
Nonlinear Analysis 147 (2016) 125–144

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Some remarks on spatial uniformity of solutions of
reaction–diffusion PDEs

Zahra Aminzarea, Eduardo D. Sontagb,∗

a The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ
08544-1000, USA
b Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA

a r t i c l e i n f o

Article history:
Received 31 May 2016
Accepted 5 September 2016
Communicated by Enzo Mitidieri

Keywords:
Spatial uniformity
Synchronization
Contraction
Reaction–diffusion PDEs
Logarithmic norm
Logarithmic Lipschitz constant

a b s t r a c t

In this paper, we present a condition which guarantees spatial uniformity for the
asymptotic behavior of the solutions of a reaction–diffusion partial differential equa-
tion (PDE) with Neumann boundary conditions in one dimension, using the Jaco-
bian matrix of the reaction term and the first Dirichlet eigenvalue of the Laplacian
operator on the given spatial domain. The estimates are based on logarithmic norms
in non-Hilbert spaces, which allow, in particular for a class of examples of interest
in biology, tighter estimates than other previously proposed methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study asymptotic behavior of the solutions of reaction–diffusion PDE systems of the
general form:

∂u1

∂t
(ω, t) = F1(u(ω, t), t) + d1(t)∆u1(ω, t)

...
∂un
∂t

(ω, t) = Fn(u(ω, t), t) + dn(t)∆un(ω, t),

(1)

subject to the Neumann boundary condition:

∂ui
∂n (ξ, t) = 0, ∀ξ ∈ ∂Ω , ∀i = 1, . . . , n, (2)
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or subject to the Dirichlet boundary condition:

ui(ξ, t) = 0, ∀ξ ∈ ∂Ω , ∀i = 1, . . . , n, (3)

or, in vector form:

∂u

∂t
(ω, t) = F (u(ω, t), t) +D(t)∆u(ω, t), ω ∈ Ω

where we assume

• Ω is an open and bounded subset of Rm with smooth boundary ∂Ω and outward normal n.
• u(ω, t) = (u1(ω, t), . . . , un(ω, t))T , where for any i, ui : Ω̄× [0,∞)→ R is twice continuously differentiable

in the first argument and continuously differentiable in the second argument.
• F : V × [0,∞)→ Rn is a Lipschitz (in its first argument) vector field with components Fi:

F (x, t) = (F1(x, t), . . . , Fn(x, t))T ,

for some functions Fi : V × [0,∞)→ R, where V is a convex subset of Rn.
• D(t) = diag (d1(t), . . . , dn(t)), where for each i, di(t) ≥ 0 is a continuous function of t. The matrix D(t)

is called the diffusion matrix.
• ∆u = (∆u1, . . . ,∆un)T , where ∆ = ∇ · ∇ is the Laplacian operator defined by ∆v =

m
i=1

∂2v
∂ω2
i

for
v = v(ω1, . . . , ωm).

In [3], we identified a class of reaction–diffusion equations with the property that any two solutions
converge to each other exponentially, i.e.,

∥(u− v)(·, t)∥ ≤ e−ct∥(u− v)(·, 0)∥

for some norm ∥ · ∥ and some positive constant c which only depends on the reaction part F ; we review the
main result of [3] in Theorem 1.

In this paper, we are interested in a class of reaction–diffusion equations with the property that every
solution converges to a spatially uniform solution. We will see (Remark 2) that any system in the former
class belongs to the latter class. But there are some systems (such as the so-called “Goodwin oscillator”
model that is a standard example in molecular biology) that do not belong to the former class but do belong
to the latter class. Motivated by these systems, we provide a condition of the reaction part F as well as the
diffusion matrix D and the structure of Ω , that guarantees spatial uniformity for the asymptotic behavior
of the solutions of a reaction–diffusion PDE with Neumann boundary conditions.

The convergence to uniform solutions in reaction–diffusion partial differential equations ∂u/∂t = F (u, t)+
D(t)∆u where u = u(ω, t), is a formal analogue of the synchronization of ordinary differential equation
(ODE) systems, in the sense explained next.

Consider interconnected systems ẋi = f(xi, t) +

j∈N(i) D(t)(xj − xi), where the ith subsystem (or

“agent”) has state xi(t). An interconnection graph provides the adjacency structure, and the indices in N(i)
represent the “neighbors” of the ith subsystem. The matrix D(t) is a diagonal matrix of diffusion strengths.
The system synchronizes when the difference between any two states goes to zero exponentially, i.e., ∀i, j,
(xi−xj)(t)→ 0 as t→∞. In [4] a sufficient condition for synchronization of such an interconnected system
is given.

In the analogy, we think of u(ω, ·) as representing an individual system or agent (the index “i” in the
synchronization problem) whose state is described at time t by u = u(ω, t). (So u = u(ω, t) plays the role
of xi(t). We use “u” to denote the state, instead of x, so as to be consistent with standard PDE notations.)
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Questions of convergence to uniform solutions in reaction–diffusion PDEs are also a classical topic of re-
search. We think of convergence to spatially uniform solutions as a sort of “synchronization” of independent
“agents”, one at each spatial location, and each evolving according to a dynamics specified by an ODE. In
that interpretation, our work is related to a large literature on synchronization of discrete groups of agents
connected by diffusion, whose interconnections are specified by an undirected graph.

Our methods in this paper, as in [3,4], are based on contraction theory and matrix measures. They allow
one to obtain quantitatively tighter estimates, at least for several PDEs of biological interest, than classical
results such as those in [23,7] (comparisons are given in Section 3). The organization of this paper is as follows.
In Section 2, after reviewing some of the introductory concepts discussed in [3], we will review previous
related works, and then we will state and prove the main result of this work. In Section 3, we will review the
biochemical example described in [12,24] and the Goodwin example studied in [18,5], in the current context.

2. Spatial uniformity of solutions of reaction–diffusion PDEs

2.1. Preliminaries: logarithmic Lipschitz constants

In this paper, we focus on conditions based on matrix measures. We recall (see for instance [21] or [13])
that, given a vector norm on Euclidean space (|·|), with its induced matrix norm ∥A∥, the associated matrix
measure µ is defined as the directional derivative of the matrix norm in the direction of A and evaluated at
the identity matrix, that is:

µ[A] := lim
h→0+

1
h

(∥I + hA∥ − 1) .

As every norm possesses right (and left) Gâteaux-differentials, the limit is known to exist and the convergence
is monotonic, see [9,29].

The matrix measure, also known as the “logarithmic norm” of a square matrix A, was independently intro-
duced by Germund Dahlquist [9], and Sergei Lozinskii [19], in 1959. In 1965, W.A. Coppel [8, page 58] showed
that µ can be used to bound solutions of linear differential equations ẋ = A(t)x. In 1970, R.H. Martin [20]
extended the definition of µ to functions which satisfy a Lipschitz condition on bounded subsets of a Banach
space (see Definition 2) and used this extension to bound solutions of the corresponding differential equations.

For ease of reference, we now borrow some definitions of logarithmic Lipschitz constants which are
originally based on the definitions in [28,11]. For more properties, technical lemmas and proofs see [3,1].

Definition 1 ([3, Definition 3]). Let (X, ∥ · ∥X) be a normed space and f : Y → X be a function, where
Y ⊆ X. The least upper bound (lub) Lipschitz constant of f induced by the norm ∥ · ∥X , on Y , is defined
by

LY,X [f ] = sup
u̸=v∈Y

∥f(u)− f(v)∥X
∥u− v∥X

.

Note that LY,X [f ] <∞ if and only if f is Lipschitz on Y .

When identifying a linear operator f : Rn → Rn with its matrix representation A with respect to the
canonical basis, LY,X [A] = ∥A∥X→X , where ∥ · ∥X→X is the operator norm induced by ∥ · ∥X .

Definition 2 ([3, Definition 4]). Let (X, ∥ · ∥X) be a normed space and f : Y → X be a Lipschitz function.
The least upper bound (lub) logarithmic Lipschitz constant of f induced by the norm ∥ · ∥X , on Y ⊆ X, is
defined by

µY,X [f ] = lim
h→0+

1
h

(LY,X [I + hf ]− 1) ,
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or equivalently,

µY,X [f ] = lim
h→0+

sup
u̸=v∈Y

1
h


∥u− v + h(f(u)− f(v))∥X

∥u− v∥X
− 1

. (4)

If X = Y , we write µX instead of µX,X . Whenever it is clear from the context, we drop the subscript and
simply write µ instead of µY,X .

When identifying a linear operator f : Rn → Rn with its matrix representation A with respect to the
canonical basis, we call µ a “matrix measure” or a “logarithmic norm”.

Notation 1 ([3, Definition 2]). Let (X, ∥ ·∥X) be a normed space and f : Y → X be a function. Denote µ+
Y,X

as follows

µ+
Y,X [f ] := sup

u̸=v∈Y
lim
h→0+

1
h


∥u− v + h(f(u)− f(v))∥X

∥u− v∥X
− 1

. (5)

If X = Y , we write µ+
X instead of µ+

X,X . Whenever it is clear from the context, we drop the subscript and
simply write µ+ instead of µ+

Y,X .

The (lub) logarithmic Lipschitz constant makes sense even if f is not differentiable. However, the constant
can be tightly estimated, for differentiable mappings on convex subsets of finite-dimensional spaces, by means
of Jacobians, [27]. In this work, Jf denotes the Jacobian of f .

Notation 2. For any 1 ≤ p ≤ ∞, and any nonsingular, diagonal matrix Q = diag (q1, . . . , qn), we introduce
a Q-weighted norm on CRn


Ω̄


as follows:

∥v∥p,Q :=
Q∥v1 ∥p, . . . , ∥vn ∥p

T
p

. (6)

Since

∥v∥p,Q =



i

|qi|p ∥vi∥pp

 1
p

1 ≤ p <∞

sup
i
|qi| ∥vi∥p p =∞,

without loss of generality we will assume qi > 0 for each i. Note that ∥v∥p,Q is finite, for any p, Q, because
each vi is a continuous function on Ω̄ and Ω̄ is a compact subset of Rm.

With a slight abuse of notation, we use the same symbol for a norm in Rn:

∥x∥p,Q := ∥Qx∥p.

For (X, ∥ · ∥p), where ∥ · ∥p is the Lp norm on X, for some 1 ≤ p ≤ ∞, we sometimes use the notation “µp”
instead of µX for the least upper bound logarithmic Lipschitz constant or logarithmic norm, and by “µp,Q”
we denote the least upper bound logarithmic Lipschitz constant or logarithmic norm induced by the weighted
Lp norm, ∥u∥p,Q := ∥Qu∥p, where Q is a fixed nonsingular matrix.

Lemma 1 ([3, Lemma 4 and Corollary 1]). Let (X, ∥ · ∥X) be a normed space and G : Y × [0,∞)→ X be a
Lipschitz function on its first argument, where Y ⊆ X. Let u, v : [0,∞)→ Y be two solutions of

du(t)
dt

= Gt(u(t)),
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where Gt(u) = G(u, t). Then for all t ∈ [0,∞),

D+∥(u− v)(t)∥X = ((u− v)(t), Gt(u(t))−Gt(v(t)))+

∥(u− v)(t)∥2X
∥(u− v)(t)∥X , (7)

where D+ denotes the upper right Dini derivative. In addition,

D+∥(u− v)(t)∥X ≤ µ+[Gt]∥(u− v)(t)∥X . (8)

Lemma 2 ([3, Corollary 3]). Let (X, ∥ · ∥X) be a normed space and G : Y × [0,∞) → X be a Lipschitz
function on its first argument, where Y ⊆ X. Suppose u, v : [0,∞)→ Y satisfy

(u̇− v̇)(t) = Gt(u(t))−Gt(v(t)),

where u̇ = du
dt and Gt(u) = G(u, t). Let c := supt∈[0,∞) µY,X [Gt]. Then for all t ∈ [0,∞),

∥u(t)− v(t)∥X ≤ ect∥u(0)− v(0)∥X . (9)

2.2. Previous work

Before we review some previous results and state the main result of this work, we recall the definitions
of solutions of reaction–diffusion PDEs with Neumann or Dirichlet boundary conditions as follows.

Definition 3. By a solution of the reaction–diffusion PDE
∂u

∂t
(ω, t) = F (u(ω, t), t) +D(t)∆u(ω, t)

with

1. Neumann boundary conditions: ∂u∂n (ξ, t) = 0, ∀ξ ∈ ∂Ω ; or
2. Dirichlet boundary condition: u(ξ, t) = 0, ∀ξ ∈ ∂Ω ,

and with initial condition

u(ω, 0) = u0(ω), ω ∈ Ω

on an interval [0, T ), where 0 < T ≤ ∞, we mean a function u = (u1, . . . , un)T , with u : Ω̄ × [0, T ) → V ,
such that:

• for each ω ∈ Ω̄ , u(ω, ·) is continuously differentiable;
• for each t ∈ [0, T ), u(·, t) is in

1. Y(n)
V =


v : Ω̄ → V, v = (v1, . . . , vn)T , vi ∈ C2

R

Ω̄

, ∂vi∂n (ξ) = 0, ∀ξ ∈ ∂Ω , ∀i


, (the superscript (n) is

for Neumann); or
2. Y(d)

V =

v : Ω̄ → V, v = (v1, . . . , vn)T , vi ∈ C2

R

Ω̄

, vi(ξ) = 0, ∀ξ ∈ ∂Ω , ∀i


, (the superscript (d) is

for Dirichlet);
• for each ω ∈ Ω̄ , and each t ∈ [0, T ), u satisfies the above PDE.

Since we are interested here in estimates relating pairs of solutions, we do not need to deal with well-
posedness of the solutions. Our results will refer to solutions that are already assumed to exist and are global.

Remark 1. There are various sufficient conditions that imply global existence of solutions. For example, when
the diffusion matrix D is diagonal and the diffusion constants are different, the following extra conditions
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on F and V guarantee a unique (global) solution of Eq. (1) (see [26, Chapter 14] for more details about
existence of the solutions):

• The convex set V is a rectangle of the following form

V = {x ∈ Rn : ai ≤ xi ≤ bi} for some constants ai’s and bi’s.

• The vector field F (x, t) is twice continuously differentiable on x and continuous on (x, t).
• The vector field F points strictly into V , i.e., for any outward normal vector n⃗ of ∂V , F · n⃗ < 0.

These extra conditions guarantee that V is invariant (which means u(ω, 0) ∈ V implies u(ω, t) ∈ V , for any
t ∈ [0, T ) and any ω ∈ Ω) and Eq. (1) has a unique solution.

The ai’s and bi’s could be ±∞; but finite ai’s and bi’s guarantee global existence of the solutions.

Reaction–diffusion PDEs with equal diffusion constants, i.e., D = aI for some a > 0, can admit any
convex invariant set (provided that F points into the convex set). But when the diffusion constants are
different, this cannot happen. For example (see [16, page 158]), consider two heat equations (F = 0) with
constant coefficients d1 and d2 on the open interval (0, 1) and with equal “non-constant” initial conditions.
Obviously, the convex set V = {u = (u1, u2) : u1 = u2} is an invariant set when d1 = d2, but it is not an
invariant set when d1 ̸= d2.

Note that F and V in the examples that we study in this work, admit invariant rectangles.
More theorems on existence and uniqueness for PDEs such as (1) can be found in standard references,

e.g., [14,10,25,6,22].

Definition 4. We say that the reaction–diffusion PDE (1) is contractive, if for any two solutions u, v of (1),
subject to Neumann or Dirichlet boundary conditions, ∥(u− v)(·, t)∥ → 0 as t→∞.

Definition 5. We say that the reaction–diffusion PDE (1) synchronizes, if for any solution u of (1), subject
to Neumann or Dirichlet boundary conditions, there exists ū(t) such that ∥u(·, t)− ū(t)∥ → 0 as t→∞, or
∥∇u(·, t)∥ → 0 as t→∞, respectively.

The following theorem, from [3], provides a sufficient condition for contractivity of the reaction–diffusion
PDE (1) subject to the Neumann boundary condition (2). Then, in Remark 2, we show that how contractivity
of the reaction–diffusion PDE implies synchronization.

Theorem 1. Consider the reaction–diffusion PDE (1), defined on [0, T ), subject to Neumann boundary
conditions (2). Let c = sup(x,t) µp,Q[JF (x, t)] for some 1 ≤ p ≤ ∞, and some positive diagonal matrix
Q. Then for any two solutions u, v of the PDE and all t ∈ [0, T ):

∥u(·, t)− v(·, t)∥p,Q ≤ e
ct ∥u(·, 0)− v(·, 0)∥p,Q .

Remark 2. Under the conditions of Theorem 1, if c = sup(x,t) µp,Q[JF (x, t)] < 0, any solution u of the PDE
(1) with u(ω, 0) = u0(ω) ∈ Y(n)

V , which is defined globally, exponentially converges to the spatially uniform
solution ū(t) which is itself the solution of the following ODE system:

ẋ = F (x, t), x(0) = 1
|Ω |


Ω

u0(ω) dω. (10)
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But, note that the condition c < 0 rules out any interesting non-equilibrium behavior. For instance in
the example of Goodwin’s oscillatory system, Section 3, c < 0 kills out the oscillation. So we look for a
weaker condition than c < 0, that guarantees spatial uniform convergence (which is a weaker property than
contraction) while preserving interesting non-equilibrium behavior, such as oscillations.

Recall, [17], that for any bounded, open subset Ω ⊂ Rm, there exist a sequence of non-negative eigen-
values 0 ≤ λ

(n)
1 ≤ λ

(n)
2 ≤ · · · going to ∞, (superscript (n) for Neumann) and a sequence of corresponding

orthonormal eigenfunctions φ(n)
1 , φ

(n)
2 , . . . (defining a Hilbert basis of L2(Ω)) satisfying the following Neu-

mann eigenvalue problem:

−∆φ(n)
i = λ

(n)
i φ

(n)
i in Ω

∇φ(n)
i · n = 0 on ∂Ω .

(11)

Note that the first eigenvalue is always zero, λ(n)
1 = 0, and the corresponding eigenfunction is a nonzero

constant (φ(n)
1 (ω) = 1/


|Ω |).

The following re-phasing of a theorem from [5], provides a sufficient condition on F and D (time invariant
diffusion matrix) using the Jacobian matrix of the reaction term and the second Neumann eigenvalue of the
Laplacian operator on the given spatial domain to insure the convergence of trajectories, in this case to their
space averages in weighted L2 norms. The proof in [5] is based on the use of a quadratic Lyapunov function,
which is appropriate for Hilbert spaces. We have translated the result to the language of contractions.
(Actually, the result in [5] is slightly stronger, in that it allows for non-diagonal diffusion and also
non-diagonal weighting matrices Q, by substituting these assumptions by a commutativity type of condition,
see [2] for more details and a generalization to spatially-varying diffusion.)

Theorem 2. Consider the reaction–diffusion system (1) subject to Neumann boundary conditions. Let

c := sup
(x,t)∈V×[0,∞)

µ2,Q


JF (x, t)− λ(n)

2 D

,

where Q is a positive diagonal matrix. Then

∥u(·, t)− ũ(t)∥2,Q ≤ ect∥u(·, 0)− ũ(0)∥2,Q,

where ũ(t) = 1
|Ω|

Ω
u(ω, t) dω.

Note that when c < 0 and u is defined globally, the reaction–diffusion system (1) synchronizes.
The following theorem from [4] is an analogous result to Theorem 2 for any norm but restricted to the

linear operators F , F (u, t) = A(t)u, where for any t, A(t) ∈ Rn×n.

Theorem 3. Consider the reaction–diffusion system (1), for a linear operator F . For a given norm ∥ · ∥ in
Rn, let

c := sup
(x,t)∈V×[0,∞)

µ

JF (x, t)− λ(n)

2 D(t)

,

where µ is the logarithmic norm induced by ∥ · ∥. Then for any ω ∈ Ω and any t ≥ 0,

∥u(ω, t)− ū(t)∥ ≤

i≥2

αi(t)φ(n)
i (ω)

 ≤ ect
i≥2

αi(0)φ(n)
i (ω)

 ,
where ū(t) is the solution of the system (10) with initial condition u0(ω) = u(ω, 0), and αi(t) =
Ω
u(ω, t)φ(n)

i (ω) dω. In particular, when c < 0,

∥u(ω, t)− ū(t)∥ → 0 exponentially, as t→∞.
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2.3. Main results

In what follows, we first present some conditions, analogous to the conditions in Theorem 1, which guar-
antee contractivity of the solutions of a reaction–diffusion PDE with Dirichlet boundary conditions. Then,
we show that how contractivity of the reaction–diffusion PDE with Dirichlet boundary conditions implies
spatial uniformity for the asymptotic behavior of the solutions of a reaction–diffusion PDE with Neumann
boundary conditions. For non-Euclidean norms we only provide results in one dimensional space, and the
general problem remains open.

Recall, [17], that for any bounded, open subset Ω ⊂ Rm, there exists a sequence of positive eigenvalues
0 < λ

(d)
1 ≤ λ

(d)
2 ≤ · · · going to∞ (superscript (d) for Dirichlet), and a sequence of corresponding orthonormal

eigenfunctions φ(d)
1 , φ

(d)
2 , . . . (defining a Hilbert basis of L2(Ω)) satisfying the following Dirichlet eigenvalue

problem:

−∆φ(d)
i = λ

(d)
i φ

(d)
i in Ω

φ
(d)
i = 0 on ∂Ω .

(12)

Let us assume that Ω is a connected open set. Then the first eigenvalue λ
(d)
1 is simple and the first

eigenfunction φ(d)
1 has a constant sign on Ω . Without loss of generality, φ(d)

1 can be assumed to be everywhere
positive on Ω .

We next prove a result analogous to Theorem 1 (restricted to p = 1), for reaction–diffusion PDE

∂u1

∂t
(ω, t) = F1(u(ω, t), ω, t) + d1(t) ∂

2u1

∂ω2 (ω, t)
...

∂un
∂t

(ω, t) = Fn(u(ω, t), ω, t) + dn(t)
∂2un
∂ω2 (ω, t),

(13)

on Ω = (0, L), and subject to Dirichlet boundary conditions:

ui(0, t) = ui(L, t) = 0, ∀i = 1, . . . , n. (14)

Note that in (13), we let F depend on ω. In fact, F is defined on V × Ω × [0,∞).

Theorem 4. Consider the reaction–diffusion PDE (13) subject to Dirichlet boundary conditions (14). Let

c = sup
(ω,t)

sup
x
µ1,Q


JF (x, ω, t)− π2/L2D(t)


,

and let u(ω, t) and v(ω, t) be two solutions of (13) and (14). Then

∥(u− v)(·, t)∥1,φ,Q ≤ ect∥(u− v)(·, 0)∥1,φ,Q, (15)

where ∥u∥1,φ,Q = ∥φu∥1,Q and φ = sin(πω/L). Note that for Ω = (0, L), the first Dirichlet eigenvalue is
π2/L2 and a corresponding eigenfunction is sin(πω/L).

To prove Theorem 4, we need the following lemmas:

Lemma 3. Under the conditions of Theorem 4 and for any fixed t, let A(t) denote an n×n diagonal matrix
of operators on Y(d)

V with operators di(t) ∂2

∂ω2 on the diagonal. Let Λ(d)(t) denote an n× n diagonal matrix
of operators on Y(d)

V with operators Λ(d)
i (t) on the diagonal which are defined as follows:

Λ(d)
i (t)(ψ)(ω) := λ

(d)
1 di(t)ψi(ω).
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Then

µ+
1,φ,Q


A+ Λ(d)


= 0, (16)

where µ+
1,φ,Q is induced by ∥ · ∥1,φ,Q.

See the Appendix for a proof.

Lemma 4. Let G : Rn × Ω → Rn be Lipschitz with respect to the first argument. Define Ĝ : Y(d)
V → Rn as

follows:

Ĝ(u)(ω) := G(u(ω), ω).

Then,

µ+
p,φ,Q[Ĝ] ≤ sup

ω∈Ω
µp,Q[G(·, ω)]. (17)

In addition, if G is continuously differentiable with respect to x then

µ+
p,φ,Q[Ĝ] ≤ sup

ω∈Ω
µp,Q[G(·, ω)] = sup

ω∈Ω
sup
x
µp,Q[JG(x, ω)].

Note that although we will need this lemma only for p = 1, the result of this lemma is true for any
1 ≤ p ≤ ∞. See the Appendix for a proof.

Proof of Theorem 4. Suppose that u is a solution of Eq. (13). Define û, Ht, and A as follows:

• û : [0, T )→ Y(d)
V , û(t)(ω) := u(ω, t).

• Ht : Y(d)
V → Rn, Ht(ψ)(ω) := F (ψ(ω), ω, t), ∀ψ ∈ Y(d)

V , ∀ω ∈ Ω .
• A is as defined in Lemma 3.

Then by the definition,

dû

dt
(t) = (Ht +A) (û(t)) . (18)

Suppose u and v are two solutions of Eq. (13). By Lemma 1 and Eq. (18) we have:

D+∥(û− v̂)(t)∥1,φ,Q ≤ µ+
1,φ,Q[Ht +A]∥(û− v̂)(t)∥1,φ,Q. (19)

Let Λ(d) be as in Lemma 3. By subadditivity property of µ+ (see [3, Proposition 2]), Lemmas 3 and 4, we
have:

µ+
1,φ,Q[Ht +A] ≤ µ+

1,φ,Q[Ht − Λ(d)] + µ+
1,φ,Q[A+ Λ(d)]

≤ µ+
1,φ,Q


Ht − Λ(d)


≤ sup
ω∈Ω

sup
x∈V

µ1,Q


JF (x, ω, t)− λ(d)

1 D(t)


≤ sup
t∈[0,T )

sup
ω∈Ω

sup
x∈V

µ1,Q


JF (x, ω, t)− λ(d)

1 D(t)


= c. (20)

By (19), (20), and Lemma 2, we get:

∥(û− v̂)(t)∥1,φ,Q ≤ ect∥(û− v̂)(0)∥1,φ,Q.
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In terms of the PDE (13), this last estimate can be equivalently written as:

∥(u− v)(·, t)∥1,φ,Q ≤ ect∥(u− v)(·, 0)∥1,φ,Q. �

Note that unlike in Neumann boundary problems, one cannot conclude synchronization from contraction
in the Dirichlet boundary problems unless for any t and ω, F (0, ω, t) = 0:

Corollary 1. Under the conditions of Theorem 4, if for any (ω, t), F (0, ω, t) = 0, then v = 0 is a uniformly
spatial solution of Eqs. (1) and (3), and therefore, for any solution u of Eq. (1) and (3),

∥u(·, t)∥1,φ,Q ≤ ect∥u(·, 0)∥1,φ,Q,

Hence, when c < 0, the PDE system synchronizes.

The following theorem is our main result. It provides a sufficient condition for synchronization of
reaction–diffusion systems subject to the Neumann boundary condition restricted to one dimensional space
and p = 1. The proof is based on Theorem 4.

Theorem 5. Let u(ω, t) be a solution of

∂u

∂t
(ω, t) = F (u(ω, t), ω, t) +D(t) ∂

2u

∂ω2 (ω, t) in Ω = (0, L)

∂u

∂ω
(0, t) = ∂u

∂ω
(L, t) = 0,

(21)

defined for all t ∈ [0, T ) for some 0 < T ≤ ∞. In addition, assume that u(·, t) ∈ C3(Ω̄), for all t ∈ [0, T ).
Let

c = sup
ω∈Ω

sup
t∈[0,T )

sup
x∈V

µ1,Q

JF (x, ω, t)− π2/L2D(t)


.

Then for all t ∈ [0, T ):  ∂u∂ω (·, t)


1,φ,Q
≤ ect

 ∂u∂ω (·, 0)


1,φ,Q
, (22)

where

∥ · ∥1,φ,Q := ∥sin(πω/L)(·)∥1,Q .

The significance of Theorem 5 lies in the fact that sin(πω/L) is nonzero everywhere in the domain (except
at the boundary). In that sense, we have exponential convergence to uniform solutions in a weighted L1

norm, the weights being specified in V by the matrix Q and in space by the function sin (πω/L).

Proof. Suppose that u is a solution of Eq. (21), and let v = ∂u
∂ω . Then by taking ∂

∂ω on both sides of
Eq. (21), we get the following PDE:

∂v

∂t
= JF (u(ω), t)v +D(t) ∂

2v

∂ω2 , (23)

subject to Dirichlet boundary condition: v(0) = v(L) = 0. Note that since we assume that u(·, t) ∈ C3(Ω̄),
for all t ∈ [0, T ), ∂2v/∂ω2 makes sense. Therefore, by Eq. (23) and Corollary 1,

∥v(·, t)∥1,φ,Q ≤ ect∥v(·, 0)∥1,φ,Q,

where c = supt∈[0,T ) supω∈Ω supx∈V µ1,Q

JF (x, ω, t)− π2/L2D(t)


. �

Another proof of Theorem 5, using the method of discretization is given in the Appendix.
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Remark 3. In the case of Ω = (0, L), λ(d)
1 = λ

(n)
2 . Therefore, one can state the conditions of Theorem 5 in

terms of the second Neumann eigenvalue instead of the first Dirichlet eigenvalue.

3. Examples

Example 1. In [3], we studied the following system of PDEs on Ω = (0, 1) with Neumann boundary condi-
tions, which models a simple biochemical binding/unbinding system:

∂x

∂t
= z(t)− δx+ k1y − k2(SY − y)x+ d1∆x

∂y

∂t
= −k1y + k2(SY − y)x+ d2∆y,

(24)

where x = x(ω, t), y = y(ω, t), z(t) is a positive function, δ, k1, k2, SY are positive constants, and d1, d2 are
non-negative diffusion constants. We constructed there a positive diagonal matrix Q such that

c := sup
(x,y)∈V

µ1,Q[JF (x, y)] < 0,

where the vector field F = (z(t)− δx+ k1y − k2(SY − y)x,−k1y + k2(SY − y)x)T , with the convex domain
V = [0,∞)× [0, SY ].

Therefore, by Remark 2, we conclude that any solution of (24) converges to a uniform solution with at
least rate c.

Next, using Theorem 5, we show that any solution of (24) converges to a uniform solution at a better
rate than c.

By subadditivity of µ, we have:

sup
(x,y)∈V

µ1,Q[JF (x, y)− π2D] ≤ sup
(x,y)∈V

µ1,Q[JF (x, y)]− π2d,

where d = min{d1, d2}. Therefore,

c0 := sup
(x,y)∈V

µ1,Q[JF (x, y)− π2D] < c < 0.

Hence, by Theorem 5, for any solution u = (x, y)T of (24): ∂u∂ω (·, t)


1,φ,Q
≤ ec0t

 ∂u∂ω (·, 0)


1,φ,Q
,

where in this example φ(ω) = sin(πω), since Ω = (0, 1).
Also, in [4], we showed that for any non-negative λ and any positive diagonal matrix D = diag (d1, d2),

c := sup
(x,y)

µ2,Q[JF (x, y)− λD] ≥ 0,

and therefore, we cannot apply the existing results based on L2 norms (e.g. [5]) to show the asymptotically
uniform behavior of the solutions of (24).

Fig. 1 indicates two different solutions of the biochemical model, Eq. (24), namely (x1, y1)T and (x2, y2)T
on Ω = (0, 2), with the following initial conditions,

(cos(πx), 0.05(1− cos(2πx)))T ∈ Y(n)
V , (2− cos(2πx), 0.1 cos(πx))T ∈ Y(n)

V ,

and for a periodic input z, namely z(t) = 20(1 + sin(10t)), using the following set of parameters:

δ = 20, k1 = 0.5, k2 = 5, SY = 0.1, d1 = 0.001, d2 = 0.1, M = 10.

Fig. 1 also shows how the difference between these two solutions goes to zero as expected.
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Fig. 1. Two solutions (x1, y1)T and (x2, y2)T of Eq. (24) and their differences (x2 − x1, y2 − y1)T .

Fig. 2. V = [0,M ]× [0, SY ] is an invariant set for Eq. (24).

Remark 4. In the biochemical example, if we assume that z(t) is upper bounded by M > 0, we can show
that the following closed rectangle

V = [0,M ]× [0, SY ], with M >
M+ k1SY

δ
,

is forward invariant and hence the reaction–diffusion system has a global solution.

Since V is a rectangle, it suffices to show that F · n⃗ < 0, for any outward normal vector n⃗ of the boundary
of V . For example, as shown in Fig. 2, n⃗ = (−1, 0) is the normal vector of {x = 0, 0 ≤ y ≤ SY }, and

F · n⃗ = −z(t)− k1y ≤ 0, because both z(t) and y are non-negative.

Similarly, one can show that F · n⃗ < 0, for the other normal vectors.

Example 2. In 1965, Brian Goodwin proposed a differential equation model, that describes a generic model
of an oscillating autoregulatory gene, and studied its oscillatory behavior [15]. In [4], we studied the following
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Fig. 3. Goodwin oscillator, no diffusion (parameters as in Eq. (26)).

systems of ODEs which is a variant of Goodwin’s model [30]:

ẋ = a

k + z
− bx

ẏ = αx− βy

ż = γy − δz

kM + z
.

Here, we assume a continuous model where species diffuse in space, namely in Ω = (0, 1). This example
has been studied in [5]. The following system of PDEs, subject to Neumann boundary conditions, describes
the evolution of x(ω, t), y(ω, t), and z(ω, t) where (ω, t) ∈ (0, 1)× [0,∞):

∂x

∂t
= a

k + z
− b x+ d1∆x

∂y

∂t
= α x− β y + d2∆y

∂z

∂t
= γ y − δz

kM + z
+ d3∆z,

(25)

where F =

a
k+z − bx, αx− βy, γy −

δz
kM+z

T
, and (x, y, z)T ∈ V = [0,∞)3 (since x, y, and z could be the

concentrations of some chemicals, we assume that they are all non-negative).

Note that V = [0,∞)3 is a convex set and one can show that it is an invariant set by showing that
F · n⃗ < 0 where n⃗ is the outward normal vector on ∂V .

Fig. 3 provides plots of solutions x, y, and z of (25), using the following parameter values from the
textbook [18]:

a = 150, k = 1, b = α = β = γ = 0.2, δ = 15, KM = 1, (26)

and with the following initial condition,

(100(cos(2πx) + 2), 50(cos(5πx) + 3), 100(cos(6πx) + 1))T ∈ Y(n)
V ,

which results in oscillation when there is no diffusion (d1 = d2 = d3 = 0).
A simple calculation shows that for the parameters given in Eq. (26), the weighted matrix Q =

diag (1, 12, 11), and diffusion constants 2.2/π2 < d1, and d2 = d3 = 0, the following inequality holds

sup
w=(x,y,z)T∈V

µ1,Q[JF (w)− π2D] < 0.

Applying Theorem 5, we conclude that for 2.2/π2 < d1 and d2 = d3 = 0, Eq. (25) synchronizes, meaning
that solutions tend to uniform solutions. Note that to have synchronization, 2.2/π2 is not a sharp lower
bound for d1, i.e., the system would synchronize even for smaller values of d1.
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Fig. 4. Goodwin oscillator, x diffuses (parameters as in Eq. (26)).

Fig. 4 shows the spatial uniformity of the solutions of (25), for the same parameter values and initial
conditions as in Fig. 3, when 2.2/π2 < d1, here d1 = 0.3, and d2 = d3 = 0.

In what follows, we compare our result with the results in [5,23] using the Goodwin example.
Considering Eq. (25), the following sufficient condition in [5, Equation 55] is given by Arcak for synchro-

nization:
αγa

k(b+ λd1)(β + λd2)λd3
< 4, (27)

where λ = π2. Note that when d3 = 0, one cannot apply (27) directly to get synchronization.
In [23, Equation 3], Othmer provides a sufficient condition for uniform behavior of the solutions of the

reaction–diffusion PDE (1) on (0, L), subject to Neumann boundary conditions:

sup
w
∥JF (w)∥ < π2/L2 min

i
di. (28)

In Goodwin’s example (25), supw ∥JF (w)∥ is positive and finite (the sup is taken at z = 0), and
mini di = 0, hence (28) does not hold and this condition is not applicable for this example.

Note that in [7], Conway et al. independently provided condition (28) for spatial homogeneity in L2. In
fact, they showed spatial homogeneity in L2 for a more general class of reaction–diffusion systems.

4. Open problems

Although synchronization of the PDE system (1) in weighted L2 norms is a well-understood problem, the
problem is still open for general norms. In Theorem 5 we only showed the result for weighted L1 norm and
restricted to one dimensional spaces.
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Appendix

Proof of Lemma 3. To prove Lemma 3, we need the following lemma:

Lemma 5. Pick any u : (0, L)→ R such that ∆u = ∂2u
∂ω2 is defined on (0, L). Then, there exists a set I ⊂ (0, L)

such that:
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• µ(I) = 0, where µ denotes Lebesgue measure; and
• ∆ |u| is defined on (0, L) \ I.

In fact, we may take I =

ω ∈ (0, L) : u(ω) = 0, ∂u∂ω (ω) ̸= 0


.

Proof. By continuity of u, for any point ω∗ ∈ I, there is an interval I∗, such that ω∗ ⊂ I∗ ⊂ I and u is
either increasing or decreasing in that interval. Therefore, I ∩ I∗ = {ω∗} and thus each ω∗ ∈ I is isolated.
Hence, I is countable and of measure zero.

If u > 0 or < 0, then it is trivial that ∆ |u| = |∆u|. Suppose that u(ω∗) = 0 and ∂u
∂ω (ω∗) = 0. Then

u(ω) = (ω − ω∗)2v(ω) for some function v. Then

∆u(ω) = 2v(ω) + (ω − ω∗)2∆v(ω) + 4(ω − ω∗) ∂v
∂ω

(ω). (29)

On the other hand,

∂

∂ω
|u| (ω) =


2(ω − ω∗)v(ω) + (ω − ω∗)2 ∂v

∂ω
(ω)
 v(ω) ̸= 0

0 v(ω) = 0.

Therefore,

∆ |u| (ω) =


2v(ω) + (ω − ω∗)2∆v(ω) + 4(ω − ω∗) ∂v

∂ω
(ω)
 v(ω) ̸= 0

lim
ν→ω

1
ν − ω

2(ω − ω∗)v(ω) + (ω − ω∗)2 ∂v

∂ω
(ω)
 v(ω) = 0.

(30)

Hence, by computing (29) and (30) at ω = ω∗, we get:

∆ |u| (ω∗) = |2v(ω∗)| = |∆u(ω∗)| . �

Proof of Lemma 3. By definition of µ+
1,φ,Q we have:

µ+
1,φ,Q[A+ Λ(d)] = sup

u∈Y(d)
V

lim
h→0+

1
h



i

qi

Ω
φ(ω)

ui + hdi(t)(∆ + λ
(d)
1 )ui(ω)

 dω
i

qi

Ω
φ(ω) |ui(ω)| dω

− 1

 ,

it is enough to show that for a fixed u ̸= 0 ∈ Y(d)
V and a fixed i = 1, . . . , n, and fixed t:

lim
h→0+

1
h


Ω

φ(ω)
ui(ω) + hdi(t)(∆ + λ

(d)
1 )ui(ω)

 dω − 
Ω

φ(ω) |ui| dω


= 0. (31)

Or equivalently, after dividing by di(t)

Ω
φ(ω) |ui| dω, (note that if di(t) = 0, then the left hand side of

(31) is zero, so we assume that di(t) ̸= 0) and renaming di(t)h as h, and dropping i, we need to show that:

lim
h→0+

1
h



Ω
φ(ω)

u(ω) + h(∆ + λ
(d)
1 )u(ω)

 dω
Ω
φ(ω) |u| dω

− 1

 = 0. (32)

Let I be as in Lemma 5: the set of points of Ω = (0, L) such that for any ω ∈ I, u(ω) = 0 and ∂u∂ω (ω) ̸= 0. To
show that Eq. (32) holds, we add and subtract φ(ω)


|u|+ h∆ |u|+ λ

(d)
1 |u|


in the integral of the numerator
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of the left hand side of (32), and get:

lim
h→0+

1
h



Ω
φ(ω)

u+ h(∆ + λ
(d)
1 )u

 dω
Ω
φ(ω) |u| dω

− 1


= lim
h→0+

1
h



Ω
φ(ω)


|u|+ h(∆ + λ

(d)
1 ) |u|


dω

Ω
φ(ω) |u| dω

− 1


+ lim
h→0+

1
h



Ω
φ(ω)

u+ h(∆ + λ
(d)
1 )u

− |u| − h(∆ + λ
(d)
1 ) |u|


dω

Ω
φ(ω) |u| dω

 . (33)

First, we show that the first term of the right hand side of (33) is 0. By the Divergence Theorem and
Dirichlet boundary conditions, we have (recall that φ = φ

(d)
1 ):

Ω

φ
(d)
1 ∆ |u| =


∂Ω

φ
(d)
1 ∇ |u| · n−


Ω

∇ |u| · ∇φ(d)
1 (φ1 = 0 on ∂Ω)

= −

∂Ω

∇φ(d)
1 |u| · n +


Ω

|u|∆φ(d)
1 (u = 0 on ∂Ω)

=

Ω

|u|∆φ(d)
1

= −

Ω

|u|λ(d)
1 φ

(d)
1 .

Therefore, 
Ω

φ(ω)

λ

(d)
1 + ∆


|u| (ω) dω = 0,

and so:

lim
h→0+

1
h



Ω
φ(ω)


|u|+ h(∆ + λ

(d)
1 ) |u|


dω

Ω
φ(ω) |u| dω

− 1

 = 0.

Next, we show that the second term of the right hand side of (33) is 0:

lim
h→0+

1
h



Ω
φ(ω)

u+ h

∆ + λ

(d)
1


u
− |u| − h∆ + λ

(d)
1


|u|

dω

Ω
φ(ω) |u| dω

 = 0. (34)

In this part, we drop the superscript (d) for the ease of notation: λ1 = λ
(d)
1 . For a fixed u ∈ Y(d)

V , we define
Fh, for any h > 0, as follows:

Fh(ω) := 1
h
{φ(ω) (|u+ h(∆ + λ1)u| − |u| − h(∆ + λ1) |u|) (ω)} .

1. First, we will show that there exists M > 0 such that for all h positive, |Fh| < M almost everywhere:
We study Fh, for any h > 0, on the following possible subsets of W := Ω \ I:
• W1 := {ω : u(ω) > 0, (∆ + λ1)u(ω) ≥ 0}. By definition,

Fh(ω) = φ(ω)
h

(u+ h(∆ + λ1)u− u− h(∆ + λ1)u) (ω) = 0.
• W2 := {ω : u(ω) > 0, (∆ + λ1)u(ω) < 0, u > |(∆ + λ1)u|h}. By definition,

Fh(ω) = φ(ω)
h

(u+ h(∆ + λ1)u− u− h(∆ + λ1)u) (ω) = 0.
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• W3 = {ω : u(ω) > 0, (∆ + λ1)u(ω) < 0, u < |(∆ + λ1)u|h}. By definition,

Fh(ω) = φ(ω)
h

(−u− h(∆ + λ1)u− u− h(∆ + λ1)u) (ω).
Using the triangle inequality and the assumption u < |(∆ + λ1)u|h, we get:

|Fh| <
2
h

max
Ω
|φ| (|u|+ h |(∆ + λ1)u|)

< 4 max
Ω
|φ| |(∆ + λ1)u|

≤ 4 max
Ω
|φ|


max
Ω
|∆u|+ λ1 max

Ω
|u|


=: M. (35)
(Note that, without loss of generality, we assume that M ̸= 0; otherwise, u = 0. Therefore Fh = 0 on
Ω .)
• W4 := {ω : u(ω) < 0, (∆ + λ1)u(ω) ≤ 0}. By definition,

Fh(ω) = φ(ω)
h

(−u− h(∆ + λ1)u+ u+ h(∆ + λ1)u) (ω) = 0.

• W5 := {ω : u(ω) < 0, (∆ + λ1)u(ω) > 0, |u| < h(∆ + λ1)u}. Similar to the case of W3, |Fh| < M .
• W6 := {ω : u(ω) < 0, ∆u(ω) > 0, |u| > (∆ + λ1)uh}. By definition,

Fh(ω) = φ(ω)
h

(−u− h(∆ + λ1)u+ u+ h(∆ + λ1)u) (ω) = 0.

• W7 := {ω : u(ω) = 0, uω(ω) = 0}. In this case, by definition of ∆ |u|, we have ∆ |u| (ω) = |∆u(ω)|.
Therefore, Fh(ω) = 0.

2. Next, we will show that as h → 0, Fh → 0 almost everywhere. Fix ω ∈ Ω \ I and consider the following
cases:
• u(ω) > 0. We can choose h small enough, such that

|u(ω) + h(∆ + λ1)u(ω)| = u(ω) + h(∆ + λ1)u(ω).
Therefore,

Fh(ω) = 1
h
φ(ω)(u(ω) + h(∆ + λ1)u(ω)− u(ω)− h(∆ + λ1)u(ω)) = 0.

• u(ω) < 0. We can choose h small enough, such that
|u(ω) + h(∆ + λ1)u(ω)| = −u(ω)− h(∆ + λ1)u(ω).

Therefore,
Fh(ω) = 1

h
φ(ω)(−u(ω)− h(∆ + λ1)u(ω) + u(ω) + h(∆ + λ1)u(ω)) = 0.

• u(ω) = 0. Then as we discussed before, on W7, Fh(ω) = 0.

Using 1 and 2, and the Dominated Convergence Theorem, we can conclude (34). �

Proof of Lemma 4. Let c := supω∈Ω µp,Q[G(·, ω)]. For any ω ∈ Ω , we have

lim
h→0+

1
h

sup
x ̸=y∈V


∥x− y + h(G(x, ω)−G(y, ω))∥p,Q

∥x− y∥p,Q
− 1

≤ c.

Fix an arbitrary ϵ > 0. Then there exists h0 > 0 such that for all 0 < h < h0,

1
h

sup
x ̸=y∈V


∥x− y + h(G(x, ω)−G(y, ω))∥p,Q

∥x− y∥p,Q
− 1

< c+ ϵ.

Therefore, for any x ̸= y, and 0 < h < h0

∥x− y + h(G(x, ω)−G(y, ω))∥p,Q
∥x− y∥p,Q

< (c+ ϵ)h+ 1. (36)
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For fixed u ̸= v ∈ Y(d)
V , let Ω1 = {ω ∈ Ω̄ : u(ω) ̸= v(ω)}. Fix ω0 ∈ Ω1, and let x = u(ω0) and y = v(ω0). We

give a proof for the case p <∞; the case p =∞ is analogous. Using Eq. (36), we have:
i

qpi |ui(ω0)− vi(ω0) + h(Gi(u(ω0), ω0)−Gi(v(ω0), ω0))|p
 1
p


i

qpi |ui(ω0)− vi(ω0)|p
 1
p

< (c+ ϵ)h+ 1. (37)

Multiplying both sides by the denominator and raising to the power p, we have:
i

qpi |(ui − vi) + h (Gi(u, ω0)−Gi(v, ω0)) (ω)|p < ((c+ ϵ)h+ 1)p

i

qpi |(ui − vi)|
p
. (38)

Since Ĝ(u)(ω) = G(u(ω), ω), Eq. (37) can be written as:
i

qpi

(ui − vi) + h

Ĝi(u)− Ĝi(v)

p < ((c+ ϵ)h+ 1)p

i

qpi |(ui − vi)|
p
.

Now by multiplying both sides of the above inequality by φ(ω) which is nonnegative, and taking the integral
over Ω̄ , we get: u− v + h


Ĝ(u)− Ĝ(v)


p,φ,Q

< ((c+ ϵ)h+ 1)∥u− v∥p,φ,Q.

(Note that for ω ̸∈ Ω1,

((c+ ϵ)h+ 1)p

i

qpi |ui(ω)− vi(ω)|p = 0

which we can add to the right hand side of (38), and also
i

qpi |ui(ω)− vi(ω) + h(Gi(u(ω), ω)−Gi(v(ω), ω))|p = 0

which we can add to the left hand side of (38), and hence we can indeed take the integral over all Ω̄ .)

Hence,

lim
h→0+

1
h


u− v + h


Ĝ(u)− Ĝ(v)


p,φ,Q

∥u− v∥p,φ,Q
− 1

 ≤ c+ ϵ.

Now by letting ϵ→ 0 and taking sup over u ̸= v ∈ Y(d)
V , we get µ+

p,Q[Ĝ] ≤ c.

Another proof of Theorem 5. We remark here that it is also possible to prove Theorem 5 using a finite
difference approximation and reducing the theorem to one about ODEs. For this end we need the following
result from [4].

Proposition 1. Let (xT1 , . . . , xTN )T be a solution of

ẋi = F (xi, t) +D(t)(xi−1 − xi + xi+1 − xi), i = 1, . . . , N, (39)

where x0 = x1, xN+1 = xN . For 1 ≤ p ≤ ∞ and a positive diagonal matrix Q, let

c = sup
(x,t)

µp,Q

JF (x, t)− 4 sin2 (π/2N)D(t)


. (40)

Then

∥e(t)∥p,Qp⊗Q ≤ ect∥e(0)∥p,Qp⊗Q, (41)
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where e =

eT1 , . . . , e

T
N−1

T with ei = xi−xi+1 and ∥ ·∥p,Qp⊗Q denotes the weighted Lp norm with the weight
Qp ⊗Q, where for any 1 ≤ p <∞,

Qp := diag

p

2−p
p

1 , . . . , p
2−p
p

N−1


,

and for p =∞,

Q∞ = diag (1/p1, . . . , 1/pN−1) ,

where for 1 ≤ k ≤ N − 1, pk = sin(kπ/N).

Proof of Theorem 5. Let 0 = ω0 < ω1 < · · · < ωN+1 = L be the mesh points of the closed interval [0, L]
with equal mesh size ∆ω = L

N+1 . For i = 0, . . . , N + 1, define

xi(t) := u(ωi, t).

By the Neumann boundary condition, we have:

0 = ∂u

∂ω
(0, t) ≃ u(ω1, t)− u(ω0, t)

∆ω
⇒ u(ω1, t) = u(ω0, t).

Therefore for any t, x0(t) = x1(t), and similarly, xN (t) = xN+1(t). Now using the definition of ∂2u/∂ω2, we
have the following expressions for ∂2u/∂ω2 at mesh points:

∂2u

∂ω2 (ωi, t) = lim
∆ω→0

u(ωi−1, t)− 2u(ωi, t) + u(ωi+1, t)
∆ω2

= lim
N→∞

(N + 1)2

L2 (xi−1 − 2xi + xi+1) (t), (42)

we can write Eq. (1) for the mesh points as follows:

ẋ1 = F (x1, t) + (N + 1)2

L2 D(t) (x2 − x1)

ẋ2 = F (x2, t) + (N + 1)2

L2 D(t) (x1 − 2x2 + x3)
...

ẋN = F (xN , t) + (N + 1)2

L2 D(t) (xN−1 − xN ).

(43)

Note that the ODE system (43) describes the dynamics of N identical compartments that are connected
through a path graph with diffusion matrix (N+1)2

L2 D(t). Therefore, by Proposition 1, if

cN := sup
(x,t)

µ1,Q


JF (x, t)− 4 sin2 (π/2N) (N + 1)2

L2 D(t)

,

where −4 sin2 (π/2N) is the smallest nonzero eigenvalue of (graph) Laplacian of a path graph, then

N−1
k=1

sin (kπ/N) ∥(xk − xk+1)(t)∥1,Q ≤ e
cN t
N−1
k=1

sin (kπ/N) ∥(xk − xk+1)(t)∥1,Q . (44)

Now dividing both sides of (44) by ∆ω = L
N+1 and letting N →∞, we get: L

0
sin(πω)

 ∂u∂ω (t)


1,Q
dω ≤ e

lim
N→∞

cN t
 L

0
sin(πω)

 ∂u∂ω (t)


1,Q
dω, (45)
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where

lim
N→∞

cN = lim
N→∞

sup
(x,t)

µ1,Q


JF (x, t)− 4 sin2 (π/2N) (N + 1)2

L2 D(t)


= sup
(x,t)

µ1,Q


JF (x, t)− 4 lim

N→∞
sin2 (π/2N) (N + 1)2

L2 D(t)


= sup
(x,t)

µ1,Q


JF (x, t)− π2

L2D(t)


= c.
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