upon a triangular change of variables as
> } (32) mentioned earlier, would also apply to more arbitrary signaling

Substituting (27) into (26) gives

y(t,awmnax{y by (), by © b ( y(r)

T€[0,t]

Finally, substituting (29) into (31) yields

cascades, cf. [3].) It will follow, by basic properties of cascades
of stable systems, that the cascades have the same property.
Thus, the complete theory developed in this paper, including
(@), by © kuo(y), hiy © b © iy (w0 )} small gair_l_theorem.s, can be applied to MAPK cascades.

Proposition VII.1: For any system of the type (12), and each
Lety, be the output value of the-subsystem, corresponding toconstant input:, there exists a unique globally asymptotically
the unique equilibrium of the feedback interconnection (19). stable equilibrium inside\.

T€[0,t]

y(t, &, w) < max{a,pop ( max_y(7)

where we are denoting := k, o k,, and

a := max {y Ky (

Notice that attractivity of (20) implies attractivity of(¢ + Proof: As the setA is positively invariant, the Brower
1) = ky o ku(y(t)) := p(y(t)) anda fortriori of Fixed-Point Theorem ensures existence of an equilibrium. We
next consider the Jacobidnf of f. It turns out that for all
y(t+1) = pop(y(t)). (33) (z',2?) e Aandallu > 0
We claim thaty > y. = po p(y) < y. By attractivity, there tr(Df) = —uDb(z') — DOy (1 — ' — )+

exists somey; > y. such thatp o p(y1) — sy; < 0 (other-

wise, all trajectories of (33) starting from > . would be ) )

monotonically increasing, which is absurd). Now, assume by det(Df) = u? Dby (") Dbs(1 — z* — %)

contradiction that there exists also some > y. such that + uD(z') DO4(2?)

pop(y2) —y2 > 0. Then, ap is a continuous function, there + DOy(1 — 2! — 22)DOy(z?) > 0.

would exist anyy € (y1,y2) (Orin (y2, y1) if y2 < y1) such that

p o p(yo) = yo. This clearly violates attractivity (at.) of (33), The functionsé; are only defined on intervals of the form

sinceyy is an equilibrium point. So, the claim is proved. (=1/b;, +00). However, we may assume without loss of gen-
Let M := max,¢,q¥y(7), SOM = y(7o) for somery € erality that they are each defined on allRyfand moreover that

[0,t]. Therefore, (32) at = 7y says thaty(79) < max{a,p o their derivatives are positive on all Bf Indeed, let us pick any

p(y(m9))}, and the previous claim applied at= y(79) gives continuously differentiable functions : R — R,:=1,2,3,4

thaty(ro) < max{a,y.} (by considering separately the casewith the properties that}(p) > 0 for all p € R, 7:(p) = p for

y(10) > ye andy(mo) < ye). Asy(t) < y(7p), we conclude all p > 0, and the image of; is contained in€1/b;, +00).

thaty(t) < max{a,y.}. This shows thay is upper bounded Then, we replace ea¢h by the compositiod; o ;.

by a function which depends only on the initial states of the Note that the functiond; o o; have an everywhere posi-

closed-loop system. Analogous arguments can be used in ortilex derivative, sar(D f) anddet(D f) are everywhere negative

— D94( 2) — UD03(1 — 11)1 - 11)2) <0
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Fig. 4. Direction field for example.

and positive, respectively, R?. SoD f is Hurwitz everywhere.
The Markus—Yamabe conjecture on global asymptotic stabilityg- S-
(1960) was that if &' mapR” — R™ has a zero at a point
p, and its Jacobian is everywhere a Hurwitz matrix, thes a
globally asymptotically stable point for the system= f(z).
This conjecture is known to be false in general, but true in di-
mension two, in which case it was proved simultaneously by
Fessler, Gutierres, and Glutsyuk in 1993; see, e.g., [11]. Thus,
our (modified) system has its equilibrium as a globally asymp-
totically stable attractor iR2. As inside the trianglé\, the orig-
inal §;'s coincide with the modified ones, this proves global sta-
bility of the original system (and, necessarily, uniqueness of the
equilibrium as well). [ |

As an example, Fig. 4 shows the phase plane of the system
(the diagonal line indicates the boundary of the triangular region

of interest), when coefficients have been chosen so that the e ua—6 Simulation of MAPK g ve feedback satihy )
; P o o ig.6. Simulation o system under negative feedback satisfying small-
tlong arez; = —1.0x1/(1+21)+2(1—21—x2)/(3— 21— 2x2) gain conditions. Keyz, dots,y; dashesy, dash-dotz; circles,z; solid.

andxg = (1 — T — LIZQ)/(Q — T — .172) — 2372/(2 + .172).

As a concrete illustration, let us consider the open-loop

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

system with these equations Since the system is a cascad_e of elementary MAP_K sul_)sys-
tems, we know that our small-gain result may be applied. Fig. 5
iy = 02(100 —21)  q171 gatu shows the input—output characteristic of this system, as well as
ko + (100 —21)  ki+@1g9a+u the characteristic corresponding to a feedbaek K /(1 + y),
~ 16(300 —y1 — y3) k3(100 — z1)y; with the gainK = 30000. It is evident from this planar plot
o= ke + (300 — g1 —y3) ks + 11 that the small-gain condition is satisfied—a “spiderweb” dia-
 k£4(100 — 21)(300 — 1 — y3) V5Ys3 gram s_hows convergence. Our theorem then guarantees global
- kg + (300 — y1 — y3) ks + ys _attrlacttl?ntto a utnlque equilibrium. Indeed, Fig. 6 shows a typ-
L v10(300 =21 —23)  Krps; ical state trajectory.
Fro+ (300 -2 —2) kvt 2 VIII. RELATIONS TO POSITIVITY
by = ngy3(300 —Z1 — 2’3) _ V9Z3 ) ) ] ] ] ] ]
ks + (300 — 21 — z3) ko + 23 In this section, we investigate the relationship between the

. — . notions of cooperative and positive systems. Positive linear sys-
This is the model studied in [16], from which we also borrow th ms (in continuous as well as discrete time) have attracted much

values of constants (with a couple of exceptions, see as foIIowg R . ; .
' ention in the control literature; see, for instance, [7], [10],
g1 = 022, gs = 45, ga = 50, kl = 10, Vg = 025, k‘g = 8, [ ] [ ]

[19], [21], [22], and [31]. We will say that a finite-dimensional
k3 = 0.025, k3 = 15, k4, = 0.025, ky = 15, v5 = 0.75, l . . .

near system, possibly time-varyin
ks = 15, v5 = 0.75, kg = 15, k7 = 0.025, ky = 15, kg = Y POSSIDly fime-varying

0.025, kg = 15, v9g = 0.5, kg = 15, vip = 0.5, andkw = T = A(t)a:—l—B(t)u (34)

15. Units are as follows: concentrations and Michaelis constants

(k’s) are expressed in nM, catalytic rate constants)(in s—, (where the entries of thex n matrix A and then x m matrix B

and maximal enzyme rates’§) in nM.s~'. Reference [16] are Lebesgue measurable locally essentially bounded functions
showed that oscillations may arise in this system for appropriatetime) is positiveif the positive orthant is forward invariant
values of negative feedback gains. (We have slightly changled positive input signals; in other words, for agy> 0 and

the input term, using coefficients, g», g4, because we wish to anyu(t) > 0 (> denotes here the partial orders induced by the
emphasize the open-loop system before considering the effeasitive orthants), and any € R it holds thaty (¢, to, §,u) = 0

of negative feedback.) forall t > tq.



ANGELI AND SONTAG: MONOTONE CONTROL SYSTEMS 1695

Let say that (34) is Metzler systenf A(¢) is a Metzler ma- Proof: Under the given hypotheses, a system is coopera-
trix, i.e., A;;(t) > 0foralli # j, andB;;(t) > Oforall 4, j, for tive iff (0f/0x)(z,u) is a Metzler matrix, and every entry of
almost allt > 0. It is well known for time-invariant systemsi( (9f/du)(x,«) is nonnegative, for alk € X and allu € U,
andB constant), see for instance [19, Ch. 6], or [7] for a recenf. Proposition 111.2. Therefore, by the criterion for positivity of
reference, that a system is positive if and only if it is a Metzldinear time-varying systems, this implies that (35) is a positive
system. This also holds for the general case, and we provide linear time-varying system along any trajectory of (1).
proof here for completeness. For simplicity in the proof, and be- Conversely, pick an arbitrarg in X and any input of the
cause we only need this case, we make a continuity assumpfiorm «(-) = @ € U. Suppose that (35) is a positive linear
in one of the implications. time-varying system along the trajectaryt) = x(t, &, u) (this

Lemma VIII.1: If (34) is a Metzler system then it is positive.system has continuous matricdsand B becauseu is con-
Conversely, if (34) is positive and(-) andB(-) are continuous, stant). Then, by the positivity criterion of linear time-varying
then (34) is a Metzler system. systems, for alt > 0 we have(0f/0z)(x(t), u) is Metzler and

Proof: Let us prove sufficiency first. Consider first any(df/du)(x(t), ) > 0. Finally, evaluating the Jacobiantat 0
trajectory z(-) with z(s) > 0, any fixedT > s, and any yieldsthat(df/dz)(£,u) is Metzlerand df /0u)(&, @) is non-
input u(-) so thatu(t) > 0 for all ¢ > s. We need to prove negative. Sincg anda were arbitrary, we have the condition
thatz(T) > 0. Since A(t) is essentially bounded (over anyfor cooperativity given in Proposition I11.2. ]
bounded time-interval) and Metzler, there isan> 0 such Remark VIII.3: Looking at cooperativity as a notion of “in-
thatrI + A(t) > 0 for almost allt € [s,T], where >"is cremental positivity” one can provide an alternative proof of the
meant elementwise. Consideft) := exp(r(t — s))x(¢) and infinitesimal condition for cooperativity, based on the positivity
v(t) = exp(r(t — s))u(t), and note that(s) = z(s) > 0 ofthevariational equation. Indeed, assume that each system (35)
andwv(t) > 0 for all ¢ > s. We claim thatz(¢) > 0 for all is a positive linear time-varying system, along trajectories of
t € [s,T]. LetT > s be the infimum of the set afs such that (1). Pick arbitrary initial conditiong; > & € X and inputs
z(t) ¥ 0and assume, by contradiction< +oc. By continuity u; > us. Let®(h) := ¢(t, & + h(€1 — &2), ua + h(ur — u2)).
of trajectoriesz(r) = 0. Moreoverz () = z(s) + [ 2(t)dt=We have (see, e.qg., [28, Th. 1]) théftt, &, u1) — (¢, &2, us) =
2(s)+ [T (rI+A(t))z(t) + B(t)u(t)dt = z(s) > 0,and there- &(1) — ®(0) = [i &' (h)dh= [ z(t, &1 — Ea,ur — uo)dh,
fore there exists an intervat, 7 + €] such that:(t) > 0 for all wherez;,, denotes the solution of (35) whéé f /ou)(x, u) and
t € [r,7 + ¢]. But this is a contradiction, unless= +oco as (9f/0u)(x,u) are evaluated along(t, &2 + (€ — &), ua +
claimed. By continuous dependence with respect to initial cohfu; — us)). Therefore, by positivity, and monotonicity of the
ditions, and closedness of the positive orthant, the result carrietegral, we have(¢, {1, u1) — ¢(¢, &2, uz) = 0, as claimedd
over to any initial conditionz(s) > 0. For the converse im-  We remark that monotonicity with respect to other orthants
plication, denote withb(¢, s) the fundamental solution associ-corresponds to generalized positivity properties for lineariza-
ated toA(t) (0®/0t = A(t)®, ®(s,s) = I). Usingu = 0 we tions, as should be clear by Corollary I11.3.
know that®(t, s) > 0 whenever > s (“>" is meant here el-
ementwise). Therefore, al§®(¢,s) — I];; > 0 forall i # j. APPENDIX A
Since A(r) = (9/0t) 4= @ (t,7) = limy—o((P(¢t,7) — I)/?) LEMMA ON INVARIANCE

for all =, it follows that A(7);; > 0 for all 4 j. Consider o . . .
T (7)ij > 7] We present here a characterization of invariance of relatively

a solution withz(s) = 0, u constant> 0, for ¢ > s. Since . e . . .
closed sets, under differential inclusions. The result is a simple

z(t) = 0,also(1/(t — t) »= 0 and, therefore, taking limits . o . .
;gt)i 0 a‘:(s)(>/(0 (t;()a)gér?vgtive exists by the contir?uity as_adaptatlon of a well-known condition, and is expressed in terms

sumption). However(s) = A(s)x(s)+ B(s)u, andz(s) = 0, of appropr_iate tangent cones. W_e létbe an open subset of
s0B(s)u = 0 for all suchu, i.e. B(s) = 0. some Euclld.ean spad& and co_n&der s_et-valu_ed mappings
Thus, by virtue of Theorem 111.2, a time-invariant Iineardemed onV: these are mappings which assign some Subset
1 y ! n
system is cooperative if and only if it is positive. The next resuﬁ(x). CR .to.each:z.t € V. Associated to such mappings
is a system-theoretic analog of the fact that a differentif:lb"f‘éed'ﬁerem""lI inclusions
scalar real function is monotonically increasing if and only if i€ F(x) (36)
its derivative is always nonnegative.

We say that (1) igncrementally positiveor “variationally and one says that a functian: [0,7] — V is asolutionof (36)
positive”) if, for every solutionz(t) = ¢(t,&,u) of (1), the if 2 is an absolutely continuous function with the property that
linearized system i(t) € F(x(t)) for almost allt € [0, T]. A set-valued mapping

F is compact-valuedf F(¢) is a compact set, for eache V),
Z2=A(t)z + B(t)v (35) and it islocally Lipschitzif the following property holds: for
each compact subsét C V there is some constahtsuch that
where we defined(t) = (9f/0x)(z(t),u(t)) and B(t) = F(&) C F({) + k|¢ — ¢|Bforall ¢, ¢ € C, whereB denotes
(0f [ou)(x(t), u(t)), is a positive system. the unit ball inR™. (We use|z| to denote Euclidean norm in

Proposition VIII.2: Suppose thaB,, = R™, U satisfies an R™). Note that wherF'(z) = {f(z)} is single-valued, this is
approximability property, and that both andW = intl{ are the usual definition of a locally Lipschitz function. More gener-
order-convex. Leff (z, «) be continuously differentiable. Then,ally, suppose thaf(z,«) is locally Lipschitz inz € V, locally
(1) is cooperative if and only if it is incrementally positive.  uniformly on u, and pick any compact subsét of the input
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setU; then Fp(z) = {f(x,u),u € D} is locally Lipschitz | S Vo
and compact-valued. We say that the set-valued mappidg- N ’
fined onV is locally boundedf for each compact subsét C V ;
there is some constahtsuch thatF'(¢) C kB forall ¢ € C. M
When F' has the form#'p as before, it is locally bounded, since '
Fp(¢) C f(C x D), and,f being continuous, the latter set is
compact.

LetS be a (nonempty) closed subset relativ®tohat is,S =
SV for some closed subsétof R™. We wish to characterize
the property that solutions which start in the Sehust remain
there. Recall that the subs8tis said to bestrongly invariant
under the differential inclusion (36) if the following propertyhull of the setsF'(¢), i.e.,ﬁ(f) := coF'(§) for eaché € V. It
holds: for every solution: : [0, 7] — V which has the property is an easy exercise to verify thatfifis compact-valued, locally
thatz(0) € S,itmustbe the case tha(t) € Sforallt € [0,T]. Lipschitz, and locally bounded, théhalso has these properties.

Note that a vectos belongs tdZ; S (the “Bouligand” or “con-  Clearly, if S is strongly invariant undef then it is also
tingent” tangent cone) if and only if there is a sequence of eltrongly invariant undeF’, because every solution ofe F(z)
ementsy; € V, v; — v and a sequencg \, 0 such that must also be a solution of € F(x). Conversely, suppose
§ + tiv; € S for alli. Further, 7S = R™ whenz is in the that S is strongly invariant unde#, and consider any solu-
interior of S relative to)’ (so only boundary points are of in-tion z: [0,7] — V of & € ﬁ(az) which has the property that
terest). z(0) € S. The Filippov-Wazewski Relaxation Theorem pro-

Theorem 4: Suppose that” is a locally Lipschitz, compact- vides a sequence of solutiong, k¥ = 1,2,..., of & € F(z)
valued, and locally bounded set-valued mapping on the open the interval [07], with the property that,(t) — z(¢) uni-
subsety C R", andS is a closed subset df. Then, the fol- formly ont € [0, 7] and alsor;,(0) = x(0) € S for all k. Since

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 7. Shaded area is s8t.

lowing two properties are equivalent: S is strongly invariant undef’, it follows thatz(t) € S for
1) S is strongly invariant undeF’; all £ andt € [0, 7], and taking the limit ag — oo this implies
2) F(¢) C 7S for everyé € S. that alsaz(t) € S for all t. In summary, invariance undét or

Just for purposes of the proof, let us say that a set-valued mépare equivalent, for closed sets.
ping F is “nice” if F is defined on all oR™ and it satisfies the ~ Let NV be a compact subset dfwhich contains}/ in its in-
following properties:F is locally Lipschitz, compact-valued, teriorint N and pick any smooth functiop: R" — R, with
convex-valued, and globally boundeB(¢) C kB for all ¢ € Supportequal tdv (thatis,p(¢) = 01if z ¢ int N andp(£) > 0
R", for somek). [4, Th. 4.3.8] establishes that Properties 1 ar int V) and such thaip(£) = 1 on the setM. Now con-
2 in the statement of Theorem 4 are equivalent, and are afd@er the new differential inclusion defined on all®f given
equivalent to by F'(§) := w(§)F(€) if £ € N and equal to {0} outsideV.

SinceF' is locally Lipschitz and locally bounded, it follows by
F(¢) CcoTeS foreveryé € S (37) a standard argument that has these same properties. More-
over, I is globally bounded and it is also convex-valued and

(“co” indicates closed convex hull) provided théitis a closed compact-valued (see, e.g., [18]). Thus,s nice, as required.
subset ofR™ and F' is nice (a weaker linear growth conditionNote that (38) holds, becaugg¢) C F(£) andy =1 on M.
can be replaced for global boundedness, c.f. the “standing hyLet S’ := S\ N (cf. Fig. 7); this is a closed subset Bf'
potheses” in [4, Sec. 4.1.2]). We will reduce to this case usifigcause the compact s€thas a strictly positive distance to the
the following observation. complement o¥. Property (39) holds as well, becaugeC N.

Lemma A.4: Suppose thakF' is a locally Lipschitz, compact- Now pick any{ € S’. There are two cases to considgiis in
valued, and locally bounded set-valued mapping on the opde boundary ofV or in the interior of V. If { € N, then
subsety C R", andS is a closed subset af. Let M be any F(£) = {0} becausep(§) = 0. If instead¢ belongs to the
given compact subset df Then, there exist a nice set-valuBd interior of N, there is some open sub3étC N suchthat € V.
and a closed subsét of R” such that the following properties Therefore any sequenée— £ with all §; € S has, without loss

hold: of generalityé; e VNS C NS =8, soalsa; — £inS’;
R this proves tha; S C 7.S’, and the reverse inclusion is true
F() CF(E) VYéeeM (38) becauseS’ C S. Hence, (40) has been established. Regarding
MﬂS cs'cs (39) (41), this follows from the discussion in the previous paragraph,

R sinceM is included in the interior ofV.
VE €8, either F(§) = {0} or 7cS = 7S’ (40) In order to prove the last property in the theorem, we start
T.S=TS VéEeM (41) by remarking that ifz: [0,7] — R" is a solution ofi €
F(z) with the property that:(¢) belongs to the interior oV
andS strongly invariant undef” implies S’ strongly invariant for all ¢ (equivalently,o(x(t)) # 0 for all t), then there is a
underF. B reparametrization of time such thats a solution ofi € F(z).
Proof. Consider the convexificatiol” of F; this is the In precise terms: there is an interval [R], an absolutely con-

set-valued function ol which is obtained by taking the convextinuous functiona: [0, 00) — [0, c0) such thatx(0) = 0 and
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a(R) = T, and a solutiore: [0, R] — R™ of 2 € ﬁ’(z) such and so also fo€ € S'. By (40),?(5) C co7:S' V¢ € &', since
thatz(r) = z(a(r)) for all r € [0, R]. To see this, it is enough eitherﬁ(f) = 0 or 7S’ = 7S (and hence their convex hulls
(chain rule, remembering th&t(¢) = ¢(£) F(z)) for o to solve  coincide).

the initial value problemia/dr = B(a(r)), a(0) = 0, where  Insummary, (37)is valid foF in place ofF” andsS’ in place of
B(t) = 1/p(x(t)) fort < T'andp(t) = B(T) fort > T. S, andF is nice. Thus we may apply [4, Th. 4.3.8] to conclude
The functiony(z(t)) is absolutely continuous, and is boundethatS’ is strongly invariant undef'. Sincez(0) € &', it follows
away from zero for alt < T (because the solution lies in  thatz(¢) € S’ for all ¢ € [0,T] and, therefore, also(t) € S

a compact subset of the interior of the supportdf sog is for all ¢ € [0, 7], as wanted.

locally Lipschitz and a (unique) solution exists. Sirttis glob- We now prove that2-2. Suppose thaf is strongly invariant
ally bounded, the solution has no finite escape times. In addinder F, and pick any¢, € S. We apply Lemma A.4, with
tion, since the vector field is everywhere positivé;) — oo M = {&}, to obtainF’ andS’. Note thatM (S = {&}, so

ass — oo, so there is som& such thatx(R) = T.

o € S'. Moreover,S' is strongly invariant undef’. SinceS’

Now, suppose thaf is invariant underF'. As remarked, is closed and’ is nice, [4, Th. 4.3.8] gives thaﬁf(g) C7:8

thenS is invariant under its conveX|f|cat|oﬁ Suppose that:
[0,7] — R" is a solution ofi = F(z) such thatz(0) € &’

of 2 € F(z) such thatz(r) =
z(0) = z(0) € &’ C S as earlier. Invariance &f underF gives
thatz(r) and, henceg(t), remains inS. SinceS’ = S N,

we conclude that(t) € S’ forall t € [0, T7.

Next, we use some ideas from the proof of [4, Th. 4.3.8]. (1
Pick any¢, € &', and anyv € F(fo) Define the mapping
f:R™ — R by the following rule: for eacl§ € R", f(¢) is
the unique closest point toin F'(£). As in the above citation,
this map is continuous. We claim that, for edchk S’ there is
somed > 0 and a solution of = f(z) such that:(0) = £ and

z(t) € S'forallt € [0, 6]. (Note that, in particular, this solves
i € F(z).) If ¢ is on the boundary alV, thenF(¢) = {0} im-
plies thatf(¢) = 0 and, henceg(t) = £ is such a solution.
If instead¢ belongs to the interior oN then the previous re-
marks shows that(t) € S’ for all t € [0, ¢], where we pick a
smalleré if needed in order to insure thatt) remains in the
interior of N. We conclude from the claim that the closed set [7]
S’ is locally-in-time invariant with respect to the differential in- (8]
clusion{ f(z)}, which satisfies the “standing hypotheses” in [4,
Ch. 4]. This inclusion is hence also “weakly invariant” as fol-
lows from Exercise 4.2.1 in that textbook. This in turn implies,
by Theorem 4.2.10 there, théf(¢),¢) < 0forall ¢ € S’ and
all ¢ in the proximal normal sel.S’ defined in that reference [10]
(we are using a different notation). Applied in particular at the

(2]

(3]
(4]

(5]

(6]

(9]

pointéy (so thatf(&o) = v), we conclude thafv, ¢) < 0 for all [t
¢ € N¢, S’ Sincev was an arbitrary element df (&), it fol-  [12]
lows that the upper Hamiltonian condition in part d) of [4, Th.
4.3.8] holds for the map’ at the pointp. Since, was itselfan (13
arbitrary pointinS’, the condition holds on all a§’. Therefore,
S’ is invariant forF', as claimed. [ | [14]
A. Proof of Theorem 4
We first prove that 2>1. Suppose thaf' (¢) C 7. S forevery  [15]
¢ € S, and pick any solution: [0,7] — V of & € F(z) with
z(0) € S. [16]
Sincez(+) is continuous, there is some compact suldget
V such thate(t) € M forall ¢t € [0, T]. We apply Lemma A.4
to obtalnF andS’. By (38), it holds thatr is also a solution [17]
of & € F( ), and Property (39) gives that0) belongs to the [1g]
subsets’. Taking convex huIIsF( ') C coZeS foreveryz € S.
Sincel' is a scalar multiple of”, andco7;S is a cone (because [19]

TS is a cone), it follows thaf*(¢) C coZ;S for every¢ € S,

forall £ € &', and in particular fog = &. By (40), either

F(&) = {0} or 8’ =
andz(t) is in the interior of N for all . We find a solutionz: ¢ — ¢,. Moreover, (38) gives thak'(¢) C

7S, so we have thaF(é’) C 7S for
F(¢) for ¢ = &.

z(a(r)) forall~ € [0, R] and = Since¢, was an arbitrary element &, the proof is completm.
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