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Monotone Control Systems
David Angeli and Eduardo D. Sontag, Fellow, IEEE

Abstract—Monotone systems constitute one of the most impor-
tant classes of dynamical systems used in mathematical biology
modeling. The objective of this paper is to extend the notion of
monotonicity to systems with inputs and outputs, a necessary first
step in trying to understand interconnections, especially including
feedback loops, built up out of monotone components. Basic defi-
nitions and theorems are provided, as well as an application to the
study of a model of one of the cell’s most important subsystems.

Index Terms—Cooperative systems, monotone systems, nnlinear
stability, small-gain theorems.

I. INTRODUCTION

ONE OF THE most important classes of dynamical systems
in theoretical biology is that ofmonotone systems. Among

the classical references in this area are the textbook by Smith
[27] and the papers [14] and [15] by Hirsh and [26] by Smale.
Monotone systems are those for which trajectories preserve a
partial ordering on states. They include the subclass ofcooper-
ativesystems (see, e.g., [1], [5], and [6] for recent contributions
in the control literature), for which different state variables re-
inforce each other (positive feedback) as well as more general
systems in which each pair of variables may affect each other in
either positive or negative, or even mixed, forms (precise defini-
tions are given below). Although one may consider systems in
which constant parameters (which can be thought of as constant
inputs) appear, as done in [22] for cooperative systems, the con-
cept of monotone system has been traditionally defined only for
systems with no external input (or “control”)functions.

The objective of this paper is to extend the notion of mono-
tone systems tosystems with inputs and outputs. This is by no
means a purely academic exercise, but it is a necessary first step
in trying to understand interconnections, especially including
feedback loops, built up out of monotone components.

The successes of systems theory have been due in large part
to its ability to analyze complicated structures on the basis of
the behavior of elementary subsystems, each of which is “nice”
in a suitable input–output sense (stable, passive, etc.), in con-
junction with the use of tools such as the small gain theorem to
characterize interconnections.

On the other hand, one of the main themes and challenges in
current molecular biology lies in the understanding of cell be-
havior in terms of cascade and feedback interconnections of ele-
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mentary “modules” which appear repeatedly; see, e.g., [13]. Our
work reported here was motivated by the problem of studying
one such module type (closely related to, but more general than,
the example which motivated [29]), and the realization that the
theory of monotone systems, when extended to allow for inputs,
provides an appropriate tool to formulate and prove basic prop-
erties of such modules.

The organization of this paper is as follows. In Section II, we
introduce the basic concepts, including the special case of coop-
erative systems. Section III provides infinitesimal characteriza-
tions of monotonicity, relying upon certain technical points dis-
cussed in the Appendix. Cascades are the focus of Section IV,
and Section V introduces the notions of static input–state and
input–output characteristics, which then play a central role in
the study of feedback interconnections and a small-gain the-
orem—the main result in this paper—in Section VI. We return
to the biological example of MAPK cascades in Section VII. Fi-
nally, Section VIII shows the equivalence between cooperative
systems and positivity of linearizations.

We view this paper as only the beginning of a what should be
a fruitful direction of research into a new type of nonlinear sys-
tems. In particular, in [2] and [3], we present results dealing with
positive feedback interconnections and multiple steady states,
and associated hysteresis behavior, as well as graphical criteria
for monotonicity, and in [8] and [9], we describe applications to
population dynamics and to the analysis of chemostats.

II. M ONOTONESYSTEMS

Monotone dynamical systems are usually defined on subsets
of ordered Banach (or even more general metric) spaces. Anor-
dered Banach spaceis a real Banach space together with a
distinguished nonempty closed subsetof , itspositive cone.
(The spaces which we study in this paper will all be Euclidean
spaces; however, the basic definitions can be given in more gen-
erality, and doing so might eventually be useful for applications
such as the study of systems with delays, as done in [27] for
systems without inputs.) The set is assumed to have the fol-
lowing properties: it is a cone, i.e., for , it
is convex (equivalently, since is a cone, ), and
pointed, i.e. . An ordering is then defined
by . Strict ordering is denoted by

, meaning that and . One often uses
as well the notations and , in the obvious sense (
means ). (Most of the results discussed in this paper use
only that is a cone. The property , which
translates into reflexivity of the order, is used only at one point,
and the convexity property, which translates into transitivity of
the order, will be only used in a few places.)

The most typical example would be and ,
in which case “ ” means that each coordinate of is
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bigger or equal than the corresponding coordinate of. This
order on state spaces gives rise to the class of “cooperative sys-
tems” discussed later. However, other orthants inother than
the positive orthant are often more natural in appli-
cations, as we will see.

In view of our interest in biological and chemical applica-
tions, we must allow state–spaces to be nonlinear subsets of
linear spaces. For example, state variables typically represent
concentrations, and hence must be positive, and are often sub-
ject to additional inequality constraints such as stoichiometry or
mass preservation. Thus, from now on, we will assume given an
ordered Banach spaceand a subset of which is the closure
of an open subset of. For instance, , or, in an example
to be considered later, with the order induced by

, and .
The standard concept of monotonicity for uncontrolled sys-

tems is as follows: A dynamical system
is monotoneif this implication holds:

for all . If the positive cone is solid, i.e., it has a
nonempty interior (as is often the case in applications of mono-
tonicity; see, e.g., [3]) one can also define a stricter ordering:

. (For example, when ,
this means that every coordinate of is strictly larger than the
corresponding coordinate of , in contrast to “ ” which
means merely that some coordinate is strictly bigger while the
rest are bigger or equal.) Accordingly, one says that a dynamical
system is strongly monotoneif
implies that for all .

Next, we generalize, in a very natural way, the above defi-
nition to controlleddynamical systems, i.e., systems forced by
some exogenous input signal. In order to do so, we assume given
a partially ordered input value space. Technically, we will as-
sume that is a subset of an ordered Banach space. Thus,
for any pair of input values and , we write
whenever where is the corresponding pos-
itivity cone in . In order to keep the notations simple, here
and later, when there is no risk of ambiguity, we use the same
symbol to denote ordered pairs of input values or pairs of
states.

By an “input” or “control, ” we will mean a Lebesgue mea-
surable function which is essentially bounded,
i.e. there is for each finite interval some compact subset

such that for almost all . We denote
by the set of all inputs. Accordingly, given two

, we write if for all . (To be
more precise, this and other definitions should be interpreted in
an “almost everywhere” sense, since inputs are Lebesgue-mea-
surable functions). Acontrolled dynamical systemis specified
by a state space as before, an input set, and a mapping

such that the usual semigroup proper-
ties hold. (Namely, and

, where is the restriction of to the interval
concatenated with shifted to ; we will soon specialize
to solutions of controlled differential equations).

We interpret as the state at timeobtained if the
initial state is and the external input is . Sometimes, when
clear from the context, we write “ ” or just “ ” in-
stead of . When there is no risk of confusion, we use

“ ” to denote states (i.e., elements of) as well as trajectories,
but for emphasis we sometimes use, possibly subscripted, and
other Greek letters, to denote states. Similarly, “” may refer to
an input value (element of ) or an input function (element of

).
Definition II.1: A controlled dynamical system

is monotoneif the following implication holds
for all :

Viewing systems with no inputs as controlled systems for
which the input value space has just one element, one re-
covers the classical definition. This allows application of the
rich theory developed for this class of systems, such as theorems
guaranteeing convergence to equilibria of almost all trajectories,
for strongly monotone systems (defined in complete analogy to
the concept for systems with no inputs); see [2] and [3].

We will also consider monotone systemswith outputs
. These are specified by a controlled monotone system

together with a monotone map
, where , the set of measurement or output values,

is a subset of some ordered Banach space. We often use
the shorthand instead of , to denote the
output at time corresponding to the state obtained from initial
state and input .

From now on, we will specialize to the case of systems de-
fined by differential equations with inputs

(1)

(see [28] for basic definitions and properties regarding such sys-
tems). We make the following technical assumptions. The map

is defined on , where is some open subset of
which contains , and for some integer . We assume
that is continuous in and locally Lipschitz con-
tinuous in locally uniformly on . This last property means
that for each compact subsets and there exists
some constant such that for all

and all . (When studying interconections, we
will also implicitly assume that is locally Lipschitz in ,
so that the full system has unique solutions.) In order to obtain
a well-defined controlled dynamical system on, we will as-
sume that the solution of with
initial condition is defined for all inputs and all
times . This means that solutions with initial states in
must be defined for all (forward completeness) and that
the set is forward invariant. (Forward invariance of may
be checked using tangent cones at the boundary of, see the
Appendix).

From now on, all systems will be assumed to be of this form.

III. I NFINITESIMAL CHARACTERIZATIONS

For systems (1) defined by controlled differential equa-
tions, we will provide an infinitesimal characterization of
monotonicity, expressed directly in terms of the vector field,
which does not require the explicit computation of solutions.
Our result will generalize the well-known Kamke conditions,
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discussed in [27, Ch. 3]. We denote , the interior
of (recall that is the closure of ) and impose the
following approximability property(see [27, Rem. 3.1.4]):
for all such that , there exist sequences

such that for all and and
as .

Remark III.1: The approximability assumption is very mild.
It is satisfied, in particular, if the set is convex, and, even
more generally, if it is strictly star-shaped with respect to some
interior point , i.e., for all and all , it
holds that . (Convex sets with nonempty
interior have this property with respect to any point ,
since (the inclusion
by convexity) and the set is open because is
an invertible affine mapping.) Indeed, suppose that ,
pick any sequence , and define

for . These elements are in, they converge
to and , respectively, and each
belongs to because is a cone. Moreover, a slightly stronger
property holds as well, for star-shaped, namely: if
are such that and if for some linear map

it holds that , then the sequences ,
can be picked such that for all ; this follows from
the construction, since . For
instance, might select those coordinates which belong in some
subset . This stronger property will be useful
later, when we look at boundary points.

The characterization will be in terms of a standard notion of
tangent cone, studied in nonsmooth analysis: Letbe a subset
of a Euclidean space, and pick any . The tangent cone
to at is the set consisting of all limits of the type

such that and , where

“ ” means that as and that for all

. Several properties of tangent cones are reviewed in the Ap-
pendix. The main result in this section is as follows.

Theorem 1: System (1) is monotone if and only if, for all

(2)

or, equivalently

(3)
Theorem 1 is valideven if the relation “ iff
” is definedwith respect to an arbitrary closed set , not

necesssarily a closed convex cone. Our proof will not use the
fact that is a closed convex cone. As a matter of fact, we may
generalize even more. Let us suppose that anarbitrary closed
subset has been given and we introduce the relation,
for

We then define monotonicity just as in Definition II.1. A partic-
ular case is , for a closed set (in particular, a convex
cone), with if and only if . Such an
abstract setup is useful in the following situation: suppose that
the state dynamics are not necessarily monotone, but that we

are interested in output-monotonicity: if and ,
then the outputs satisfy for
all . This last property is equivalent to the requirement that

, where is the set of all pairs of
states ( , ) such that in the output-value order;
note that is generally not of the form . In order to provide
a characterization for general, we introduce the system with
state–space and input-value set whose dynamics

(4)

are given, in block form using and
, as: ,

(two copies of the same system, driven by the different’s). We
will prove the following characterization, from which Theorem
1 will follow as a corollary.

Theorem 2: System (1) is monotone if and only if, for all

(5)

Returning to the case of orders induced by convex cones,
we remark that the conditions given in Theorem 1 may be
equivalently expressed in terms of a generalization, to systems
with inputs, of the property calledquasi-monotonicity(see, for
instance, [17], [20], [23]–[25], [32], [33], and the references
therein): (1) is monotone if and only if

and

(6)

(it is enough to check this property for ), where
is the set of all so that for all .

The equivalence follows from the elementary fact from convex
analysis that, for any closed convex coneand any element

, coincides with the set of such that:
and . An alternative proof of Theorem
1 for the case of closed convex conesshould be possible by
proving (6) first, adapting the proofs and discussion in [23].

Condition (6) can be replaced by the conjunction of: for all
and all , , and for all ,

, and , (a
similar separation is possible in Theorem 1).

The proofs of Theorems 1 and 2 are given later. First, we dis-
cuss the applicability of this test, and we develop several tech-
nical results.

We start by looking at a special case, namely and
(with ). Such systems are calledcoopera-

tive systems.
The boundary points of are those points for which some

coordinate is zero, so “ ” means that
and for at least one . On the other
hand, if and for and for

, the tangent cone consists of all
those vectors such that for
and is arbitrary in otherwise. Therefore, (3) translates into
the following statement:

and and

(7)
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holding for all , all , and all
(where denotes theth component of ). In particular, for
systems with no inputs one recovers the well-known
characterization for cooperativity (cf. [27]): “ and

implies ” must hold for all
and all .

When is strictly star-shaped, and in particular if
is convex, cf. Remark III.1, one could equally well require
condition (7) to hold for all . Indeed, pick any

, and suppose that for and for
. Pick sequences and so

that, for all , , and for
(this can be done by choosing an appropriate projectionin
Remark III.1). Since the property holds for elements in, we
have that for all and all

. By continuity. taking limits as , we also have
then that . On the other hand, if also
satisfies an approximability property, then by continuity one
proves similarly that it is enough to check the condition (7) for

, belonging to the interior . In summary, we
can say that if and are both convex, then it is equivalent to
check condition (7) for elements in the sets or in their respective
interiors.

One can also rephrase the inequalities in terms of the partial
derivatives of the components of. Let us call a subset of
an ordered Banach spaceorder-convex(“ -convex” in [27]) if,
for every and in with and every , the
element is in . For instance, any convex set
is order-convex, for all possible orders. We have the following
easy fact, which generalizes [27, Rem. 4.1.1].

Proposition III.2: Suppose that , satisfies an
approximability property, and both and are order-
convex (for instance, these properties hold if bothand are
convex). Assume that is continuously differentiable. Then, (1)
is cooperative if and only if the following properties hold:

(8)

(9)

for all and all .
Proof: We will prove that these two conditions are equiv-

alent to condition (7) holding for all , all
, and all . Necessity does not require the order-con-

vexity assumption. Pick any , , and pair . We
take , , and , where
is the canonical basis vector having all coordinates equal
to zero and its th coordinate one, with near enough to
zero so that . Notice that, for all such ,
and (in fact, for all ). Therefore,
(7) gives that for all negative .
A similar argument shows that for all
positive . Thus, is increasing in a neighbor-
hood of , and this implies (8). A similar argument estab-
lishes (9).

For the converse, as in [27], we simply use the Fundamental
Theorem of Calculus to write as

and

as
for any , ,

and . Pick any , ,
and , and suppose that , , and

We need to show that .
Since the first integrand vanishes when , and also

and for , it follows that
. Similarly, the second integral formula

gives us that , completing the proof.
For systems without inputs, (8) is the well-known characteri-

zation “ for all ” of cooperativity. Interest-
ingly, the authors of [22] use this property, for systems as in (1)
but where inputs are seen as constant parameters, as a defini-
tion of (parameterized) cooperative systems, but monotonicity
with respect to time-varying inputs is not exploited there. The
terminology “cooperative” is motivated by this property: the dif-
ferent variables have a positive influence on each other.

More general orthants can be treated by the trick used in
[27, Sec. 3.5]. Any orthant in has the form , the set
of all so that for each ,
for some binary vector . Note
that , where is the linear
mapping given by the matrix .
Similarly, if the cone defining the order for is an
orthant , we can view it as , for a similar map

. Monotonicity of
under these orders is equivalent to monotonicity of ,
where , under the already studied
orders given by and . This is because the change of
variables , transforms solutions
of one system into the other (andvice versa), and both and

preserve the respective orders ( is equivalent to
for all , and similarly for input

values). Thus, we conclude the following.
Corollary III.3: Under the assumptions in Proposition III.2,

and for the orders induced from orthants and , the
system (1) is monotone if and only if the following properties
hold for all :

(10)

(11)

for all and all .
Graphical characterizations of monotonicity with respect to

orthants are possible; see [3] for a discussion. The conditions
amount to asking that there should not be any negative (nonori-
ented) loops in the incidence graph of the system.

Let us clarify the above definitions and notations with an
example. We consider the partial-orderobtained by letting

. Using the previous notations, we can write
this as , where . We will consider the
input space , with the standard ordering in (i.e.,

or with ). Observe that the
boundary points of the cone are those points of the forms

or , for some , and the tangent
cones are respectively and ,
see Fig. 1. Under the assumptions of Corollary III.3, a system
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Fig. 1. Example of cone and tangents.

is monotone with respect to these orders if and only if the fol-
lowing four inequalities hold everywhere:

A special class of systems of this type is afforded by systems as
follows:

(12)

where the functions have strictly positive derivatives and sat-
isfy . The system is regarded as evolving on the tri-
angle ,
which is easily seen to be invariant for the dynamics. Such sys-
tems arise after restricting to the affine subspace

and eliminating the variable in the set of three equa-
tions ,

, , and they model an
important component of cellular processes; see, e.g., [12], [16],
and the discussion in Section VII. (The entire system, before
eliminating , can also be shown directly to be monotone, by
means of the change of coordinates , ,

. As such, it, and analogous higher dimen-
sional signaling systems, are “cooperative tridiagonal systems”
for which a rich theory of stability exists; this approach will be
discussed in future work.) The following fact is immediate from
the previous discussion:

Lemma III.4: System (12) is monotone with respect to the
given orders.

Remark III.5: One may also definecompetitive systemsas
those for which and imply

for . Reversing time, one obtains the char-
acterization: “ and

” or, for the special case of the positive or-
thant, for all and all
together with for all and all
for all and all .

We now return to the proof of Theorem 1.
Lemma III.6: The set is forward invariant for (1), i.e., for

each and each , for all .
Proof: Pick any , , and . Viewing

(1) as a system defined on an open set of stateswhich con-
tains , we consider the mapping given by

(with the same and ). The image of must con-
tain a neighborhood of ; see, e.g., [28, Lemma
4.3.8]. Thus, , which means that , as desired.

Remark III.7: The converse of Lemma III.6 is also true,
namely, if is a system defined on some neigh-
borhood of and if is forward invariant
under solutions of this system, then is itself invariant.
To see this, pick any and a sequence of
elements of . For any , , and , , so

.
We introduce the closed set consisting of all

such that . We denote by the set of all
possible inputs to the composite system (4) i.e., the set of all
Lebesgue-measurable locally essentially bounded functions

. Since by Lemma III.6 the interior of is
forward invariant for (1), it holds that belongs to

whenever and .
Observe that the definition of monotonicity amounts to the

requirement that:for each , and each , the solu-
tion of (4) with initial condition belongs
to for all [forward invariance of with respect to (4)].
Also, the set is closed relative to . The
following elementary remark will be very useful.

Lemma III.8: System (1) is monotone if and only if the set
is forward invariant for the system (4) restricted to .

Proof: We must show that monotonicity is the same as:
“ and for all
.” Necessity is clear, since if the system is monotone then

holds for all and all , and we
already remarked that whenever .
Conversely, pick any . The approximability hypothesis
provides a sequence such that as .
Fix any and any . Then,
for all , so taking limits and using continuity of on initial
conditions gives that , as required.

Lemma III.9: For any and any
, the following three properties are equivalent:

(13)

(14)

(15)

Proof: Suppose that (13) holds, so there are sequences
and such that and

(16)

as . Since is open, the solution of
with input and initial condition

takes values in for all sufficiently small . Thus, restricting to
a subsequence, we may without loss of generality assume that

is in for all . Note that, by definition of solution,
a) as , and subtracting (16)
from this we obtain that b) as

, with . Since and as
, the sequence converges to . Using once again that
is open, we may assume without loss of generality that
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for all . Moreover, , i.e., for
all , which means that is in for all , and, from the previous
considerations, c) as

, so that (14) is verified. Since , also (15) holds.
Conversely, suppose that (15) holds. Then, there are se-

quences and with such
that c) holds. Since , we may assume without loss
of generality that for all , so that we also have (14).
Coordinate-wise, we have both a) and b), which subtracted and
defining give (16); this establishes (13).

A. Proofs of Theorems 1 and 2

Suppose that the system (1) is monotone, and fix any input-
value pair . Lemma III.8 says that the set

is forward invariant for the system (4) restricted to .
This implies, in particular, that every solution of the differential
equation with remains in for
all (where we think of as a constant input). We may
view this differential equation as a (single-valued) differential
inclusion on , where , for
which the set is strongly invariant. Thus, Theorem 4 in the
Appendix implies that for all . In other
words, (14), or equivalently (15) holds, at all , for the
given . Since was an arbitrary element of , (5)
follows. By Lemma III.9, for
all and this . So, (2) also follows.

Conversely, suppose that (2) holds or (5) holds. By Lemma
III.9, we know that (14) holds for all and all

. To show monotonicity of (1), we need to prove
that is invariant for the system (4) when restricted to .
So, pick any , any , and any ; we
must prove that . The input function
being locally bounded means that there is some compact subset

such that belongs to the compact subset
of , for (almost) all . We in-

troduce the following compact-valued, locally bounded, and lo-
cally Lipschitz set-valued function:

on . We already remarked that (13) holds, i.e.,
, for all , so it is

true in particular that . Thus, Theorem 4 in the
Appendix implies that is strongly invariant with respect to

. Thus, since restricted to satis-
fies , we conclude that , as required.

Finally, we show that (2) and (3) are equivalent. Since (3) is
a particular case of (2), we only need to verify that

when . This is a conse-
quence of the general fact that whenever is in the
interior of a set .

IV. CASCADES OFMONOTONESYSTEMS

Cascade structures with triangular form

...
...

(17)

are of special interest. A simple sufficient condition for mono-
tonicity of systems (17) is as follows.

Proposition IV.1: Assume that there exist positivity cones
(of suitable dimensions) so that each

of the -subsystems in (17) is a controlled monotone dy-
namical system with respect to the -induced partial order
(as far as states are concerned) and with respect to the

-induced partial orders as far as inputs are
concerned. Then, the overall cascaded interconnection (17) is
monotone with respect to the order induced by the positivity
cone on states and on inputs.

Proof: We first prove the result for the case :
, . Let and be the partial

orders induced by the cones , and on inputs. Pick
any two inputs . By hypothesis we have, for each
two states and , that
implies for all as well as,
for all functions and that and implies

for all . Combining
these, and defining and letting denote the
corresponding partial order, we conclude that implies

for all . The proof for arbitrary
follows by induction.

V. STATIC INPUT–STATE AND INPUT–OUTPUT

CHARACTERISTICS

A notion of “Cauchy gain” was introduced in [29] to quantify
amplification of signals in a manner useful for biological appli-
cations. For monotone dynamical systems satisfying an addi-
tional property, it is possible to obtain tight estimates of Cauchy
gains. This is achieved by showing that the output values
corresponding to an input are always “sandwiched” in be-
tween the outputs corresponding to two constant inputs which
bound the range of . This additional property motivated our
looking at monotone systems to start with; we now start discus-
sion of that topic.

Definition V.1: We say that a controlled dynamical system
(1) is endowed with thestatic input–state characteristic

if for each constant input there exists a (necessarily
unique) globally asymptotically stable equilibrium .
For systems with an output map , we also define
the static input–output characteristicas ,
provided that an input–state characteristic exists and thatis
continuous.

The paper [22] (see also [21] for linear systems) provides
very useful results which can be used to show the existence of
input–state characteristics, for cooperative systems with scalar
inputs and whose state space is the positive orthant, and in
particular to the study of the question of when is strictly
positive.

Remark V.2:Observe that, if the system (1) is monotone and
it admits a static input–state characteristic, then must be
nondecreasing with respect to the orders in question:
in implies . Indeed, given any initial state,
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monotonicity says that for all , where
and . Taking limits as gives the

desired conclusion.
Remark V.3: (Continuity of ) Suppose that for a system (1)

there is a map with the property that is the
unique steady state of the system (constant input

). When is a globally asymptotically stable state for
, as is the case for input–state characteristics, it fol-

lows that the function must be continuous, see Proposition
V.5. However, continuity is always true provided only that
be locally bounded, i.e., that is a bounded set whenever

is compact. This is because has a closed graph, since
means that , and any locally bounded

map with a closed graph (in finite-dimensional spaces) must be
continuous. (Proof: suppose that , and consider the se-
quence ; by local boundedness, it is only necessary
to prove that every limit point of this sequence equals .
So, suppose that ; then , so by the
closedness of the graph of we know that belongs to
its graph and, thus, , as desired). Therefore, local bound-
edness and, hence, continuity of, would follow if one knows
that is monotone, so that is always bounded, even
if the stability condition does not hold, at least if the order is
“reasonable” enough, as in the next definition. Note thatis
continuous whenever is, since the output maphas been as-
sumed to be continuous.

Under weak assumptions, existence of a static Input/State
characteristic implies that the system behaves well with respect
to arbitrary bounded inputs as well as inputs that converge
to some limit. For convenience in stating results along those
lines, we introduce the following terminology: the order on
is boundedif the following two properties hold. 1) For each
bounded subset , there exist two elements
such that . 2) For each

, the set is bounded. Boundedness is a very mild
assumption. In general, Property 1 holds if (and only if)
has a nonempty interior, and Property 2 is a consequence of

. (The proof is an easy exercise in convex
analysis).

Proposition V.4: Consider a monotone system (1) which is
endowed with a static input–state characteristic, and suppose
that the order on the state spaceis bounded. Pick any input

all whose values lie in some interval . (For
example, could be any bounded input, if is an orthant in

, or more generally if the order in is bounded). Let
be any trajectory of the system corresponding to this

control. Then, is a bounded subset of .
Proof: Let , so as

and, in particular, is bounded; so (bounded order), there
is some such that for all . By mono-
tonicity, for all

. A similar argument using the lower boundon shows
that there is some such that for all . Thus

for all , which implies, again appealing to the
bounded order hypothesis, that is bounded.

Certain standard facts concerning the robustness of stability
will be useful. We collect the necessary results in the next state-
ments, for easy reference.

Proposition V.5: If (1) is a monotone system which is en-
dowed with a static input–state characteristic, then is a
continuous map. Moreover for each , , the fol-
lowing properties hold.

1) For each neighborhood of in there exist a neigh-
borhood of in , and a neighborhood of in ,
such that for all , all , and all
inputs such that for all .

2) If, in addition, the order on the state spaceis bounded,
then, for each input all whose values lie in some in-
terval and with the property that , and
all initial states , necessarily
as .

Proof: Consider any trajectory as in
Property 2. By Proposition V.4, we know that there is some
compact such that for all . Since
is closed, we may assume that . We are therefore in the
following situation: the autonomous system admits

as a globally asymptotically stable equilibrium (with respect
to the state–space) and the trajectory remains in a com-
pact subset of the domain of attraction (of seen as
a system on an open subset ofwhich contains ). The “con-
verging input converging state” property then holds for this tra-
jectory (see [30, Th. 1] for details). Property 1 is a consequence
of the same results. (As observed to the authors by G. Enciso,
the CICS property can be also verified as a consequence of “nor-
mality” of the order in the state–space). The continuity ofis
a consequence of Property 1. As discussed in Remark V.3, we
only need to show that is locally bounded, for which it is
enough to show that for eachthere is some neighborhood
of and some compact subsetof such that for
all . Pick any , and any compact neighborhoodof

. By Property 1, there exist a neighborhoodof in
, and a neighborhood of in , such that

for all whenever and with . In
particular, this implies that ,
as required.

Corollary V.6: Suppose that the system with
output is monotone and has static input–state and
input–output characteristics , , and that the system

(with input value space equal to the output value space
of the first system and the orders induced by the same positivity
cone holding in the two spaces) has a static input–state charac-
teristic , it is monotone, and the order on its state spaceis
bounded. Assume that the order on outputsis bounded. Then,
the cascade system

is a monotone system which admits the static input–state char-
acteristic .

Proof: Pick any . We must show that is a glob-
ally asymptotically stable equilibrium (attractive and Lyapunov-
stable) of the cascade. Pick any initial state of the com-
posite system, and let (input constantly equal
to ), , and . Notice that

and , so viewing as an
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input to the second system and using Property 2 in Proposition
V.5, we have that . This establishes at-
tractivity. To show stability, pick any neighborhoods and
of and respectively. By Property 1 in Proposition V.5, there
are neighborhoods and such that and
for all imply for all . Consider

, which is a neighborhood of, and pick
any neighborhood of with the property that
for all and all (stability of the equilibrium ).
Then, for all , (in par-
ticular, ) for all , so and,
hence, also for all .

In analogy to what is usually done for autonomous dynam-
ical systems, we define the-limit set of any function

, where is a topological space (we will apply
this to state-space solutions and to outputs) as

(in general, this set
may be empty). For inputs , we also introduce the sets

(respectively, ) consisting of all such that
there are and with
so that (respectively, ) for all .
These notations are motivated by the following special case:
Suppose that we consider a single-input–single-output (SISO)
system, by which we mean a system for which and

, taken with the usual orders. Given any scalar bounded
input , we denote and

. Then, and ,
as follows by definition of lim inf and lim sup. Similarly, both

and belong to , for
any output .

Proposition V.7: Consider a monotone system (1), with static
input–state and input–output characteristicsand . Then,
for each initial condition and each input , the solution

and the corresponding output satisfy

Proof: Pick any , , and the corresponding and ,
and any element . Let , , with all

, and for all . By monotonicity of the
system, for , we have

(18)

In particular, if for some sequence , it
follows that .
Next, taking limits as , and using continuity of , this
proves that . This property holds for every elements

and , so we have shown that
. The remaining inequalities are all proved in an entirely

analogous fashion.
Proposition V.8: Consider a monotone SISO system (1),

with static input–state and input–output characteristics
and . Then, the input–state and input–output characteris-

Fig. 2. Systems in feedback.

tics are nondecreasing, and for each initial conditionand each
bounded input , the following holds:

If, instead, outputs are ordered by, then the input–output static
characteristic is nonincreasing, and for each initial condition
and each bounded input , the following inequality holds:

Proof: The proof of the first statement is imme-
diate from Proposition V.7 and the properties:

, , , and
, and the second statement is proved

in a similar fashion.
Remark V.9: It is an immediate consequence of Proposition

V.8 that, if a monotone system admits a static input–output char-
acteristic , and if there is a class- function such that

for all , (for instance, if is
Lipschitz with constant one may pick as the linear function

) then the system has a Cauchy gain (in the sense of
[29]) on bounded inputs.

VI. FEEDBACK INTERCONNECTIONS

In this section, we study the stability of SISO monotone
dynamical systems connected in feedback as in Fig. 2. Observe
that such interconnections need not be monotone. Based on
Proposition V.8, one of our main results will be the formulation
of a small-gain theorem for the feedback interconnection of a
system with monotonically increasing input–output static gain
(positive path) and a system with monotonically decreasing
input–output gain (negative path).

Theorem 3: Consider the following interconnection of two
SISO dynamical systems:

(19)

with and . Suppose that

1) the first system is monotone when its inputas well as
output are ordered according to the “standard order”
induced by the positive real semi-axis;

2) the second system is monotone when its inputis ordered
according to the standard order induced by the positive
real semi-axis and its output is ordered by the opposite
order, viz. the one induced by the negative real semi-axis;
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Fig. 3. Input–output characteristics in (w, y) plane: negative feedback.

3) the respective static input–state characteristics and
exist (thus, the static input–output characteristics
and exist too and are respectively monotoni-

cally increasing and monotonically decreasing);
4) every solution of the closed-loop system is bounded.

Then, (19) has a globally attractive equilibrium provided that
the following scalar discrete time dynamical system, evolving
in :

(20)

has a unique globally attractive equilibrium.
For a graphical interpretation of (20), see Fig. 3.

Proof: Equilibria of (19) are in one to one correspondence
with solutions of , viz. equilibria of (20). Thus,
existence and uniqueness of the equilibrium follows from the
GAS assumption on (20).

We need to show that such an equilibrium is globally
attractive. Let be an arbitrary initial con-
dition and let and

. Then, and
satisfy by virtue of the second part

of Proposition V.8, applied to the-subsystem

(21)

An analogous argument, applied to the-subsystem, yields:
and by combining this with

the inequalities for and we end up with

By induction we have, after an even numberof iterations of
the previous argument:

By letting and exploiting global attractivity of (20)
we have . Equation (21) yields . Thus, there
exists , such that

(22)

Let be the (globally asymptotically stable) equilibrium (for
the -subsystem) corresponding to the constant input
and the equilibrium for the -subsystem relative to the input

. Clearly, is the unique equilibrium

of (19). The fact that now follows from
Proposition V.5.

Remark VI.1: We remark that traditional small-gain the-
orems also provide sufficient conditions for global existence
and boundedness of solutions. In this respect, it is of interest to
notice that, for monotone systems, boundedness of trajectories
follows at once provided that at least one of the interconnected
systems has a uniformly bounded output map (this is always
the case for instance if the state space of the corresponding
system is compact). However, when both output maps are
unbounded, boundedness of trajectories needs to be proved
with different techniques. The following proposition addresses
this issue and provides additional conditions which together
with the small-gain condition allow to conclude boundedness
of trajectories.

We say that the input–state characteristic is unbounded
(relative to ) if for all there exist , so that

.
Lemma VI.2: Suppose that the system (1) is endowed with

an unbounded input–state static characteristic and that inputs
are scalar ( with the usual order). Then, for any
there exists so that for any input

(23)

An analogous property holds with replaced by and sup’s
replaced by inf’s.

Proof: Let be arbitrary. As is unbounded there
exists such that . Pick any input and any
, and let . There are two possibilities:
or . By monotonicity with respect to initial conditions

and inputs, the first case yields

(24)

So, we assume from now on that . We introduce the input
defined as follows: for all , and

for . Notice that , and also that
, because the state is by definition an equilibrium of

and on the interval . We conclude
that

(25)

and (23) follows combining (24) and (25). The statement for
is proved in the same manner.

Proposition IV.3: Consider the feedback interconnection of
two SISO monotone dynamical systems as in (19), and assume
that the orders in both state-spaces are bounded. Assume that the
systems are endowed withunboundedinput–state static char-
acteristics and respectively. If the small gain condi-
tion of Theorem 3 is satisfied then solutions exist for all positive
times, and are bounded.

Clearly, the previous result allows to apply Theorem 3 also to
classes of monotone systems for which boundedness of trajec-
tories is nota priori known.

Proof: We show first that solutions are upper bounded.
A symmetric argument can be used for determining a lower
bound. Let , be arbitrary initial conditions for the and
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subsystems. Correspondingly solutions are maximally defined
over some interval . Let be arbitrary in . By Lemma
VI.2, (23) holds, for each of the systems. Moreover, composing
(23) (and its counterpart for lower-bounds) with the output map
yields, for suitable constants, , , which only depend upon
,

(26)

(27)

(28)

(29)

Substituting (27) into (26) gives

(30)

and substitution of (28) into (30) yields (using that is a
nonincreasing function)

(31)

Finally, substituting (29) into (31) yields

(32)

where we are denoting and

Let be the output value of the-subsystem, corresponding to
the unique equilibrium of the feedback interconnection (19).

Notice that attractivity of (20) implies attractivity of
anda fortriori of

(33)

We claim that . By attractivity, there
exists some such that (other-
wise, all trajectories of (33) starting from would be
monotonically increasing, which is absurd). Now, assume by
contradiction that there exists also some such that

. Then, as is a continuous function, there
would exist an (or in ( , ) if ) such that

. This clearly violates attractivity (at ) of (33),
since is an equilibrium point. So, the claim is proved.

Let , so for some
. Therefore, (32) at says that

, and the previous claim applied at gives
that (by considering separately the cases

and ). As , we conclude
that . This shows that is upper bounded
by a function which depends only on the initial states of the
closed-loop system. Analogous arguments can be used in order

to show that is lower bounded, and by symmetry the same ap-
plies to . Thus, over the interval the and subsystems
are fed by bounded inputs and by monotonicity (together with
the existence of input–state static characteristics) this implies,
by Proposition V.4, that and that trajectories are uni-
formly bounded.

VII. A PPLICATION

A large variety of eukaryotic cell signal transduction pro-
cesses employ “Mitogen-activated protein kinase (MAPK) cas-
cades,” which play a role in some of the most fundamental pro-
cesses of life (cell proliferation and growth, responses to hor-
mones, etc). A MAPK cascade is a cascade connection of three
SISO systems, each of which is (after restricting to stoichiomet-
rically conserved subsets) either a one- or a two-dimensional
system; see [12] and [16]. We will show here that the two-di-
mensional case gives rise to monotone systems which admit
static I/O characteristics. (The same holds for the much easier
one-dimensional case, as follows from the results in [29].)

After nondimensionalization, the basic system to be studied
is a system as in (12), where the functionsare of the type

, for various positive constants and .
It follows from Proposition III.4 that our systems (with output)
are monotone and, therefore,every MAPK cascade is monotone.

We claim, further, that each such system has a static
input–output characteristic. (The proof that we give is based on
a result that is specific to two-dimensional systems; an alterna-
tive argument, based upon a triangular change of variables as
mentioned earlier, would also apply to more arbitrary signaling
cascades, cf. [3].) It will follow, by basic properties of cascades
of stable systems, that the cascades have the same property.
Thus, the complete theory developed in this paper, including
small gain theorems, can be applied to MAPK cascades.

Proposition VII.1: For any system of the type (12), and each
constant input , there exists a unique globally asymptotically
stable equilibrium inside .

Proof: As the set is positively invariant, the Brower
Fixed-Point Theorem ensures existence of an equilibrium. We
next consider the Jacobian of . It turns out that for all

and all

The functions are only defined on intervals of the form
( , ). However, we may assume without loss of gen-
erality that they are each defined on all of, and moreover that
their derivatives are positive on all of. Indeed, let us pick any
continuously differentiable functions ,
with the properties that for all , for
all , and the image of is contained in ( , ).
Then, we replace each by the composition .

Note that the functions have an everywhere posi-
tive derivative, so and are everywhere negative
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Fig. 4. Direction field for example.

and positive, respectively, in . So is Hurwitz everywhere.
The Markus–Yamabe conjecture on global asymptotic stability
(1960) was that if a map has a zero at a point
, and its Jacobian is everywhere a Hurwitz matrix, thenis a

globally asymptotically stable point for the system .
This conjecture is known to be false in general, but true in di-
mension two, in which case it was proved simultaneously by
Fessler, Gutierres, and Glutsyuk in 1993; see, e.g., [11]. Thus,
our (modified) system has its equilibrium as a globally asymp-
totically stable attractor in . As inside the triangle , the orig-
inal ’s coincide with the modified ones, this proves global sta-
bility of the original system (and, necessarily, uniqueness of the
equilibrium as well).

As an example, Fig. 4 shows the phase plane of the system
(the diagonal line indicates the boundary of the triangular region
of interest), when coefficients have been chosen so that the equa-
tions are:
and .

As a concrete illustration, let us consider the open-loop
system with these equations

This is the model studied in [16], from which we also borrow the
values of constants (with a couple of exceptions, see as follows):

, , , , , ,
, , , , ,

, , , , ,
, , , , , and

. Units are as follows: concentrations and Michaelis constants
( ’s) are expressed in nM, catalytic rate constants (’s) in ,
and maximal enzyme rates (’s) in . Reference [16]
showed that oscillations may arise in this system for appropriate
values of negative feedback gains. (We have slightly changed
the input term, using coefficients , , , because we wish to
emphasize the open-loop system before considering the effect
of negative feedback.)

Fig. 5. Input–output characteristic and small-gain for MAPK example.

Fig. 6. Simulation of MAPK system under negative feedback satisfying small-
gain conditions. Key:x dots,y dashes,y dash-dot,z circles,z solid.

Since the system is a cascade of elementary MAPK subsys-
tems, we know that our small-gain result may be applied. Fig. 5
shows the input–output characteristic of this system, as well as
the characteristic corresponding to a feedback ,
with the gain . It is evident from this planar plot
that the small-gain condition is satisfied—a “spiderweb” dia-
gram shows convergence. Our theorem then guarantees global
attraction to a unique equilibrium. Indeed, Fig. 6 shows a typ-
ical state trajectory.

VIII. R ELATIONS TO POSITIVITY

In this section, we investigate the relationship between the
notions of cooperative and positive systems. Positive linear sys-
tems (in continuous as well as discrete time) have attracted much
attention in the control literature; see, for instance, [7], [10],
[19], [21], [22], and [31]. We will say that a finite-dimensional
linear system, possibly time-varying

(34)

(where the entries of the matrix and the matrix
are Lebesgue measurable locally essentially bounded functions
of time) is positiveif the positive orthant is forward invariant
for positive input signals; in other words, for any and
any ( denotes here the partial orders induced by the
positive orthants), and any it holds that
for all .
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Let say that (34) is aMetzler systemif is a Metzler ma-
trix, i.e., for all , and for all , , for
almost all . It is well known for time-invariant systems (
and constant), see for instance [19, Ch. 6], or [7] for a recent
reference, that a system is positive if and only if it is a Metzler
system. This also holds for the general case, and we provide the
proof here for completeness. For simplicity in the proof, and be-
cause we only need this case, we make a continuity assumption
in one of the implications.

Lemma VIII.1: If (34) is a Metzler system then it is positive.
Conversely, if (34) is positive and and are continuous,
then (34) is a Metzler system.

Proof: Let us prove sufficiency first. Consider first any
trajectory with , any fixed , and any
input so that for all . We need to prove
that . Since is essentially bounded (over any
bounded time-interval) and Metzler, there is an such
that for almost all , where “ ” is
meant elementwise. Consider and

, and note that
and for all . We claim that for all

. Let be the infimum of the set of’s such that
and assume, by contradiction, . By continuity

of trajectories, . Moreover,
, and there-

fore there exists an interval such that for all
. But this is a contradiction, unless as

claimed. By continuous dependence with respect to initial con-
ditions, and closedness of the positive orthant, the result carries
over to any initial condition . For the converse im-
plication, denote with the fundamental solution associ-
ated to ( , ). Using we
know that whenever (“ ” is meant here el-
ementwise). Therefore, also for all .
Since
for all , it follows that for all . Consider
a solution with , constant , for . Since

, also and, therefore, taking limits
as , (the derivative exists by the continuity as-
sumption). However, , and ,
so for all such , i.e. .

Thus, by virtue of Theorem III.2, a time-invariant linear
system is cooperative if and only if it is positive. The next result
is a system-theoretic analog of the fact that a differentiable
scalar real function is monotonically increasing if and only if
its derivative is always nonnegative.

We say that (1) isincrementally positive(or “variationally
positive”) if, for every solution of (1), the
linearized system

(35)

where we define and
, is a positive system.

Proposition VIII.2: Suppose that , satisfies an
approximability property, and that both and are
order-convex. Let be continuously differentiable. Then,
(1) is cooperative if and only if it is incrementally positive.

Proof: Under the given hypotheses, a system is coopera-
tive iff is a Metzler matrix, and every entry of

is nonnegative, for all and all ,
cf. Proposition III.2. Therefore, by the criterion for positivity of
linear time-varying systems, this implies that (35) is a positive
linear time-varying system along any trajectory of (1).

Conversely, pick an arbitrary in and any input of the
form . Suppose that (35) is a positive linear
time-varying system along the trajectory (this
system has continuous matricesand because is con-
stant). Then, by the positivity criterion of linear time-varying
systems, for all we have is Metzler and

. Finally, evaluating the Jacobian at
yields that is Metzler and is non-
negative. Since and were arbitrary, we have the condition
for cooperativity given in Proposition III.2.

Remark VIII.3: Looking at cooperativity as a notion of “in-
cremental positivity” one can provide an alternative proof of the
infinitesimal condition for cooperativity, based on the positivity
of the variational equation. Indeed, assume that each system (35)
is a positive linear time-varying system, along trajectories of
(1). Pick arbitrary initial conditions and inputs

. Let .
We have (see, e.g., [28, Th. 1]) that

,
where denotes the solution of (35) when and

are evaluated along
. Therefore, by positivity, and monotonicity of the

integral, we have , as claimed.
We remark that monotonicity with respect to other orthants

corresponds to generalized positivity properties for lineariza-
tions, as should be clear by Corollary III.3.

APPENDIX A
LEMMA ON INVARIANCE

We present here a characterization of invariance of relatively
closed sets, under differential inclusions. The result is a simple
adaptation of a well-known condition, and is expressed in terms
of appropriate tangent cones. We letbe an open subset of
some Euclidean space and consider set-valued mappings
defined on : these are mappings which assign some subset

to each . Associated to such mappings
aredifferential inclusions

(36)

and one says that a function is asolutionof (36)
if is an absolutely continuous function with the property that

for almost all . A set-valued mapping
is compact-valuedif is a compact set, for each ,

and it is locally Lipschitzif the following property holds: for
each compact subset there is some constantsuch that

for all , , where denotes
the unit ball in . (We use to denote Euclidean norm in

). Note that when is single-valued, this is
the usual definition of a locally Lipschitz function. More gener-
ally, suppose that is locally Lipschitz in , locally
uniformly on , and pick any compact subset of the input
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set ; then is locally Lipschitz
and compact-valued. We say that the set-valued mappingde-
fined on is locally boundedif for each compact subset
there is some constantsuch that for all .
When has the form as before, it is locally bounded, since

, and, being continuous, the latter set is
compact.

Let be a (nonempty) closed subset relative to, that is,
for some closed subsetof . We wish to characterize

the property that solutions which start in the setmust remain
there. Recall that the subsetis said to bestrongly invariant
under the differential inclusion (36) if the following property
holds: for every solution which has the property
that , it must be the case that for all .

Note that a vector belongs to (the “Bouligand” or “con-
tingent” tangent cone) if and only if there is a sequence of el-
ements , and a sequence such that

for all . Further, when is in the
interior of relative to (so only boundary points are of in-
terest).

Theorem 4: Suppose that is a locally Lipschitz, compact-
valued, and locally bounded set-valued mapping on the open
subset , and is a closed subset of. Then, the fol-
lowing two properties are equivalent:

1) is strongly invariant under ;
2) for every .
Just for purposes of the proof, let us say that a set-valued map-

ping is “nice” if is defined on all of and it satisfies the
following properties: is locally Lipschitz, compact-valued,
convex-valued, and globally bounded ( for all

, for some ). [4, Th. 4.3.8] establishes that Properties 1 and
2 in the statement of Theorem 4 are equivalent, and are also
equivalent to

for every (37)

(“co” indicates closed convex hull) provided thatis a closed
subset of and is nice (a weaker linear growth condition
can be replaced for global boundedness, c.f. the “standing hy-
potheses” in [4, Sec. 4.1.2]). We will reduce to this case using
the following observation.

Lemma A.4:Suppose that is a locally Lipschitz, compact-
valued, and locally bounded set-valued mapping on the open
subset , and is a closed subset of. Let be any
given compact subset of. Then, there exist a nice set-valued
and a closed subset of such that the following properties
hold:

(38)

(39)

(40)

(41)

and strongly invariant under implies strongly invariant
under .

Proof: Consider the convexification of ; this is the
set-valued function on which is obtained by taking the convex

Fig. 7. Shaded area is setS .

hull of the sets , i.e., for each . It
is an easy exercise to verify that if is compact-valued, locally
Lipschitz, and locally bounded, thenalso has these properties.

Clearly, if is strongly invariant under then it is also
strongly invariant under , because every solution of
must also be a solution of . Conversely, suppose
that is strongly invariant under , and consider any solu-
tion : of which has the property that

. The Filippov-Wažewski Relaxation Theorem pro-
vides a sequence of solutions, , of
on the interval [0, ], with the property that uni-
formly on and also for all . Since

is strongly invariant under , it follows that for
all and , and taking the limit as this implies
that also for all . In summary, invariance under or

are equivalent, for closed sets.
Let be a compact subset ofwhich contains in its in-

terior and pick any smooth function: with
support equal to (that is, if and
on ) and such that on the set . Now con-
sider the new differential inclusion defined on all of given
by if and equal to {0} outside .
Since is locally Lipschitz and locally bounded, it follows by
a standard argument that has these same properties. More-
over, is globally bounded and it is also convex-valued and
compact-valued (see, e.g., [18]). Thus,is nice, as required.
Note that (38) holds, because and on .

Let (cf. Fig. 7); this is a closed subset of
because the compact sethas a strictly positive distance to the
complement of . Property (39) holds as well, because .
Now pick any . There are two cases to consider:is in
the boundary of or in the interior of . If , then

because . If instead belongs to the
interior of , there is some open subset such that .
Therefore any sequence with all has, without loss
of generality, , so also in ;
this proves that , and the reverse inclusion is true
because . Hence, (40) has been established. Regarding
(41), this follows from the discussion in the previous paragraph,
since is included in the interior of .

In order to prove the last property in the theorem, we start
by remarking that if : is a solution of

with the property that belongs to the interior of
for all (equivalently, for all ), then there is a
reparametrization of time such thatis a solution of .
In precise terms: there is an interval [0,], an absolutely con-
tinuous function : such that and
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, and a solution : of such
that for all . To see this, it is enough
(chain rule, remembering that ) for to solve
the initial value problem , , where

for and for .
The function is absolutely continuous, and is bounded
away from zero for all (because the solution lies in
a compact subset of the interior of the support of), so is
locally Lipschitz and a (unique) solution exists. Sinceis glob-
ally bounded, the solution has no finite escape times. In addi-
tion, since the vector field is everywhere positive,
as , so there is some such that .

Now, suppose that is invariant under . As remarked,
then is invariant under its convexification. Suppose that:

is a solution of such that
and is in the interior of for all . We find a solution
of such that for all and

as earlier. Invariance of under gives
that and, hence, , remains in . Since ,
we conclude that for all .

Next, we use some ideas from the proof of [4, Th. 4.3.8].
Pick any , and any . Define the mapping

: by the following rule: for each , is
the unique closest point toin . As in the above citation,
this map is continuous. We claim that, for each there is
some and a solution of such that and

for all . (Note that, in particular, this solves
.) If is on the boundary of , then im-

plies that and, hence, is such a solution.
If instead belongs to the interior of then the previous re-
marks shows that for all , where we pick a
smaller if needed in order to insure that remains in the
interior of . We conclude from the claim that the closed set

is locally-in-time invariant with respect to the differential in-
clusion , which satisfies the “standing hypotheses” in [4,
Ch. 4]. This inclusion is hence also “weakly invariant” as fol-
lows from Exercise 4.2.1 in that textbook. This in turn implies,
by Theorem 4.2.10 there, that for all and
all in the proximal normal set defined in that reference
(we are using a different notation). Applied in particular at the
point (so that ), we conclude that for all

. Since was an arbitrary element of , it fol-
lows that the upper Hamiltonian condition in part d) of [4, Th.
4.3.8] holds for the map at the point . Since was itself an
arbitrary point in , the condition holds on all of . Therefore,

is invariant for , as claimed.

A. Proof of Theorem 4

We first prove that 2 1. Suppose that for every
, and pick any solution : of with

.
Since is continuous, there is some compact subset
such that for all . We apply Lemma A.4

to obtain and . By (38), it holds that is also a solution
of , and Property (39) gives that belongs to the
subset . Taking convex hulls, for every .
Since is a scalar multiple of , and is a cone (because

is a cone), it follows that for every ,

and so also for . By (40), , since
either or (and hence their convex hulls
coincide).

In summary, (37) is valid for in place of and in place of
, and is nice. Thus we may apply [4, Th. 4.3.8] to conclude

that is strongly invariant under . Since , it follows
that for all and, therefore, also
for all , as wanted.

We now prove that 1 2. Suppose that is strongly invariant
under , and pick any . We apply Lemma A.4, with

, to obtain and . Note that , so
. Moreover, is strongly invariant under . Since

is closed and is nice, [4, Th. 4.3.8] gives that
for all , and in particular for . By (40), either

or , so we have that for
. Moreover, (38) gives that for .

Since was an arbitrary element of, the proof is complete.
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