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Abstract: The proper function of many biological systems requires that external perturbations
be detected, allowing the system to adapt to these environmental changes. It is now well
established that this dual detection and adaptation requires that the system has an internal
model in the feedback loop. In this paper we relax the requirement that the response of the
system adapts perfectly, but instead allow regulation to within a neighborhood of zero. We show,
in a nonlinear setting, that systems with the ability to detect input signals and approximately
adapt require an approximate model of the input. We illustrate our results by analyzing a
well-studied biological system. These results generalize previous work which treats the perfectly
adapting case.

1. INTRODUCTION

Many problems in control can be framed as output reg-
ulation problems where the goal is to drive the output
of a system to zero for a particular class of input sig-
nals. The internal model principle (IMP) states that such
regulation can only be achieved if the system contains
an “internal model” of the input being regulated. The
IMP was originally derived for linear systems (Francis
and Wonham 1975), and related regulation problems for
nonlinear systems have been considered in (Hepburn and
Wonham 1984a, Hepburn and Wonham 1984c, Hepburn
and Wonham 1984b, Isidori and Byrnes 1990). While out-
put regulation is usually referred to in the context of
engineering problems, it is crucial for the proper func-
tioning of many biological organisms. Biological systems
must be able to detect changes in their environment and
adjust their internal states accordingly — a process com-
monly referred to as “homeostasis” or “adaptation.” For
example, successful chemotaxis (movement towards high
concentrations of chemical attractant) of E. coli depends
on the ability of the bacteria to adapt to step changes in
chemoattractant (Alon et al. 1999, Block et al. 1983). This
adaptation property has been shown to require integral
control, achieved in E. coli via receptor methylation, and
hence the existence of an internal model of a step input
(Yi et al. 2000). Other examples in biology in which the
role of feedback control systems is to achieve adaptation
include blood calcium regulation (El-Samad et al. 2002),
neuronal control of the prefrontal cortex (Miller and
Wang 2006), tryptophan regulation in E. coli (Venkatesh
et al. 2004), and the Dictyostelium chemotactic response to
step changes in chemoattractant (Yang and Iglesias 2006).

Some important distinctions between biological and engi-
neering systems must be taken into account when studying

biological systems in the context of regulation. Unlike
typical regulation problems in engineering, where the goal
may be to attenuate the effect of a disturbance as much as
possible, in biological systems, sensing changes in the input
signals may be equally important for achieving proper cell
function (Koshland et al. 1982). This “signal detection”
property has been characterized and used in conjunction
with adaptation to show the IMP in linear and nonlinear
systems (Sontag 2003). Another important distinction of
biological systems is that, in many cases, the study of
biology is essentially an analysis problem rather than a
design problem. Therefore, while an engineer should aim
to design a control system with no less than perfect regu-
lation, such a concept may not necessarily be relevant in
analyzing biological systems, where the system only adapts
partially (Koshland et al. 1982, Lauffenburger 2000). Al-
though biological systems may be modeled with simplify-
ing assumptions that lead to perfect adaptation, relaxation
of these assumptions may yield an output that only adapts
to within some tolerable range of the desired value.

In light of the above discussion, this paper investigates the
properties of nonlinear systems that adapt approximately,
rather than perfectly, to a given class of input. This study
is a direct extension of a previous proof of the IMP in sys-
tems with detection and adaptation (Sontag 2003) as well
as our earlier analysis of approximate internal models in
linear systems (B. W. Andrews and Sontag 2006). We first
provide a formal definition of signal detection and then
show that nonlinear systems with signal detection and
approximate adaptation must contain an “approximate”
model of the input. We then illustrate our findings by
considering a general receptor modification system such as
the one found in E. coli (Barkai and Leibler 1997, Iglesias
and Levchenko 2001), which adapts perfectly under typical
assumptions. We show, however, that when some of these



assumptions are relaxed, the system adapts only approx-
imately to step inputs and thus contains an approximate
internal model of an integrator; see also (Alon 2007).

2. PRELIMINARIES

We consider single-input single-output systems of the form

ẋ(t) = f(x(t), ε) + u(t)g(x(t), ε) (1)

y(t) = h(x(t), ε)

where f , g, and h are smooth functions of x and ε over
the domain of interest. The system has input u(t), output
y(t), and initial condition x(0) = x0. Owing to the explicit
dependence on a parameter of interest ε, we denote (1)
an ε-parameterized system, Σε. Inputs are assumed to be
generated by an exosystem Γ of the form

Γ =

{

ẇ(t) = Q(w(t))

u(t) = θ(w(t)),
(2)

where Q and θ are smooth functions of w, so that the
interconnection of Σε and Γ (Figure 1) is

ẇ = Q(w) (3)

ẋ = f(x, ε) + θ(w)g(x, ε)

y = h(x, ε).

We assume that |θ(w)| ≤ m. The functions Q and θ define
a particular class of inputs U where each u(t) ∈ U is
generated from a different initial condition w(0) = w0.
The exosystem is assumed to be Poisson-stable, meaning
that for any initial condition w0, the solution contains w0

in its omega-limit set (Sontag 2003).

ẋ = f(x, ε) + ug(x, ε)

y = h(x, ε)

ẇ = Q(w)

u = θ(w)

u(t) y(t)

Γ Σε

Fig. 1. Exosystem and system.

We next recall the definition of relative degree (Isidori
1995):

Definition 1. The system Σε has relative degree r ≤ n at
the point x0 if

(1) LgL
i
fh(x) = 0 for all i = 0, . . . r − 2 and for all x in a

neighborhood of x0.
(2) LgL

r−1
f h(x0) 6= 0.

Here, the Lie derivative Lfh(x) = ∂h
∂x

f(x) is the derivative

of h(x) along the vector field f(x). Note that if x(t0) = x0

for some time t0, the derivatives of the system output are

y(i)(t) = Li
fh(x(t)), for all i < r and all t near t0

and
y(r)(t0) = Lr

fh(x0) + LgL
r−1
f h(x0)u(t0).

Thus, a useful characterization of the relative degree is
the number of times the output of the system must be
differentiated to be dependent on the input. For linear
systems, the relative degree equals the difference between
the degree of the denominator and numerator polynomials
of the transfer function. Also, note that the Lie derivatives
Li

fh and LgL
r−1
f h depend on ε, although this dependency

is not explicitly written.

Following (Sontag 2003), we make two technical assump-
tions. If the relative degree is r, we define:

g̃(x) =
1

LgL
r−1
f h(x)

g(x),

f̃(x) = f(x) − (Lr
fh(x))g̃(x),

τi := adi−1

f̃
g̃, i = 1, . . . , r

where adfg := [f, g] = ∂g
∂x

f − ∂f
∂x

g is the Lie bracket of the
vector fields f and g.

We first assume that the τi are complete for i = 1, . . . , r;
that is, the solution of the initial value problem ẋ = τi(x),
x(0) = x0 is defined for all t ∈ R for any initial state x0.

We also assume that the vector fields τi commute with
each other; i.e. [τi, τj ] = 0, ∀i, j.

These two assumptions, which are automatically satisfied
for linear systems, guarantee the existence of a requisite
change of variables.

Finally, we recall the following notations:

(1) The function f(x) = O(g(x)) as x → x0 if there exists
a c > 0 such that |f(x)| ≤ c|g(x)| as x → x0.

(2) The function f(x) = Ω(g(x)) as x → x0 if ∃c > 0
such that |f(x)| ≥ c|g(x)| as x → x0.

3. RESULTS

We first define a signal detection property, and then
discuss approximate adaptation and its internal model
implications.

3.1 Signal detection

We wish to describe a system’s ability to detect input
signals. Such a property should capture the notion that
the system’s initial response to an input is of the same
order of magnitude as the input. Recall that, for a system
with relative degree r at a point x(t0) = x0,

y(r)(t0) = Lr
fh(x0) + LgL

r−1
f h(x0)u(t0),

implying that y(r)(t0) = Ω(u(t0)) as t → t0. The mag-
nitude of the system’s initial response, determined by its
rth derivative, is directly dependent on the magnitude of
the input. We thus introduce the following definition as a
suitable description of the signal detection property.

Definition 2. The system Σε has the ability to detect
an input signal u(t) if a relative degree exists and is
independent of ε.

3.2 Approximate Adaptation and Signal Detection Imply
an Approximate Internal Model

In this section, we define approximate adaption for a class
of systems and then show that an approximately adapting
system with signal detection must contain an approximate
model of the input in an appropriate sense. Lemma 5 and
Theorem 6 are extensions of Lemma 3.1 and Theorem 1
presented in (Sontag 2003).

Definition 3. The ε-parameterized system Σε, with rela-
tive degree r, adapts approximately to a class of inputs
U , where each u(t) ∈ U is generated by Γ, if there exists



a function K(ε) = O(ε) (as ε → 0), such that for all
u(t) ∈ U , lim supt→∞ |y(i)(t)| ≤ K(ε) for i = 0, . . . , r.

This definition requires that the output of an approxi-
mately adapting system, in addition to eventually being
small, is eventually slowly varying (i.e., the derivatives
are small). This constraint on the derivatives is neces-
sary for the main theorem below and is reminiscent of
similar constraints required for derivative control in the
context of approximate output regulation (Sureshbabu and
Rugh 1995) as well as for input-output stability of sampled
systems (Iglesias 1995).

Definition 4. An ε-parameterized system Σε is said to
have an approximate internal model of U if it can be
decomposed into the system shown in Figure 2, where
ΣIM,ε has state representation

ΣIM,ε =

{

ż2 = f2(y, z2, ε)

κ = ϕ(z2, ε),

and for each u ∈ U , there exists a solution z2 that satisfies
|ϕ(z2, ε) − u| = O(ε) when y = O(ε).

Definition 4 states that a system Σε contains an approx-
imate internal model of an input class U if it contains a
subsystem that is capable of generating inputs that are
close to those in U when the output y is small. Note that
in the limit as ε → 0, ϕ(z2, ε) → u, and ΣIM,ε approaches
a perfect internal model ΣIM which can generate all u ∈ U
exactly when y = 0.

u(t)
y(t)

ΣIM,ε

Σ0

Fig. 2. Internal model decomposition of Σε

Before proceeding to the main theorem, we provide the
following Lemma which extends previous results on exact
adaptation (Sontag 2003).

Lemma 5. Suppose that Σε adapts approximately to in-
put class U . For all w0, there exists a solution σ =
(w(·), x(·)) of the composite system such that w(0) = w0

and |y(i)(t)| ≤ K(ε), i = 0, . . . , r for all t ≥ 0.

Proof. We will show that there exists a solution σ such
that (w(t), x(t)) ∈ Lε, ∀t ≥ 0 where Lε is defined as the
set of all pairs (w, x) such that:

∣

∣Li
fh(x)

∣

∣ ≤ K(ε), i = 0, . . . , r − 1

and
∣

∣

∣
Lr

fh(x) + LgL
r−1
f h(x)θ(w)

∣

∣

∣
≤ K(ε).

First, choose an arbitrary solution σ0 = (w(·), x(·)) of
the composite system such that w(0) = w0, and let
Ω = Ω+[σ0] be the omega-limit set of σ0.

Claim (i): if (ω, ξ) ∈ Ω then (ω, ξ) ∈ Lε. This can be seen
as follows. By definition, there exists a sequence tk → ∞
such that x(tk) → ξ and w(tk) → ω. Owing to the
approximate adaptation assumption, and because h (and
thus any Lie derivative of h) is smooth, it follows that

∣

∣Li
fh(ξ)

∣

∣ = lim
k→∞

∣

∣Li
fh(x(tk))

∣

∣

= lim
k→∞

∣

∣

∣
y(i)(tk)

∣

∣

∣

≤ lim sup
t→∞

∣

∣

∣
y(i)(t)

∣

∣

∣

≤ K(ε)

for i = 0, . . . , r − 1. Moreover,

∣

∣

∣
Lr

fh(ξ) + LgL
r−1
f h(ξ)θ(ω)

∣

∣

∣

=

∣

∣

∣

∣

lim
k→∞

Lr
fh(x(tk)) + lim

k→∞

LgL
r−1
f h(x(tk))θ(wk)

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣
Lr

fh(x(tk)) + LgL
r−1
f h(x(tk))θ(wk)

∣

∣

∣

= lim
k→∞

∣

∣

∣
y(r)(tk)

∣

∣

∣

≤ lim sup
t→∞

∣

∣

∣
y(r)(t)

∣

∣

∣
≤ K(ε).

Thus, (ω, ξ) ∈ Lε as claimed.

Claim (ii): There exists an x0 such that (w0, x0) ∈ Ω.
To show this, we choose a sequence ti → ∞ such that
w(ti) → w0 — this is possible because of the Poisson
stability of the exosystem. The sequence x(ti) is bounded,
so there exists a convergent subsequence tij

such that

x(tij
) → x0 for some x0. This implies that (w0, x0) ∈ Ω.

To complete the proof, let σ = (w, x) be a solution of the
composite system for w(0) = w0 and x(0) = x0 where x0 is
chosen such that (w0, x0) ∈ Ω (Claim (ii)). Ω is invariant so
σ(t) ∈ Ω, ∀t ≥ 0 and this implies that (w(t), x(t)) ∈ Lε ∀ t
(Claim (i)) as required.

We are now ready for our main result.

Theorem 6. A system Σε that detects inputs and adapts
approximately to input class U contains an approximate
internal model of U .

Proof. We assume, without loss of generality, that the
system Σε has relative degree r.

We first define

x̃ :=

[

x
ε

]

, f̃(x̃) :=

[

f(x, ε)
0

]

, g̃(x̃) :=

[

g(x, ε)
0

]

,

and h̃(x̃) := h(x, ε) and rewrite Σε as

Σ̃ =

{

˙̃x(t) = f̃(x̃(t)) + u(t)g̃(x̃(t))

y(t) = h̃(x̃(t))
(4)

Note that x̃0 =

[

x0

0

]

. Because Σε detects inputs,

Lg̃L
r−1

f̃
h̃(x̃0) 6= 0, and it is easy to show that the relative

degree of Σ̃ is also r.

It is possible to show (Isidori 1995) the existence of a

change of variables, z = Φ(x), for Σ̃ such that the system
in the new coordinates is



ζ̇1 = ζ2

...

ζ̇r−1 = ζr

ζ̇r = b(z1, z2, ε) + a(z1, z2, ε)u

ż2 = f2(y, z2, ε)

ε̇ = 0

where z = [z1, z2]
>, z1 := [ζ1, . . . , ζr]

>, and the output is
y = ζ1. The functions a(z, ε) = Lr

fh(x, ε) and b(z, ε) =

LgL
r−1
f h(x, ε) are evaluated at x = Φ−1(z).

If we let the function f2 (the zero dynamics) describe the
dynamics of the internal model, then we seek a function
ϕ(z2) such that, for each u ∈ U , the solution of ż2 =
f2(O(ε), z2) satisfies |ϕ(z2(t)) − u(t)| = O(ε) for some
initial condition (z0

1 , z0
2). To show this, first pick w0 such

that u(t) = θ(w(t)) and w(0) = w0. From the lemma, we
know that there exists a solution σ = (w(·), z1(·), z2(·))
such that |y(t)|, |ẏ(t)|, . . . , |y(r)(t)| ≤ K(ε), for all t. This

implies that |ζ1| , . . . , |ζr| = O(ε) and
∣

∣

∣
ζ̇r(t)

∣

∣

∣
= O(ε). Also,

note that a function f(ε) = O(ε) (as ε → 0) implies that
limε→0 f(ε) = 0. Thus, limε→0 z1 = 0, and we have

lim
ε→0

a(z1, z2, ε) = a(0, lim
ε→0

z2, 0)

lim
ε→0

b(z1, z2, ε) = b(0, lim
ε→0

z2, 0)

and

|a(z1, z2, ε) − a(0, z2, 0)| = O(ε)

|b(z1, z2, ε) − b(0, z2, 0)| = O(ε).

Choosing

ϕ(z2) = −
b(0, z2, 0)

a(0, z2, 0)
,

we have, noting that a 6= 0 (from the definition of relative
degree), and dropping explicit dependence of a and b on ε
for convenience of notation,

|ϕ(z2(t)) − u(t)|

=

∣

∣

∣

∣

∣

−
b(0, z2)

a(0, z2)
−

ζ̇r − b(z1, z2)

a(z1, z2)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−b(0, z2)a(z1, z2) − ζ̇ra(0, z2) + a(0, z2)b(z1, z2)

a(0, z2)a(z1, z2)

∣

∣

∣

∣

∣

=
∣

∣

∣

(

−b(0, z2)a(z1, z2) + a(z1, z2)b(z1, z2)

− a(z1, z2)b(z1, z2) + a(0, z2)b(z1, z2) − ζ̇ra(0, z2)
)

× 1/
(

a(0, z2)a(z1, z2)
)

∣

∣

∣

=
∣

∣

∣

(

a(z1, z2)
(

b(z1, z2) − b(0, z2)
)

− ζ̇ra(0, z2)

+ b(z1, z2)
(

a(0, z2) − a(z1, z2)
)

)

/
(

a(0, z2)a(z1, z2)
)

∣

∣

∣

=

∣

∣

∣

∣

a(z1, z2)O(ε) + b(z1, z2)O(ε) − O(ε)a(0, z2)

a(0, z2)a(z1, z2)

∣

∣

∣

∣

= O(ε).

Thus we have shown that an approximately adapting
system with the signal detection property must contain
an approximate internal model of the input class.

4. BIOLOGICAL EXAMPLE: ADAPTATION BY
RECEPTOR MODIFICATION

A general model of adaptation via the modification of
receptors, such as that found in the signal transduction
pathway of E. coli, is shown in Figure 3 (Iglesias and
Levchenko 2001, Barkai and Leibler 1997). A receptor
on the membrane of the cell can exist in one of four
states: unmodified, unbound to ligand (R); unmodified,
bound to ligand (RL); modified, unbound to ligand (D);
or modified, bound to ligand (DL). The modification and
demodification reactions are catalyzed by inhibition and
excitation enzymes, respectively. Typically, excitation is
assumed to operate at saturation (kME

¿ D and kME
¿

DL, where kME
is the Michaelis-Menten constant) and

inhibition is assumed in the linear regime (kMI
À R and

kMI
À RL). Only fractions of the unmodified receptors,

α1R and α2RL, are assumed to be in an “active” state.
The total activity A = α1R + α2RL directly affects the
state of the flagellar motor and thus drives the movement
of the bacteria. We assume that the inhibition enzyme acts
only on active receptors. Under the above assumptions, the
dynamics describing R and RL become decoupled from D
and DL:

dR

dt
= k−1ET − k1IT · α1R − krR · L + k−rRL

dRL

dt
= k−2ET − k2IT · α2RL + krR · L − k−rRL

R + L

I I

E E

D + L

k1

k
−1

RL

k
−r kr

E E

k
−2

k2

I I

DL

k
−d kd

Fig. 3. General model of adaptation via receptor modifi-
cation. Both the modified and unmodified form of the
receptor can bind ligand. Such a scheme is found in
the signal transduction pathway of E. coli.

In previous models, the inhibition rate constants k1 and k2

are assumed equal, resulting in robust, perfect adaptation
to step changes in ligand levels (Iglesias and Levchenko
2001). Here we show that relaxing this assumption so that
k1 = k2 + ε results in approximate rather than perfect
adaptation. Moreover, the zero dynamics of the system
exhibit the form of an approximate integrator as expected
from Theorem 6.

Following the notation of Sontag (Sontag 2003), we define
x1 = R, x2 = RL, a1 = k−1ET , a2 = k1IT α1, a3 = k−r,
a4 = kr, a5 = k−2ET , and a6 = k−r + k1IT α2. In terms of
Equation (1),

f(x, ε) =

(

a1 − a2x1 + a3x2

a5 − (a6 + εIT α2)x2

)

, g(x) =

(

−a4x1

a4x1

)

.



The output is the difference between the activity and
steady-state activity when ε = 0, scaled by k1IT :

y = h(x) = (a1 + a5) − (a2x1 + (a6 − a3)x2) .

4.1 Approximate adaptation

We first show that this system adapts approximately to
step (constant) inputs. Solving ẋ1 = ẋ2 = 0 gives steady
states x∗

1 and x∗
2:

x∗

2 =
a2a5 + a4ua5 + a1a4u

−a3a4u + a6a2 + a6a4u + ε IT α2a2 + ε IT α2a4u

x∗

1 =
a3a5 + ε IT α2a1 + a6a1

−a3a4u + a6a2 + a6a4u + ε IT α2a2 + ε IT α2a4u

Note a3 − a6 < 0, so that this steady-state solution exists
and uniquely provides positive states, for any u and ε.

The trace of the linearized matrix (at any point) is −a2 −
a4u − a6 − εIT α2 < 0, and the determinant

(−a2 − a4u) (−a6 − ε iT α2) − a3a4u

is positive because a3 < a6. Because the system, for
constant u, has the form ẋ = c + Ax, (where A depends
on u and ε), A is Hurwitz and thus the system is globally
asymptotically stable (GAS).

Computing h(x∗) gives the steady-state output:

y∗ = −
ε IT α2 (a2a5 + a4ua5 + a1a4u)

a3a4u − a6a2 − a6a4u − ε IT α2a2 − ε IT α2a4u

Note that this vanishes at ε = 0, and is continuous in
ε, which proves, together with GAS, that the system
approximately adapts.

4.2 Approximate internal model

We first note that

Lgh =
∂h

∂x
· g(x)

= a2a4x1 − (a6 − a3)a4x1,

which is nonzero for all x if α1 6= α2. Thus, the system has
a relative degree r = 1. To put the system into normal
form, we find a change of coordinates z = Φ(x) such
that Φ is smooth and ∂Φ/∂x is nonsingular. This can be
accomplished by choosing φ1(x) = h(x) and φ2(x) such
that Lgφ2(x) = 0 and φ2(x) is linearly independent of
φ1(x) (Isidori 1995). An obvious choice is φ2(x) = x1 + x2

so that
∂Φ

∂x
=

[

−a2 a3 − a6

1 1

]

,

which is nonsingular for all x if α1 6= α2. The inverse
system is

Φ−1(z) =







z2(a3 − a6) − z1 + (a1 + a5)

a2 − a6 + a3
z1 + a2z2 − (a1 + a5)

a2 − a6 + a3






.

The zero dynamics are given by the differential equation

ż2 = Lfφ2(x)|
x=Φ−1(z)

= [1 1]

[

a1 − a2x1 + a3x2

a5 − (a6 + εIT α2)x2

]







x=Φ−1(z)

= z1 − εIT α2
z1 − a2z2 − (a1 + a5)

a2 − a6 + a3
.

The system is approximately adapting, so z1 = y = O(ε),
and the zero dynamics give rise to an internal model
representative of an approximate integrator:

ż2 = O(ε)

ϕ(z2) = −
b(0, z2)

a(0, z2)
,

where

a(z) = Lfh(x)|
x=Φ−1(z) and b(z) = Lgh(x)|

x=Φ−1(z) .

Biologically, integration is achieved via a protein CheB,
which demethylates active receptor complexes. For perfect
integration, the demethylation rates for ligand bound and
unbound active receptors must be identical (k1 = k2);
relaxation of this results in an approximate integrator.

The response of the receptor-modification system to a step
input in ligand is shown in Figure 4. Figure 4A depicts
the response of the system when k1 and k2 are assumed
equal, and the response when this assumption is relaxed
is shown in Figure 4B. It is clear that when k2 = k1,
perfect adaptation is achieved. However, when k2 = k1+ε,
adaptation is only achieved within an order of ε.
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Fig. 4. Step response of the four-state receptor modifica-
tion model when k1 = k2 (panel A) and when this
assumption is relaxed to k2 = k1 + ε (panel B). The
dashed line indicates the pre-stimulus activity level,
and ε = 10 (chosen large for figure visibility).

While we have demonstrated approximate adaptation in
the four-state receptor modification model by relaxing the
assumption that k1 = k2, similar results may be obtained
by relaxing other assumptions such as saturation of the
excitation reactions. For instance, the component of dR/dt
due to the excitation enzyme is

k−1ET D

kME
+ D

= k−1ET

(

1

kME
/D + 1

)

= k−1ET

(

1 −
KME

D
+ o

(

KME

D

)2
)

.

Under saturation, KME
/D ≈ 0, and the right-hand side

becomes k−1ET . However, if we relax this assumption
by linearizing KME

/D about D = D0 large, we obtain
KME

/D ≈ −Dε, where ε = kME
/D2

0. Note that this
approximation retains the dependence on D. Analysis of



an approximate internal model for the nonlinear system
in this case is more tedious than that presented for
k1 6= k2 due to the inability to decouple the modified
and unmodified states; however, approximate adaptation
has been studied for a linearization under this scenario
(B. W. Andrews and Sontag 2006).

5. CONCLUSIONS

Adaptation to environmental changes is a key property
of many biological systems, and assumptions are usually
made when modeling these systems to highlight perfect
adaptation. It is plausible that real cells, however, do
not adapt perfectly but rather to within some tolerable
range of the steady-state adaptation level (Koshland et
al. 1982, Lauffenburger 2000). We have shown that a
system with such an approximate adaptation property
as well as a signal detection property must contain an
approximate model of the input being adapted to within
the same order of precision. This is an extension of the
internal model principle under the assumption that perfect
regulation is not required. We have illustrated this concept
by considering a published model of a perfectly adapting
biological systems: the four-state receptor modification
model used to model adaptation in E. coli (Iglesias and
Levchenko 2001). We show that perfect adaptation is
achieved through simplifying assumptions. When relaxed,
these assumptions yield a system that does not adapt
perfectly, but only partially, and a change of coordinates
reveals the presence of an approximate internal model.

Observe that the approximate adaptation condition is
formally similar to an input to output stability (Sontag
2006) condition, uniform on the initial states of the system
and exosystem, when ε is seen as an input (and admits,
when seen in that light, an obvious generalization to
time-varying ε). There is also a close relation to almost
disturbance decoupling with internal stability (Weiland
and Willems 1989, Isidori et al. 1999); however, the focus
of such work is on controller design rather than the effect
of system parameters on regulation as studied here. The
IMP has been shown for the related regulator problem
with internal stability (Francis and Wonham 1975).
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