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Abstract. This paper deals with an almost global convergence result for
Lotka-Volterra systems with predator-prey interactions. These systems can be
written as (negative) feedback systems. The subsystems of the feedback loop
are monotone control systems, possessing particular input-output properties.
We use a small-gain theorem, adapted to a context of systems with multi-
ple equilibrium points to obtain the desired almost global convergence result,
which provides sufficient conditions to rule out oscillatory or more complicated
behavior that is often observed in predator-prey systems.

1. Introduction. Since the early work Lotka and Volterra, predator-prey systems
have continued to attract significant attention [7, 17, 10]. It is well known that
these systems may exhibit oscillatory behavior; the best-known is the classic Lotka-
Volterra predator-prey system (see [7, 9]). This system is defined by(

ẋ
ż

)
= diag(x, z)

((
0 +a12

−a21 0

)(
x
z

)
+

(−r1

r2

))
,

where x and z denote the predator and prey concentrations respectively, and
a12, a21, r1 and r2 are positive constants. The phase portrait consists of an infinite
number of periodic solutions centered around an equilibrium point and this system
is not structurally stable. In fact, Hofbauer and Sigmund have demonstrated that
the more general (but not necessarily predator-prey type) Lotka-Volterra system:(

ẋ
ż

)
= diag(x, z)

((
a11 a12

a21 a22

)(
x
z

)
+

(
r1

r2

))
,

where there is no restriction on the signs of the parameters aij , rk, does not exhibit
nontrivial isolated periodic solutions. Hence, compelling evidence of oscillatory
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behavior in predator-prey systems is not provided by the classic Lotka-Volterra
predator-prey system or by any two-dimensional Lotka-Volterra system. But as we
will demonstrate, oscillations can be found in different predator-prey models.

One predator-prey system that is still low-dimensional but not of the Lotka-
Volterra type is Gause’s model [9], which allows isolated periodic solutions under
suitable conditions [10]:

ẋ = x(q(z)− d)
ż = zg(z)− xp(z), (1)

where g(z) is the growth rate of the prey in absence of the predator (often zg(z)
is logistic) and p(z) is the so-called predator functional response, a non-negative,
increasing function that is zero at zero (often of Michaelis-Menten type). If the
function q(z) is proportional to p(z) then the proportionality factor is called the
conversion rate. Finally, d > 0 is the death rate of predators.

Oscillatory behavior can also be found within the class of Lotka-Volterra predator-
prey systems, but the number of predator and prey species must be larger than two.
As an illustration, we will provide two examples with two predator species and one
prey species. A common property for these examples is that the predator species
are mutualistic; that is, the effect of one predator on another is not negative. This
might occur if the predator population is stage-structured, for example, if it consists
of immature and mature predator species.

Example 1
Consider the parameterized (parameter k > 0) Lotka-Volterra predator-prey

system with two predator species x1 and x2 and one prey species z:



ẋ1

ẋ2

ż


 = diag(x1, x2, z)






−1 1 1
1 −2 0
0 −k −3







x1

x2

z


 +



−1
1

k + 3





 . (2)

Suppose that x1 and x2 are interpreted as the immature and the mature predators.
Notice that only the mature predator kills its prey but does not consume it. The
immature predators on the other hand, do not kill but do consume the prey. This
means that the predator population consists of adults who hunt for food for their
young but do not eat the prey themselves. Obviously the mature predator must
find food elsewhere, and this is reflected in the x2.(+1) term in the ẋ2 equation in
System (2). For every k > 0, there is a nontrivial equilibrium point at (1, 1, 1), and a
simple application of the Routh-Hurwitz criterion reveals that this equilibrium point
is locally asymptotically stable if k ∈ (0, kc), where kc := 57. For k > kc, however,
the linearization at (1, 1, 1) possesses one stable (and hence real) eigenvalue and two
unstable eigenvalues. For k − kc > 0 small enough, the unstable eigenvalues must
be complex conjugate with nontrivial imaginary part. This suggests the occurrence
of a Hopf bifurcation at the critical value kc. In fact, we determined the occurrence
of a supercritical Hopf bifurcation and hence the existence of stable oscillatory
behavior for System (2) (see Fig. 1).

To establish this, we used the method outlined in [5], p. 153 and the soft-
ware Maple to perform some of the calculations,which involve a series of steps. A
simple translation to the equilibrium point (1, 1, 1)T is performed by setting z =
x−(1, 1, 1)T . In the new z-coordinates, the equations are ż = A(k)z+diag(z)A(k)z,
where A(k) is the interaction matrix corresponding to the Lotka-Volterra system
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Figure 1. Oscillations in Examples 1 and 2 (initial condition
(0.8, 1.1, 0.9), integration over [0, 200]).

(2). To obtain the desired result, we need to show that for the z-system two con-
ditions from the Hopf bifurcation theorem are satisfied when k passes through the
critical value kc = 57. The first transversality condition of the Hopf bifurcation
theorem (which expresses that the complex pair of eigenvalues of A(k) crosses the
imaginary axis at kc) is easily verified using the information from the Routh-Hurwitz
criterion and the relationship between eigenvalues of A(k) and the numbers from a
Routh-Hurwitz table. The second condition requires the calculation of a number a
associated to the z system at the critical value kc (see [5, equation (3.4.11)]). From
now on fix k at kc and denote A(kc) by A. A linear transformation z = TX is per-
formed to put A in block-diagonal form Ã, where the upper 2×2-block corresponds
to the imaginary eigenvalue pair {±√10i} and the lower 1×1-block corresponds to
the stable eigenvalue −6. This leads to Ẋ = ÃX + T−1 diag(TX)AX. The prob-
lem now is that an approximation of the center manifold for this system to at least
quadratic terms should be computed to verify the mentioned second condition. To
compute this approximation we used Maple. This approximation is in turn used to
calculate the number a, (see [5, equation (3.4.11)]). For this particular example, a
is negative, which allows us to conclude that a supercritical Hopf bifurcation occurs.

Example 2
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Consider the parameterized (parameter k > 0) Lotka-Volterra predator-prey
systems with two predators and one prey species:




ẋ1

ẋ2

ż


 = diag(x1, x2, z)






−1 7

2
1
2

0 −2 1
−k −k

2 − 3
2







x1

x2

z


 +




−3
1

3
2 (k + 1)





 . (3)

As in Example 1, (1, 1, 1) is always an equilibrium point, and a supercritical Hopf
bifurcation occurs at k = kc where kc = 105/2 = 52.5 - again illustrating (stable)
oscillatory behavior (see Fig. 1).

Equipped with convincing evidence for possible oscillations in three-dimensional
Lotka-Volterra predator-prey systems, it might be expected that this or even more
complicated behavior is possible in the typically higher-dimensional Lotka-Volterra
predator-prey system presented below, which will be the primary focus of attention
in this paper:

(
ẋ
ż

)
= diag(x, z)

((
A B
−C D

)(
x
z

)
+

(
r1

r2

))
, (4)

where x is k-dimensional and z is (n− k)-dimensional. Throughout this paper, we
make the following assumption:

H: For System (4), A and D are Metzler and stable and B, C ≥ 0,

where the inequalities on the matrices B and C should be interpreted entrywise.
Recall that a matrix is a Metzler matrix if its off-diagonal entries are non-negative.
A matrix is stable if it only has eigenvalues with negative real part. Examples 1
and 2 satisfy these properties.

Some remarks concerning system (4) are necessary.

Remark 1. System (4) is a Lotka-Volterra predator-prey system consisting of k
predator species x and (n− k) prey species z. The interaction within both subcom-
munities is mutualistic. For the predator subcommunity, this differs from the usual
assumption that the interaction between them is competitive.

Remark 2. There are no restrictions (nor will any restrictions be introduced later
in this paper) on the signs of the components of r1 and r2. These components are
the death or growth rates of the species that do not originate from the interaction
with the other species.

In this paper, we consider whether oscillations or more complicated behavior
of System (4) can be ruled out. In fact, we are mainly interested in the more
restrictive problem of finding conditions for the existence of an (almost) globally
asymptotically stable equilibrium point. In view of Examples 1 and 2, this is a
nontrivial problem.

In general, Lotka-Volterra systems may display complicated behavior, ranging
from oscillatory behavior, over heteroclinic cycles to chaos. See [9], especially for
its extensive source material. For results on competitive systems, we refer to [11, 3]
and for predator-prey systems to [17]. In the latter reference, however (and also
in other work on predator-prey systems), the usual assumption is that when in
isolation, the predator populations and the prey populations interact competitively.
This is different from our assumption that they interact in a mutualistic way.

We also point out that extensive literature [16, 12, 18, 19, 20] exists on the
subject of the related class of systems consisting of two competing subcommunities
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Figure 2. Feedback interconnection

of mutualists. If Lotka-Volterra interactions are assumed, these systems are given
by the following equations:

(
ẋ
ż

)
= diag(x, z)

((
A −P
−Q D

)(
x
z

)
+

(
r1

r2

))
, (5)

where A, D are Metzler and stable and P,Q ≥ 0. The mentioned references are
devoted to global stability properties of equilibria and to persistence. Remarkable
results have been obtained for this class. However, we emphasize that there is a
fundamental difference between System (5) and our System (4). Indeed, the flow of
System (5) is monotone [6, 13], while the flow of our model (4) does not possess this
property. Monotonicity is often useful in establishing convergence to and stability
of equilibria. The lack of a monotonicity for System (4) forces one to use different
tools to prove (almost) global stability of equilibria. We believe that the perspective
of control systems might be useful in achieving this. We elaborate briefly on this
claim in the next paragraph.

To System (4) one can associate two input/output (I/O) systems:

ż = diag(z)(Dz + r2 + Cu(t))
w = z, (6)

and

ẋ = diag(x)(Ax + r1 + Bv(t))
y = x, (7)

where u(t) is a (componentwise) nonpositive input signal and v(t) a (component-
wise) nonnegative input signal; w and y are output signals. These I/O systems are
monotone in accordance with [1] (we shall provide a precise definition of monotone
I/O systems in a later section).

Associated to both these I/O systems are what we termed I/O quasi character-
istics kw and ky (see Definition 2.2). Such a characteristic is a mapping between
the input and output space of an I/O system, that captures the ability to convert
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a constant input into a converging output, where the limit is (almost) indepen-
dent of initial conditions. The I/O quasi characteristic assigns to every input its
corresponding output limit.

Notice that System (4) can easily be identified as the negative feedback intercon-
nection of Systems (6) and (7) (see Fig. 2), by setting:

v = w

u = −y. (8)

The fact that System (4) is a feedback interconnection of two systems opens up the
toolbox from the theory of interconnected control systems to prove global stability.
One particular tool we will use is a so-called small-gain theorem. An informal
statement of our main result follows.

Theorem 1.1. If the discrete-time system

uk+1 = −(ky ◦ kw)(uk)

possesses a globally attracting fixed point, then the feedback System (6)-(8), or equiv-
alently System (4) possesses an (almost) globally attracting equilibrium point.

As an illustration of this result, we will provide sufficient conditions for the gain
k in Examples 1 and 2, guaranteeing that the condition of Theorem 1.1 is satisfied.

The development of a theory for monotone control systems has been initiated in
[1]. A particular small-gain theorem has been proved there, but it is not applicable
in our context. An appropriate extension is given in [2], however, and this allows us
to formulate sufficient conditions for the existence of an almost globally attracting
equilibrium point of System (4). Note that this is the strongest achievable conver-
gence property for a Lotka-Volterra system since these systems typically possess
multiple equilibrium points. (For instance, zero is always an equilibrium point; of
course it is usually an uninteresting one from a biological point of view.)

2. Preliminaries.

2.1. Monotone I/O systems and a small-gain theorem. The material in this
section occurs in a far more general setting in [1, 2]; however, for our purposes, we
restrict our analysis to a narrower framework, namely, I/O systems described by
differential equations. Consider the following I/O system:

ẋ = f(x, u)
y = h(x), (9)

where x ∈ Rn is the state, u ∈ U ⊂ Rm the input and y ∈ Y ⊂ Rp the output.
It is assumed that f and h are smooth (that is, continuously differentiable) and
that the input signals u(t) : R→ U are Lebesgue measurable functions and locally
essentially bounded (i.e. for every compact time interval [Tm, TM ], there is some
compact set C such that u(t) ∈ C for almost all t ∈ [Tm, TM ]). This implies that
solutions with initial states x0 ∈ Rn are defined for all inputs u(.) and will be
denoted by x(t, x0, u(.)), t ∈ I, where I is the maximal interval of existence for
this solution. (See [14] for a general theoretical framework for the analysis of I/O
systems.) From now on we will assume that a fixed set X ⊂ Rn is given, which
is the closure of its interior. The set X is assumed to be forward invariant, that
is, for all inputs u(.) and for every x0 ∈ X, it holds that x(t, x0, u(.)) ∈ X, for all
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t ∈ I ∩ R+. Henceforth, initial conditions are restricted to this set X. We will be
particularly interested in cases where X = Rn

+, U = Rm
+ or U = −Rm

+ .
We denote the usual partial order on Rn by ¹; that is, for x, y ∈ Rn, x ¹ y

means that xi ≤ yi for i = 1, . . . , n. The state space X (input space U , output
space Y ) inherits the partial order from Rn (Rm, Rp) as the former sets are subsets
of the latter ones. We say that X (or U or Y ) is a lattice if for all x1, x2 ∈ X
(U , Y ), both inf(x1, x2) and sup(x1, x2) exist in X (U , Y ). The partial order on
Rm carries over to the set of input signals in a natural way (hence we use the same
notation for the partial order on this latter set): u(.) ¹ v(.) if u(t) ¹ v(t) for almost
all t ≥ 0. The next definition introduces the concept of a monotone I/O system,
which means that ordered initial conditions and input signals lead to subsequent
ordered solutions.

Definition 2.1. The I/O system (9) is monotone (with respect to the usual partial
orders) if the following conditions hold:

x1 ¹ x2 and u(.) ¹ v(.) ⇒ x(t, x1, u(.)) ¹ x(t, x2, v(.)) for all t ∈ (I1 ∩ I2) ∩ R+.
(10)

and
h is a monotone map, i.e. x1 ¹ x2 ⇒ h(x1) ¹ h(x2). (11)

Remark 3. We refer to [1] for tests to check whether a given I/O system is mono-
tone.

Remark 4. Since no confusion about the partial orders on input, state, and output
spaces is possible here (we always mean the usual partial order ¹), we will hereafter
refer to monotone I/O systems and not explicitly mention the involved partial or-
ders. However, we emphasize that in general the concept of a monotone I/O system
requires the enumeration of these partial orders (see [1]).

Of particular interest is how an I/O system behaves when it is supplied with a
constant input. Next we introduce a notion wthat implies this behavior is fairly
simple [2].

Definition 2.2. The I/O system (9) possesses an input/state (I/S) quasi charac-
teristic kx : U → X if for every constant input u ∈ U (and using the same notation
for the corresponding u(.)) and for each initial state x0 ∈ X, the solution x(t, x0, u)
is well defined for all t ∈ R+, and there exists a set of measure zero Bu such that

∀x0 ∈ X \Bu : lim
t→+∞

x(t, x0, u) = kx(u). (12)

If System (9) possesses an I/S quasi characteristic kx then it also possesses an
input/output (I/O) quasi characteristic ky : U → Y defined as ky := h ◦ kx.

Remark 5. An important property of a static I/S or I/O quasi characteristic of a
monotone I/O system is that it is a monotone map. Indeed, for any pair of constant
inputs u ¹ v, one may find an initial condition x0 ∈ X \ (Bu ∪ Bv) such that (10)
is satisfied when choosing x1 = x2 = x0. Upon taking limits for t → +∞ of both
sides of the last inequality in (10) and using (12), we see that kx is monotone. The
same is true for an I/O quasi characteristic ky since the output map is monotone
by (11), and the composition of monotone maps is monotone.

We are ready to state the main tool in proving stability for Lotka-Volterra
predator-prey systems. This is a special case of a more general result proved in
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[2]. Below we use the concept of an almost globally attracting equilibrium point
of an autonomous system, which means that there exists an equilibrium point of
this system that attracts all solutions which are not initiated in a certain set of
measure zero. Similarly, an almost globally asymptotically stable equilibrium point
is an equilibrium point that is stable (in the Lyapunov sense) and almost globally
attracting.

Theorem 2.1. Consider the following two I/O systems:

ẋ1 = f1(x1, u1), y1 = h1(x1) (13)
ẋ2 = f2(x2, u2), y2 = h2(x2), (14)

where xi ∈ Xi ⊂ Rni , ui ∈ Ui ⊂ Rmi and yi ∈ Yi ⊂ Rpi for i = 1, 2. Suppose
that Y1 ⊂ U2 and −Y2 ⊂ U1 and that the I/O systems are interconnected through a
(negative) feedback loop:

u2 = y1 (15)
u1 = −y2. (16)

Assume that U1, U2, Y1 and Y2 are closed lattices and that:

1. Both I/O systems (13) and (14) are monotone;
2. Both I/O systems (13) and (14) possess continuous I/S quasi characteristics

kx1 and kx2 respectively (and thus also I/O quasi characteristics ky1 and ky2);
3. All forward solutions of the feedback system (13)-(16) are bounded.

Then the feedback system possesses an almost globally attracting equilibrium point
(x̄1, x̄2) ∈ X1 ×X2 if the following discrete-time system, defined on U1 as

uk+1 = −(ky2 ◦ ky1)(uk), (17)

possesses a globally attracting fixed point ū ∈ U1. In that case, (x̄1, x̄2) = (kx1(ū), (kx2◦
ky1)(ū)).

This result and similar ones following later in this paper, are called small-gain
theorems. The last condition is often referred to as a small-gain condition. We
will use this terminology hereafter. (For another example of the application of
small-gain ideas in biology, see [15].)

2.2. Boundedness and stability of Lotka-Volterra systems. Consider the
classic Lotka-Volterra system:

ẋ = diag(x)(Ax + r), (18)

where x ∈ Rn and r ∈ Rn. Note that there are no assumptions on the sign
of the entries of A or the components of r. It is possible to show that Rn

+ is
a forward invariant set for (18); see, for example Theorem 3 in [1] and also the
section 2.3 of this paper for a more general result on forward invariance of Rn

+ of I/O
Lotka-Volterra systems. Hereafter, we will therefore assume that initial conditions
are restricted to Rn

+. The following result characterizes uniformly bounded Lotka-
Volterra systems [9]. Recall that a Lotka-Volterra system is uniformly bounded if
there exists a compact, absorbing set K ⊂ Rn

+; that is, for all x0 ∈ Rn
+, there is

a T (x0) ≥ 0 such that x(t, x0) ∈ K for all t ≥ T (x0). Below we use the notation
int(Rn

+) for the interior points of Rn
+ (i.e., those vectors in Rn

+ having only strictly
positive components).
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Lemma 2.1. System (18) is uniformly bounded if and only if

∃ c ∈ int(Rn
+) : −Ac ∈ int(Rn

+), (19)

and every principal sub-matrix of A has the same property ([8,p.188, Exercise 15.2.7]).

Matrices satisfying condition (19) are known as B-matrices.
We will now restrict our attention to Lotka-Volterra systems with an interaction

matrix A, which is Metzler. But first we collect some well-known facts about
the stability of Metzler matrices (see [9]). They are consequences of the Perron-
Frobenius theorem, see, for instance [13, 9].

Lemma 2.2. A Metzler matrix is stable if and only if it is diagonally dominant
([8,p.181, Exercise 15.1.1]), that is,

∃ d ∈ int(Rn
+) : −Ad ∈ int(Rn

+). (20)

If A is a stable Metzler matrix, then (20) obviously also holds for every principal
submatrix of A, implying that every principal submatrix of A is also stable. In other
words, a Metzler matrix is stable if and only if it is a B-matrix.

The following result is an immediate application of results in [16, 9, 8]. The
support set of x ∈ Rn

+ is defined as supp(x) := {y ∈ Rn
+| yi > 0 if xi > 0}.

Lemma 2.3. If A is a stable Metzler matrix, then System (18) possesses a unique
equilibrium point x̄ that is globally asymptotically stable with respect to initial con-
ditions in its support set supp(x̄). Suppose that xe is an equilibrium point of
(18). Then xe is globally asymptotically stable with respect to initial conditions
in supp(xe) (and hence xe = x̄) if and only if the following condition is satisfied
)[8,p.191, Exercise 15.3.1]).:

Axe + r ≤ 0. (21)

Remark 6. For future reference, we provide an explicit characterization of an
arbitrary equilibrium point xe ∈ Rn

+ (which is not necessarily x̄ from the above
lemma) of System (18) in the event A is a stable Metzler matrix. If xe ∈ Rn

+ is an
equilibrium point of System (18), then there exists a partition I, J of the index set
N := {1, 2, . . . , n} (i.e., N = I ∪ J and I ∩ J = ∅, where one of the sets I or J
could be empty) such that xe

i = 0 for i ∈ I and xe
j > 0 for j ∈ J . This implies that

for all j ∈ J , the j-th component of the vector Axe + r must be zero. Equivalently,
denoting the vector (xe

j), j ∈ J by xe
s, there must exist a principal submatrix As of

A (which is also stable and hence invertible by Lemma 2.2) such that

xe
s = −A−1

s rs,

where rs is obtained from r by deleting all components ri with i ∈ I.

We are now in a position to prove a boundedness result for the system of interest
(4).

Lemma 2.4. The solutions of System (4) are uniformly bounded provided H holds.

Proof. By Lemma 2.1, it suffices to show that the matrix

Ã =
(

A B
−C D

)

is a B matrix or equivalently that Ã and all its principal submatrices satisfy condi-
tion (19). Since A and D are stable Metzler matrices by H, it follows from Lemma
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2.2 that there exists d1 ∈ int(Rk
+) and d2 ∈ int(R(n−k)

+ ) such that −Ad1 ∈ int(Rk
+)

and −Dd2 ∈ int(R(n−k)
+ ). Since B,C ≥ 0 by H, there exists a sufficiently large real

number α > 0 such that

Ã

(
αd1

d2

)
=

(
A B
−C D

)(
αd1

d2

)
∈ − int(Rn

+).

Since by Lemma 2.2, the principal submatrices of A and D are also Metzler and
stable and therefore also satisfy the diagonally dominance condition (20), the same
argument we used to prove that Ã satisfies (19) can be used to prove that all
principal submatrices of Ã also satisfy (19). This concludes the proof.

2.3. Lotka-Volterra systems with inputs. Consider a classic Lotka-Volterra
system subject to an input:

ẋ = diag(x)(Ax + r + Bu), (22)

where x ∈ Rn, u ∈ U is the input. We assume that U = Rm
+ or U = −Rm

+ .
The input signals u(.) : R → U are Lebesgue measurable and locally essentially
bounded functions. Note that there is no assumption on the sign of the entries of
B or on the components of r. It can be shown that Rn

+ is forward invariant. This
follows from an application of Theorem 3 in [1]. To apply this result, we first denote
the right-hand side of (22) as f(x, u) and observe that f is locally Lipschitz in x,
locally uniformly in u. Secondly, denoting fD(x) := {f(x, u)| u ∈ D}, where D is
an arbitrary compact subset of U , we need to verify whether

∀x ∈ Rn
+ : fD(x) ⊂ TxRn

+

holds, where TxRn
+ is the tangent cone to Rn

+ at x ∈ Rn
+. This cone is defined as

follows:

TxRn
+ := { lim

hi↘0

1
hi

(yi − x)| yi → x while yi ∈ Rn
+ and hi > 0 as i → +∞}.

This second condition is also easily verified, yielding that Rn
+ is forward invariant

for System (22). Hence, hereafter we will always restrict initial conditions to Rn
+.

Lemma 2.5. If A is a stable Metzler matrix, then System (22) possesses a contin-
uous I/S quasi characteristic kx : U → Rn

+.

Proof. Step 1: Existence of kx

This follows immediately from the first part of Lemma 2.3. Denote the stable
equilibrium point corresponding to an arbitrary u ∈ U as kx(u). Then the set Bu

of nonconverging initial conditions is Rn
+ \ supp(kx(u)), which is a subset of the

boundary of Rn
+. Clearly, Bu is of measure zero.

Step 2: Continuity of kx

To prove continuity of kx it is sufficient to show that kx is a locally bounded
function (i.e., for every compact set C ⊂ U , kx(C) is a bounded set) and that the
graph of kx is a closed set. By Lemma 2.3 and Remark 6 we know that for every
u ∈ U , there is a unique equilibrium point kx(u) for which the vector [kx(u)]s of
nonzero components can be explicitly characterized as

[kx(u)]s = −A−1
s (u)(rs(u) + [Bu]s),

where rs(u) and [Bu]s are obtained from r and Bu, respectively, by deleting those
components corresponding to zero components of kx(u). Note the explicit depen-
dence of As, rs, and [Bu]s on u. Local boundedness of kx(u) will follow from the
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following chain of (in)equalities, where |.| denotes any norm on Rn (or on a lower
dimensional space Rl with l < n) and ||.|| stands for its associated matrix norm:

|kx(u)| = |[kx(u)]s|
=

∣∣−A−1
s (u) . (rs(u) + [Bu]s)

∣∣
≤ ∣∣∣∣−A−1

s (u)
∣∣∣∣ . (|rs(u)|+ |[Bu]s|)

≤
∣∣∣∣
∣∣∣∣
∫ ∞

0

eAs(u)t dt

∣∣∣∣
∣∣∣∣ . (|r|+ |Bu|)

≤
∫ ∞

0

∣∣∣
∣∣∣eAs(u)t

∣∣∣
∣∣∣ dt . (|r|+ ||B|| . |u|)

≤
∫ ∞

0

Ms eλF (As(u))t dt . (|r|+ ||B|| . |u|)

≤ Ms

−λF (As(u))
. (|r|+ ||B|| . |u|)

≤ M

−λF (A)
. (|r|+ ||B|| . |u|) ,

where we denoted the dominating Perron-Frobenius eigenvalue of a Metzler matrix
P (see [4]), by λF (P ), M := max(Ms) (see item 2 below for the definition of
Ms; note that max(Ms) exists since there are only a finite number of principal
submatrices and hence only a finite number of Ms’s) and we used the following
facts:

1. In the fourth step, we used the identity −P−1 =
∫∞
0

ePt dt for any stable
matrix P and the fact that all principal submatrices of a stable Metzler matrix
are stable; see Lemma 2.3. (This last fact is also used in the seventh step when
performing the integration.)

2. For any Metzler matrix Ps, || ePst || ≤ Ms eλF (Ps)t for some constant Ms > 0
in the sixth step.

3. λF (Ps) ≤ λF (P ) for any principal submatrix Ps of a Metzler matrix P (this
follows from an immediate application of Corollary 1.6 in [4]) in the last step.

Next, we will prove that:

graph(kx) := {(u, x) ∈ U × Rn
+|x = kx(u)}

is a closed set in the topology U × Rn
+ (recall that U = Rm

+ or U = −Rm
+ ).

Define:

V := {(u, y) ∈ U × Rn
+|Ay + r + Bu ≤ 0 and yT (Ay + r + Bu) = 0},

Clearly V is a closed set with respect to the subspace topology. Now it follows from
Lemma 2.3 and the particular form of (22) that graph(kx) = V , so graph(kx) is
also closed, thus concluding the proof.

2.4. Global asymptotic stability of fixed points of scalar non-increasing
maps. In this section, we collect some results for checking global asymptotic sta-
bility of fixed points of discrete-time systems satisfying a particular condition.

Consider the following scalar discrete-time system:

xk+1 = g(xk), (23)



36 P. DE LEENHEER, D. ANGELI, AND E. D. SONTAG.

for some given map g : R+ → R+. At this point, we make no continuity or
smoothness assumptions for g. Our main assumption regarding System (23) will
be the following:

M: g is nonincreasing that is, x1 ≤ x2 ⇒ g(x1) ≥ g(x2).
A nontrivial two-periodic point of System (23) is a number a ∈ R+ such that
g(a) = b, for some b ∈ R+ with b 6= a, and g(b) = a. For every integer i > 1, we
denote g ◦ g ◦ ... ◦ g (g appears i times in this composition) as gi. Although the
following facts are known, it is hard to give a reference for their proofs. Therefore,
we include them in the appendix.

Lemma 2.6. 1. Suppose that M holds. Then for each x0 ∈ R+, there exist
y1, y2 ∈ R+ such that

g2n(x0) → y1 and g2n+1(x0) → y2

as n → +∞, and both convergences are monotonic.
2. Suppose that M holds and that g is continuous. Then g(y1) = y2 and g(y2) =

y1, so both y1 and y2 are fixed points of g2. If g2 has a unique fixed point y,
then y is a globally asymptotically stable fixed point for System (23).

3. Suppose that M holds and that g is continuous. Then System (23) possesses
a unique fixed point x̄ ∈ R+. Moreover, x̄ is globally asymptotically stable if
and only if the map g does not possess nontrivial two-periodic points.

Proof. See appendix.

The next result provides an obvious condition to prove global asymptotic sta-
bility of a fixed point of System (23). Note that once more we do not impose any
continuity or smoothness assumption on g.

Lemma 2.7. Suppose that x̄ is a fixed point of System (23) in R+. If there exists
an α ∈ (0, 1) such that for all x ∈ R+ with x 6= x̄

| g(x)− x̄ | ≤ α | x− x̄ |, (24)

then x̄ is globally asymptotically stable.

Proof. The proof follows from a standard contraction mapping argument: condition
(24) is equivalent to |gk(x)− x̄| ≤ αk|x− x̄| for all x ∈ R+ and all integers k > 1.
Now α < 1 implies that limk→∞ gk(x) = x̄. (Local) stability is also obvious.

3. Main results. Recall the system of interest:(
ẋ
ż

)
= diag(x, z)

((
A B
−C D

)(
x
z

)
+

(
r1

r2

))
, (25)

where x ∈ Rk
+ and z ∈ R(n−k)

+ and for which H is assumed to hold. Also recall that
System (25) can be written as the feedback interconnection of two systems:

ż = diag(z)(Dz + r2 + Cu), w = z (26)
ẋ = diag(x)(Ax + r1 + Bv), y = x (27)
v = w (28)
u = −y, (29)

where u ∈ −Rk
+ and v ∈ R(n−k)

+ . It is clear that the input spaces, −Rk
+ and R(n−k)

+ ,
and the output spaces, R(n−k)

+ and Rk
+, are closed lattices. We summarize some of

the properties of this feedback system:
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1. Following [1], the I/O system (26) is monotone in the state z ∈ R(n−k)
+ , with

the input and the output u ∈ −Rn
+ and w ∈ R(n−k)

+ , respectively (recall
that the orders are the usual partial orders ¹ on the respective spaces); note
that the output function is merely the identity on R(n−k)

+ . Similarly, the I/O
system (27) is monotone in the state x ∈ Rk

+, with the input and the output
v ∈ R(n−k)

+ and y ∈ Rk
+, respectively; here, the output function is also the

identity on Rk
+.

2. By Lemma 2.5, the I/O systems (26) and (27) possess continuous I/S quasi
characteristics kz and kx resepctively (and I/O quasi characteristics kw ≡ kz

and ky ≡ kx, respectively).
3. By Lemma 2.4, the solutions of System (25) are bounded (in fact, they are

uniformly bounded).

Next, we state and prove the main result of this paper.

Theorem 3.1. If H holds, then System (25) possesses an almost globally attracting
equilibrium point (x̄, z̄) ∈ Rn

+, provided that the discrete-time system

uk+1 = −(ky ◦ kw)(uk), (30)

which is defined on −Rk
+, possesses a globally attracting fixed point ū. In that case

(x̄, z̄) = ((kx ◦ kw)(ū), kz(ū)).

Proof. The theorem is proved if the conditions of Theorem 2.1 are verified. We have
already shown that the first three conditions (monotonicity, existence of continuous
I/S and I/O quasi characteristics, and boundedness of solutions) and the small-
gain condition are satisfied. The latter holds because of the assumption that (30)
possesses a globally attracting fixed point ū ∈ −Rk

+.

Remark 7. Although this is not apparent from the above proof, it can be shown that
under the conditions of Theorem 3.1 the zero-measure set of nonconvergent initial
conditions of System (25) is (a subset of) the boundary of Rn

+. This also implies
that all solutions initiated in the interior of Rn

+ converge to the equilibrium point
(x̄, z̄). We refer to [2] for more on this.

Remark 8. Note that no (local) stability information is provided by Theorem 3.1, as
only a convergence result is given. However, we shall illustrate below that the small-
gain condition in Theorem 3.1 may imply local stability of the equilibrium point, by
simply checking the stability properties of the linearization at the equilibrium point.

Of course it is in general very hard to determine whether the discrete-time system
(30) possesses a globally attracting fixed point. Under an extra, fairly natural
condition for System (25), this task may be simplified, as we will see below. This
condition is the following rank condition:

R: Rank (B) = Rank (C) = 1.

The biological interpretation of condition R is that there is neither prey-selection
by predators nor does it matter to a prey species by which predator its individuals
are eaten.

If H and R, hold then there exist nonzero vectors b, γ ∈ Rk
+ and c, β ∈ R(n−k)

+

such that B = bβT and C = cγT . (Note that these vectors are not unique since
scalar multiples can be found satisfying the same conditions.) It follows that System



38 P. DE LEENHEER, D. ANGELI, AND E. D. SONTAG.

(25) can be written as the following feedback interconnection:

ż = diag(z)(Dz + r2 + cu), w = βT z (31)

ẋ = diag(x)(Ax + r1 + bv), y = γT x (32)
v = w (33)
u = −y, (34)

where u ∈ −R+ and v ∈ R+. As before, the I/O systems (31) and (32) are monotone
and possess continuous I/S and I/O quasi characteristics kz, kx and kw ≡ βT kz,
ky ≡ γT kx and boundedness of solutions is immediate from lemma 2.4. Another
straightforward application of theorem 2.1 yields the following corollary.

Corollary 3.1. If H and R hold, then System (25), or equivalently the feedback
System (31)-(34), possesses an almost globally attracting equilibrium point (x̄, z̄) ∈
Rn

+, provided that the scalar discrete-time system

uk+1 = −(ky ◦ kw)(uk), (35)

which is defined on −R+, possesses a globally attracting fixed point ū. In that case,
(x̄, z̄) = ((kx ◦ βT kz)(ū), kz(ū)).

Remark 9. Notice that the small-gain condition in Corollary 3.1 is equivalent to
the following small-gain condition:

The scalar discrete-time system

ũk+1 = (ky ◦ kw)(−ũk) := g(ũk), (36)

which is defined on R+, possesses a globally attracting fixed point ¯̃u.
This equivalence follows immediately from the coordinate transformation ũk = −uk.
Observe that g : R+ → R+ is a scalar and continuous map since ky and kw are
continuous by Lemma 2.5. Also, Remark 5 implies that kw and ky are monotone
and that g is thus non-increasing (or, equivalently, satisfies M). But then Lemma
2.6, part 3, and Lemma 2.7 can be used to verify whether the small-gain condition
for System (36), or equivalently for System (35), is satisfied. This may lead to the
simplification presented in Corollary 3.1 as we will illustrate below on both examples
from the introduction.

Remark 10. Both remarks following Theorem 3.1 apply to Corollary 3.1 as well.

Example 1 (continued)
Define b = (1 0)T , β = 1, c = k, and γ = (0 1)T , and rewrite System (2) from

Example 1 in the form (31)-(34). Using the characterization (21) in Lemma 2.3, the
I/O quasi characteristics kw and ky are computable, yielding the following explicit
form for System (36):

ũk+1 =

{
(−k

3 )ũk + (1 + k
3 ) for ũk ∈ [0, 1 + 3

2k ]
1
2 for ũk > 3

2k .
(37)

Since k > 0, it is easily verified that the conditions of part 3 of Lemma 2.6 are
satisfied, and thus System (37) possesses a fixed point ¯̃u. It is easily checked that
¯̃u ∈ (0, 1 + 3

2k ). Choosing α > 0 as

α =
k

3
< 1, (38)

we see that the conditions of Lemma 2.7 are satisfied. Notice that condition (38) is
very close to a necessary condition for global asymptotic stability of ¯̃u. Indeed, if



SMALL-GAIN THEOREMS 39

k
3 > 1, then ¯̃u is (locally) unstable. Corollary 3.1 implies that System (2) possesses
an almost globally attracting equilibrium point at (1, 1, 1)T , if condition (38) holds.
Of course, the small-gain condition (38) also yields that the equilibrium point is
locally stable, by recalling from Example 1 that (1, 1, 1)T is locally asymptotically
stable if 0 < k < kc = 57. Remark 7 implies that the domain of attraction of
(1, 1, 1)T contains the interior of R3

+. In fact, the interior of R3
+ is the domain of

attraction, since it is not difficult to see that the boundary of R3
+ is an invariant

set for System (3). Finally, note that the small-gain condition (38) is very strong
compared to the local stability condition k < 57. However, as we have shown, it
guarantees the much stronger property of almost global asymptotic stability.

Example 2 (continued)
Define b = (1/2 1)T , β = 1, c = k, and γ = (1 1/2)T , and rewrite System (3)

from Example 2 in the form (31)-(34). The I/O quasi characteristics kw and ky are
computable using the characterization (21) in Lemma 2.3 and yield the following
explicit form for System (36):

ũk+1 =





(− 5
3k)ũk + 5k+3

2 for ũk ∈ I1 := [0, 3
2 + 2

3k ]
(− 1

6k)ũk + k+2
4 for ũk ∈ I2 := ( 3

2 + 2
3k , 3

2 (1 + 1
k )]

1
4 for ũk ∈ I3 := ( 3

2 (1 + 1
k ), +∞).

(39)

Since k > 0, it is easily verified that the conditions of part 3 of Lemma 2.6 are
satisfied and thus System (37) possesses a fixed point ¯̃u. It is easily checked that
¯̃u ∈ (0, 3

2 + 2
3k ). Choosing α > 0 as:

α =
5
3
k < 1, (40)

we see that the conditions of Lemma 2.7 are satisfied since the slope of g on the
interval I1 equals −5k/3, which is smaller than the slopes of g on the intervals I2

and I3 that equal −k/6 and 0, respectively. Notice that condition (40) is very close
to a necessary condition for global asymptotic stability of ¯̃u. Indeed, if 5

3k > 1,
then ¯̃u is (locally) unstable. Now it follows from Corollary 3.1 that System (3)
possesses an almost globally attracting equilibrium point at (1, 1, 1)T , provided
condition (40) holds. Obviously, this small-gain condition (40) also yields that this
equilibrium point is locally stable. Recall from Example 2 that an application of
the Routh-Hurwitz criterion showed that (1, 1, 1)T is locally asymptotically stable
if 0 < k < kc = 105/2. Remark 7 implies that the domain of attraction of (1, 1, 1)T

contains the interior of R3
+. In fact, the interior of R3

+ is the domain of attraction,
since the boundary of R3

+ is easily seen to be an invariant set for System (3). Note
that the small-gain condition (40) is very strong compared to the local stability
condition k < 105/2. However, as we have shown, it guarantees the much stronger
property of almost global asymptotic stability.

Finally, we performed a few simulations to see what happens for k-values in the
interval (3/5, 105/2). Using Mathematica, the solutions corresponding to initial
condition x(0) = (0.1, 0.1, 0.1)T are plotted for two different k-values in Figures
3 and 4. It appears that the solutions converge in an oscillatory manner to the
equilibrium point (1, 1, 1)T . This might indicate that for intermediate k-values, the
equilibrium point (1, 1, 1)T is also almost globally asymptotically stable.
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Figure 3. Solution for k = 30. (initial condition (0.1, 0.1, 0.1),
integration over [0,90])

4. Appendix: Proof of Lemma 2.6.
1. Let p(x) := g2(x). Note that p, and therefore every power pn is nondecreasing.

Consider the sequence xn := pn(x0) = g2n(x0). Since p is bounded (because
p(x) = g(g(x)) ≤ g(0)), the sequence {xn} is bounded. If x0 ≤ x1, then xn =
pn(x0) ≤ pn(x1) = xn+1. If x0 ≥ x1, then xn = pn(x0) ≥ pn(x1) = xn+1.
Therefore, the sequence {xn} is monotonic. Thus xn → y1 for some y1.

The same argument applies to the sequence zn := pn(z0) = g2n+1(x0),
where we defined z0 := g(x0), resulting in zn → y2.

2. If g is continuous, then g2n(x0) → y1 implies g2n+1(x0) = g(g2n(x0)) → g(y1),
so y2 = g(y1), and a similar argument shows that g(y2) = y1. This implies
that g2(yi) = yi, for i = 1, 2.

Thus, if y is the unique fixed point of g2, necessarily y1(x0) = y2(x0) = y,
for all x0, which means that pn(x0) → y, for all x0. This in turn implies that
y is a globally attracting fixed point of System (23).

To prove stability of y, consider any interval of the form [a, b] with a ≤
y ≤ b. If p(a) < a, then monotonicity of {pn(a)} would imply that pn(a) con-
verges to a limit l satisfying l < a, which contradicts that a ≤ y, so p(a) ≥ a.
Similarly, p(b) ≤ b, implying that the interval [a, b] is forward invariant under
p since p is non-increasing. Next, consider the interval [g(b), g(a)], which con-
tains g(y) = y; for the same reasons, this interval is forward invariant under
p. Therefore, [A,B] is forward invariant under g, where A = min{a, g(b)} and
B = max{b, g(a)}. This proves stability of the fixed point y of System (23).
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Figure 4. Solution for k = 46. (initial condition (0.1, 0.1, 0.1),
integration over [0,90])

3. Existence and uniqueness of a fixed point
Existence of a fixed point follows from an application of the intermediate-

value theorem to the (continuous) function g(x)−x, which is restricted to the
closed interval [0, g(0)] and relies on the fact that g is nonincreasing. We will
denote the unique fixed point by x̄.

Global asymptotic stability of x̄
Necessity of the nonexistence of nontrivial two-periodic points is obvious.

To prove sufficiency, note that if there are no nontrivial two-periodic points
for g, then the map g2 possesses only one fixed point x̄. The result now follows
from the previous item.
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