
Chapter 3
Guaranteeing Spatial Uniformity
in Reaction-Diffusion Systems Using Weighted
L2 Norm Contractions

Zahra Aminzare, Yusef Shafi, Murat Arcak and Eduardo D. Sontag

Abstract We present conditions that guarantee spatial uniformity of the solutions
of reaction-diffusion partial differential equations. These equations are of central
importance to several diverse application fields concerned with pattern formation.
The conditions make use of the Jacobian matrix and Neumann eigenvalues of elliptic
operators on the given spatial domain. We present analogous conditions that apply
to the solutions of diffusively-coupled networks of ordinary differential equations.
We derive numerical tests making use of linear matrix inequalities that are useful
in certifying these conditions. We discuss examples relevant to enzymatic cell sig-
naling and biological oscillators. From a systems biology perspective, the paper’s
main contributions are unified verifiable relaxed conditions that guarantee spatial
uniformity of biological processes.
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3.1 Introduction

This paper studies reaction-diffusion partial differential equations (PDEs) of the form

∂u

∂t
(ω, t) = F(u(ω, t), t) + Lu(ω, t), (3.1)

where L denotes a diffusion operator. We prove a two-part result that addresses the
question of how the stability of solutions of the PDE relates to stability of solutions of
the underlying ordinary differential equation (ODE) dx

dt (t) = F(x(t), t). The study of
this question is central to many application fields concerned with pattern formation,
ranging from biology (morphogenesis developmental biology, species competition
and cooperation in ecology, epidemiology) [8, 9, 23] and enzymatic reactions in
chemical engineering [24] to spatio-temporal dynamics in semiconductors [21].

The first part of our result shows that when solutions of the ODE have a certain
contraction property, namely μ2,Q(JF (u, t)) < 0 uniformly on u and t , where μ2,Q

is a logarithmic norm (matrix measure) associated to a Q-weighted L2 norm, the
associated PDE, subject to no-flux (Neumann) boundary conditions, enjoys a similar
property. This result complements a similar result shown in [1] which, while allowing
norms L p with p not necessarily equal to 2, had the restriction that it only applied
to diagonal matrices Q and L was the standard Laplacian. Logarithmic norm or
“contraction” approaches arose in the dynamical systems literature [12, 15, 17], and
were extended and much further developed in work by Slotine e.g. [16]; see also [18]
for historical comments.

The second, and complementary, part of our result shows that when μ2,Q(J f

(u, t) − Λ2) < 0, where Λ2 is a nonnegative diagonal matrix whose entries are the
second smallest Neumann eigenvalues of the diffusion operators in (1), the solutions
become spatially homogeneous as t → ∞. This result generalizes the previous
work [3] to allow for spatially-varying diffusion, and makes a contraction principle
implicitly used in [3] explicit.

We next turn to compartmental ordinary differential equations (ODEs), where
each compartment represents a well-mixed spatial domain wherein corresponding
components in adjacent compartments are coupled by diffusion [11], and present
spatial uniformity conditions analogous to those derived for the PDE case. We then
derive convex linear matrix inequality [4] tests as in [3] that can be used to certify the
conditions. Our discussion is punctuated by several examples of biological interest.
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3.2 Spatial Uniformity in Reaction-Diffusion PDEs

In this section, we study the reaction-diffusion PDE (3.1), subject to a Neumann
boundary condition:

∇ui · n(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞). (3.2)

Assumption 1 In (3.1)–(3.2) we assume:

• Ω is a bounded domain in R
m with smooth boundary ∂Ω and outward normal n.

• F : V × [0,∞) → R
n is a (globally) Lipschitz and twice continuously differ-

entiable vector field with respect to x , and continuous with respect to t , with
components Fi :

F(x, t) = (F1(x, t), . . . , Fn(x, t))T

for some functions Fi : V × [0,∞) → R, where V is a convex subset of R
n .

•
L = diag (L1, . . . ,Ln) , and Lu = (L1u1, . . . ,Lnun)T ,

where for each i = 1, . . . , n,

(Li ui )(ω, t) = ∇ · (Ai (ω)∇ui (ω, t)) , (3.3)

and Ai : Ω → R
m×m is symmetric and there exist αi ,βi > 0 such that for all

ω ∈ Ω and ζ = (ζ1, . . . , ζm)T ∈ R
m ,

αi |ζ|2 ≤ ζT Ai (ω)ζ ≤ βi |ζ|2. (3.4)

Suppose that L has r ≤ n distinct elements L1, . . . , Lr (up to a scalar). Namely,

diag
(L1, . . . ,Ln1 , . . . ,Ln−nr +1, . . . ,Ln

) =
diag

(
d11, . . . , d1n1 , . . . , dr1, . . . , drnr

)
diag (L1, . . . , L1, . . . , Lr , . . . , Lr ) ,

where n1 + · · · + nr = n. For each i = 1, . . . , r , let Di be an n × n diagonal matrix
with entries [Di ]ni−1+ j,ni−1+ j = di j , for j = 1, . . . , ni , n0 = 0 elsewhere. Also for
each i = 1, . . . , r , let Li be an n × n diagonal matrix with identical entries Li . Then
L can be written as below,

L =
r∑

i=1

DiLi . (3.5)

Some times it is easier to use expression (3.5) for L to prove theorems in this paper.
For a fixed i ∈ {1, . . . , n}, let λk

i be the kth Neumann eigenvalue of the operator
−Li as in (3.3) (λ1

i = 0, λk
i > 0 for k > 1, and λk

i → ∞ as k → ∞) and ek
i be the

corresponding normalized eigenfunction:
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∇ ·
(

Ai (ω)∇ek
i (ω)

)
= −λk

i ek
i (ω), ω ∈ Ω

∇ek
i (ξ) · n = 0, ξ ∈ ∂Ω (3.6)

Also for each i = 1, . . . , r , let λk
i be the kth Neumann eigenvalue of −Li . Note

that

Λk =
r∑

i=1

λk
i Di , where Λk = diag

(
λk
1, . . . ,λ

k
n

)
. (3.7)

For each k ∈ {1, 2, . . .}, let Ek
i be the subspace spanned by the first kth eigenfunc-

tions:
Ek

i = 〈e1i , . . . , ek
i 〉.

Now define the map Πk,i on L2(Ω) as follows:

Πk,i (v) = v − πk,i (v),

where πk,i is the orthogonal projection map onto Ek−1
i , and we define E0

i = 0.

Namely for any v = ∑∞
j=1(v, e j

i )e j
i ,

πk,i (v) =
k−1∑

j=1

(v, e j
i )e j

i and Πk,i (v) =
∞∑

j=k

(v, e j
i )e j

i , for k > 1,

π1,i (v) = 0, and Π1,i (v) = v; (3.8)

where (x, y) := ∫
xT y. Note that for any i = 1, . . . , n,

Π2,i (v) = v − 1

|Ω|
∫

Ω

v. (3.9)

For any v = (v1, . . . , vn), define Πk as follows:

Πk(v) = v − πk(v) where πk(v) = (
πk,1(v1), . . . ,πk,n(vn)

)T
.

Observe that πk(v) is the orthogonal projection map onto Ek−1
1 × · · · × Ek−1

n .

Definition 1 By a solution of the PDE

∂u

∂t
(ω, t) = F(u(ω, t), t) + Lu(ω, t),

∇ui · n(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞)

on an interval [0, T ), where 0 < T ≤ ∞, we mean a function u = (u1, . . . , un)T ,
with u : Ω̄ × [0, T ) → V , such that:
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1. for each ω ∈ Ω̄ , u(ω, ·) is continuously differentiable;
2. for each t ∈ [0, T ), u(·, t) is in Y, where Y is defined as the following set:

{
v = (v1, . . . , vn)T : Ω̄ → V | vi ∈ C2

R

(
Ω̄
)
,

∂vi

∂n
(ξ) = 0, ∀ξ ∈ ∂Ω ∀i

}
,

where C2
R

(
Ω̄
)
is the set of twice continuously differentiable functions Ω̄ → R.

3. for each ω ∈ Ω̄ , and each t ∈ [0, T ), u satisfies the above PDE.

Theorems on existence and uniqueness of solutions for PDEs such as (3.1)–(3.2)
can be found in standard references, e.g. [5, 22].

For any invertible matrix Q, and any 1 ≤ p ≤ ∞, and continuous u : Ω → R
n ,

we denote the weighted L p,Q norm, ‖u‖p,Q = ‖Qu‖p, where (Qu)(ω) = Qu(ω)

and ‖ · ‖p indicates the norm in L p(Ω, R
n).

Definition 2 Let (X, ‖ · ‖X ) be a finite dimensional normed vector space over R or
C. The space L(X, X) of linear transformations M : X → X is also a normed vector
space with the induced operator norm

‖M‖X→X = sup
‖x‖X =1

‖Mx‖X .

The logarithmic norm μX (·) induced by ‖ · ‖X is defined as the directional derivative
of the matrix norm, that is,

μX (M) = lim
h→0+

1

h
(‖I + hM‖X→X − 1) ,

where I is the identity operator on X .

In [1], we proved the following lemma:

Lemma 1 Consider the PDE system (3.1)–(3.2), with L = DΔ, where D =
diag(d1, . . . , dn). In addition suppose Assumption 1 holds. For some 1 ≤ p ≤ ∞,
and a positive diagonal matrix Q, let

μ := sup
(x,t)∈V ×[0,∞)

μp,Q(JF (x, t)).

(We are using μp,Q to denote the logarithmic norm associated to the norm ‖Qv‖p

in R
n .) Then for any two solutions u and v of (3.1)–(3.2), we have

‖u(·, t) − v(·, t)‖p,Q ≤ eμt‖u(·, 0) − v(·, 0)‖p,Q .

The first part of the following theorem is a generalization of Lemma 1 to non-
diagonal P for the special case of p = 2. The second part of the theorem is a
generalization of Theorem 1 from [3] to spatially-varying diffusion.
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Theorem 1 Consider the reaction-diffusion system (3.1)–(3.2)and suppose Assump-
tion 1 holds. For k = 1, 2, let

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk),

for a positive symmetric matrix P such that for any i = 1, . . . , r:

P2Di + Di P2 > 0. (3.10)

Then for any two solutions, namely u and v, of (3.1)–(3.2), we have:

‖u(·, t) − v(·, t)‖2,P ≤ eμ1t‖u(·, 0) − v(·, 0)‖2,P . (3.11)

In addition
‖Π2(u(·, t))‖2,P ≤ eμ2t‖Π2(u(·, 0))‖2,P . (3.12)

Before proving the main theorem of this section, Theorem 1, we first prove the
following:

Lemma 2 Suppose that P is a positive definite, symmetric matrix and M is an
arbitrary matrix.

1. If μ2,P (M) = μ, then QM + MT Q ≤ 2μQ, where Q = P2.
2. If for some Q = QT > 0, QM + MT Q ≤ 2μQ, then there exists P = PT > 0

such that P2 = Q and μ2,P (M) ≤ μ.

Proof First suppose μ2,P (M) = μ. By definition of μ:

1

2

(
P M P−1 +

(
P M P−1

)T
)

≤ μI.

Since P is symmetric, so is P−1, so

P M P−1 + P−1MT P ≤ 2μI.

Now multiplying the last inequality by P on the right and the left, we get:

P2M + MT P2 ≤ 2μP2.

This proves 1. Now assume that for some Q = QT > 0, QM + MT Q ≤ 2μQ.
Since Q > 0, there exists P > 0 such that PT P = Q; moreover, because Q is
symmetric, so is P . Hence we have:

P2M + MT P2 ≤ 2μP2.
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Multiplying the last inequality by P−1 from right and from left, we
conclude 2. �

Remark 1 Observe that for Q > 0,

1.
QM + MT Q ≤ μQ ⇒ QM + MT Q ≤ β I,

where β = μλ and λ is the smallest eigenvalue of Q.
2.

QM + MT Q ≤ β I ⇒ QM + MT Q ≤ γQ,

where γ = β

λ′ and λ′ is the largest eigenvalue of Q.

We now recall a result following from the Poincaré principle as in [13], which
gives a variational characterization of the eigenvalues of an elliptic operator.

Lemma 3 Consider an elliptic operator as in (3.3)and letv = v(ω)be a function not

identically zero in L2(Ω) with derivatives
∂v

∂ω j
∈ L2(Ω) that satisfies the Neumann

boundary condition, ∇v(ω) ·n(ω) = 0, and for any j ∈ {1, . . . , k −1},
∫

Ω

ve j
i = 0.

Then the following inequality holds, for any k ≥ 1:

∫

Ω

∇v · (Ai (ω)∇v) dω ≥ λk
i

∫

Ω

v2 dω. (3.13)

Lemma 4 Suppose u ∈ L2(Ω) satisfies the Neumann boundary conditions. For any
k ∈ {1, 2, . . .},

(Πk(u),LΠk(u)) ≤ − (Πk(u),ΛkΠk(u)) . (3.14)

In addition for k = 1, 2 and any n × n symmetric matrix Q with the following

property:
Q Di + Di Q > 0 i = 1, . . . , r, (3.15)

we have:
(Πk(u), QLΠk(u)) ≤ − (Πk(u), QΛkΠk(u)) . (3.16)

Proof Note that by (3.6), for any ξ ∈ ∂Ω ,

∇Πk,i (ui (ξ)) · n =
∞∑

j=k

(ui , e j
i )∇e j

i (ξ) · n = 0.

Also by the definition of Πk,i , for any j = 1, . . . , k − 1,
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∫

Ω

Πk,i (ui )e
j
i dω = 0.

Then by this last equality, Green’s identity and Lemma 3 we get:

(Πk(u),LΠk(u))

=
∫

Ω

Πk(u)T (∇ · (A1(ω)∇Πk,1(u1)
)
, . . . ,∇ · (An(ω)∇Πk,n(un)

))T
dω

=
n∑

i=1

∫

Ω

Πk,i (ui )∇ · (Ai (ω)∇Πk,i (ui )
)

dω

=
n∑

i=1

∫

∂Ω

Πk,i (ui )Ai (ω)∇Πk,i (ui ) · n d S

−
n∑

i=1

∫

Ω

∇Πk,i (ui )
T Ai (ω)∇Πk,i (ui ) dω

≤ −
n∑

i=1

λk
i

∫

Ω

Π2
k,i (ui ) dω

= − (Πk(u),ΛkΠk(u)) .

Since for each i = 1, . . . , r , Q Di + Di Q > 0, there exists positive definite
symmetric matrix Mi , such that Q Di + Di Q = 2MT

i Mi . Note that

2 (Πk(u), Q DiLiΠk(u)) = (Πk(u), (Q Di + Di Q)LiΠk(u))

+ (Πk(u), (Q Di − Di Q)LiΠk(u)) .

A simple calculation shows that (Πk(u), (Q Di − Di Q)LiΠk(u)) = 0 :
Let Y = Q Di . Then since Q and Di are symmetric, Y T = Di Q. Also let

x = Πk(u) and y = Y x = Q DiΠk(u). By the definition of Li , YLi = Li Y , hence
we need to show:

(x,Li y) = (y,Li x).

By the definition of Li , it suffices to show that for any j = 1, . . . , n:

(x j , Li y j ) = (y j , Li x j ).

This last equality holds by the definition of Li , the Neumann boundary condition,
and Green’s identity. Therefore, using (3.14), for k = 1, 2, we get
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(Πk(u), Q DiLiΠk(u)) = 1

2
(Πk(u), (Q Di + Di Q)LiΠk(u))

=
(
Πk(u), MT

i MiLiΠk(u)
)

= (MiΠk(u), MiLiΠk(u))

= (MiΠk(u),Li MiΠk(u))

= (Πk(Mi u),LiΠk(Mi u))

≤ −λk
i (Πk(Mi u),Πk(Mi u))

= −λk
i (Πk(u), Q DiΠk(u)) . (3.17)

Note that by the definition of Li , MiLi = Li Mi . By (3.8) and (3.9), for any i, j =
1, . . . , n,

Πk,i = Πk, j for k = 1, 2.

Therefore MiΠk(u) = Πk(Mi u) and for any l,Πk,l(Mi u) is orthogonal to e1i . Hence
we can apply the Poincaré principle. Now using (3.5) and (3.17), we get:

(Πk(u), QLΠk(u)) =
r∑

i=1

(Πk(u), Q DiLiΠk(u))

≤ −
r∑

i=1

λk
i (Πk(u), Q DiΠk(u))

= − (Πk(u), QΛkΠk(u)) . (3.18)

The last equality holds by Eq. (3.7). �

Lemma 5 Suppose u ∈ L2(Ω) satisfies the Neumann boundary conditions. For any
k ∈ {1, 2, . . .},

Πk (Lu) = LΠk(u).

Proof By the definition of Πk and L, it is enough to show that for a fixed i(i =
1, . . . , n),

Πk,i (Li ui ) = LiΠk,i (ui ). (3.19)

Using the fact that Li e
j
i = −λ

j
i e j

i , the right hand side of (3.19) becomes:

LiΠk,i (ui ) = Li

∞∑

i=k

(ui , e j
i )e j

i =
∞∑

i=k

(ui , e j
i )Li e

j
i = −

∞∑

i=k

(ui , e j
i )λ

j
i e j

i ;

and using the orthogonality of the e j
i ’s, the left hand side of (3.19) becomes:
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Πk,i (Li ui ) =
∞∑

j=k

(
Li ui , e j

i

)
e j

i =
∞∑

j=k

(

Li

∞∑

l=1

(ui , el
i )e

l
i , e j

i

)

e j
i

=
∞∑

j=k

( ∞∑

l=1

(ui , el
i )Li e

l
i , e j

i

)

e j
i

= −
∞∑

j=k

( ∞∑

l=1

(ui , el
i )λ

l
i e

l
i , e j

i

)

e j
i

= −
∞∑

j=k

(ui , e j
i )λ

j
i e j

i .

Hence (3.19) holds. �

Lemma 6 Let w = u − x, where u is a solution of (3.1)–(3.2) and x = π2(u) or
x = v is another solution of (3.1)–(3.2). Note that for x = v, w = Π1(u − v) and
for x = π2(u), w = Π2(u). For a positive, symmetric matrix Q, let

Φ(w) := 1

2
(w, Qw).

Then
dΦ

dt
(w) = (w, Q(F(u, t) − F(x, t))) + (w, QLw) . (3.20)

Proof For x = v,

dΦ

dt
(w) = (u − v, Q d

dt (u − v))

= (w, Q(F(u, t) − F(v, t))) + (w, QL(u − v))

= (w, Q(F(u, t) − F(x, t))) + (w, QLw) .

For x = π2(u), i.e. w = Π2(u),

dΦ

dt
(w) = (Π2(u), Q d

dt (Π2(u)))

= (Π2(u), QΠ2(F(u, t))) + (w, QΠ2(Lu))

= (Π2(u), QΠ2(F(u, t))) + (w, QLΠ2(u)) by Lemma 5
= (Π2(u), Q(F(u, t) − π2(F(u, t)))) + (w, QLw)

= (Π2(u), Q(F(u, t) − F(π2(u), t))) + (w, QLw)

+ (Π2(u), Q(π2(F(u, t)) − F(π2(u), t)))
= (w, Q(F(u, t) − F(x, t))) + (w, QLw) .

Note that the last equality holds because Q(π2(F(u, t))−F(π2(u), t)) is independent
of ω and

∫
Ω

Π2,i (u) = 0. �
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Now we are ready to prove Theorem 1.
Proof of Theorem 1

Proof By Lemma 2,

Q(JF − Λk) + (JF − Λk)
T Q ≤ 2μk Q, (3.21)

where Q = P2. Define w and Φ(w) as in Lemma 6 for Q = P2. Since Φ(w) =
1

2
‖Pw‖22, to prove (3.11) and (3.12), it’s enough to show that for k = 1, 2

d

dt
Φ(w) ≤ 2μkΦ(w).

Note that by Lemma 4, and the fact that w = Π1(u − v) or w = Π2(u), the second

term of the right hand side of (3.20),
d

dt
Φ(w), satisfies:

(w, QLw) ≤ −(w, QΛkw). (3.22)

Next, by the Mean Value Theorem for integrals, and using (3.21), we rewrite the
first term of the right hand side of (3.20) as follows:

(w, Q(F(u, t) − F(x, t))) =
∫

Ω

wT (ω, t)Q(F(u(ω, t), t) − F(x, t)) dω

=
∫

Ω

wT (ω, t)Q

1∫

0

JF (x + sw(ω, t), t) · w(ω, t) ds dω

=
1∫

0

∫

Ω

wT (ω, t)Q JF (x + sw(ω, t), t) · w(ω, t) dω ds.

This last equality together with (3.22) imply:

(w, Q(F(u, t) − F(x, t))) + (w, QLw)

≤
1∫

0

∫

Ω

wT (ω, t)Q
(
JF (x + sw(ω, t), t) − Λk

)

· w(ω, t) dω ds

≤ 2μk

2

1∫

0

ds
∫

Ω

wT Qw dω
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= 2μk

2

∫

Ω

wT Qw dω

= 2μkΦ(w).

Therefore
dΦ

dt
(w) ≤ 2μkΦ(w).

This last inequality implies (3.11) and (3.12) for k = 1 and k = 2 respectively. �

Corollary 1 In Theorem 1, if μ1 < 0, then (3.1)–(3.2) is contracting, meaning that
solutions converge (exponentially) to each other, as t → +∞ in the weighted L2,P

norm:
‖u(·, t) − v(·, t)‖2,P → 0 ast → ∞.

Corollary 2 In Theorem 1, if μ2 < 0, then solutions converge (exponentially) to
uniform solutions, as t → +∞ in the weighted L2,P norm:

‖Π2(u(·, t))‖2,P → 0 as t → ∞.

Note that (3.16) doesn’t necessarily hold for any k > 2, since for k > 2, theΠk,i ’s
could be different for different i’s. In the following lemma we provide a condition
for which (3.16) holds for any k.

Lemma 7 Assume PL = LP, where P is a positive, symmetric n × n matrix and
P2 = Q. Then for any k = 1, 2, . . .

(Πk(u), QLΠk(u)) ≤ − (Πk(u), QΛkΠk(u)) .

Proof The proof is analogous to the proof of (3.16), using the fact that PL = LP
implies that P is diagonal (if all Li ’s are different) or block diagonal (for equal
Laplacian operators). �

Remark 2 Note that Theorem 1 is valid if PL = LP is assumed instead of (3.15),
because (3.16) holds by Lemma 7 and this is all that is needed in the proof. In the
following theoremwe use this condition to generalize the result of Theorem 1 for any
arbitrary k but restricted to linear systems. We omit the proof, which is analogous.

Theorem 2 Consider the reaction-diffusion system (3.1)-(3.2) and suppose Assump-
tion 1 holds. In addition assume that F is a linear function. For k ∈ {1, 2, . . .}, let

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk),

for a positive symmetric matrix P such that PL = LP. Then for any two solutions,
namely u and v, of (3.1)–(3.2), we have:
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‖Πk (u(·, t) − v(·, t)) ‖2,P ≤ eμk t‖Πk (u(·, 0) − v(·, 0)) ‖2,P . (3.23)

Example 1 In [1] we studied the following system:

xt = z − δx + k1y − k2(SY − y)x + d1Δx
yt = −k1y + k2(SY − y)x + d2Δy,

where (x(t), y(t)) ∈ V = [0,∞) × [0, SY ] for all t ≥ 0 (V is convex), and SY , k1,
k2, δ, d1, and d2 are arbitrary positive constants.

This two-dimensional system is a prototype for a large class of models of enzy-
matic cell signaling aswell as transcriptional components.Generalizations to systems
of higher dimensions, representing networks of such systems, may be studied as well
[19].

In [19], it has been shown that for p = 1, there exists a positive, diagonal matrix
Q, independent of d1 and d2, such that for all (x, y) ∈ V , μ1,Q(JF (x, y)) < 0; and
then by Lemma 1 one concludes that the system is contractive.

Specifically, [1] showed that for any positive, diagonal matrix Q and any p > 1,
there exists (x, y) ∈ V such that μp,Q(JF (x, y)) ≥ 0, where

F = (z − δx + k1y − k2(SY − y)x,−k1y + k2(SY − y)x)T ,

and

JF =
(−δ − a b

a −b

)
,

with a = k2(SY − y) ∈ [0, k2SY ] and b = k1 + k2x ∈ [k1,∞).
Nowwe show that there exists somepositive, symmetric (but non-diagonal)matrix

P such that for all (x, y) ∈ V , μ2,P JF (x, y) < 0 and P2D + D P2 > 0, where
D = diag(d1, d2). Then by Theorem 1 (for r = 1 and Li ui = Δui ), and Corollary
1, one can conclude that the system is contractive.

Claim Let Q =
[
1 1
1 q

]
, where q > max

⎧
⎨

⎩
1 + δ

4k1
,

(
1

2
√

d
+

√
d

2

)2
⎫
⎬

⎭
, and d =

d1
d2

. Then Q JF + (Q JF )T < 0 and Q D + DQ > 0.

Note that Q is symmetric and positive (because q > 1).
Proof of Claim We first compute Q JF :

[
1 1
1 q

] [−δ − a b
a −b

]
=

[ −δ 0
−δ + (q − 1)a −b(q − 1)

]
.

So

Q JF + (JF Q)T =
[ −2δ −δ + (q − 1)a
−δ + (q − 1)a −2b(q − 1)

]
.
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To show Q JF + J T
F Q < 0, we show that det

(
Q JF (x, y) + J T

F (x, y)Q
)

> 0 for all
(x, y) ∈ V :

det
(

Q JF + J T
F Q

)
= 4δb(q − 1) − (−δ + (q − 1)a)2 .

Note that for any q > 1, f (a) := (−δ + (q − 1)a)2 ≤ δ2 on [0, k2SY ], and
g(b) := 4δb(q − 1) ≥ 4δk1(q − 1) on [k1,∞]. So to have det > 0, it’s enough to

have 4δk1(q − 1) − δ2 > 0, i.e. q − 1 >
δ2

4δk1
, i.e. q > 1+ δ

4k1
. Now we compute

Q D + DQ:

Q D + DQ =
[

2d1 d1 + d2
d1 + d2 2qd2

]
.

Q D + DQ > 0 if and only if det (Q D + DQ) > 0, i.e. 4d1d2q − (d1 + d2)2 > 0,

i.e. q >

(
1

2
√

d
+

√
d

2

)2

, where d = d1
d2

. �

Now by Remark 1 and Lemma 2, for P = √
Q, μ2,P (JF (x, y)) < 0, for all

(x, y) ∈ V .

Example 2 We now provide an example of a class of reaction-diffusion systems
xt = F(x) + DΔx , with x ∈ V (V convex), which satisfy the following conditions:

1. For some positive definite, diagonal matrix Q, sup
x∈V

μ1,Q(JF (x)) < 0 (and hence

by Lemma 1, these systems are contractive).
2. For any positive definite, symmetric (not necessarily diagonal) matrix P ,

supx∈V μ2,P (JF (x)) ≮ 0.

Consider two variable systems of the following type

xt = − f1(x) + g1(y) + d1Δx (3.24)

yt = f2(x) − g2(y) + d2Δy, (3.25)

where d1, d2 are positive constants and (x, y) ∈ V = [0,∞)×[0,∞). The functions
fi and gi take non-negative values. Systems of this formmodel a case where x decays
according to f1, y decays according to g2, and there is a positive feedback from y to
x (g1) and a positive feedback from x to y ( f2).

Lemma 8 In system (3.24)–(3.25), let J be the Jacobian matrix of

(− f1(x) + g1(y), f2(x) − g2(y))T .

In addition, assume that the following conditions hold for some λ > 0, and μ > 0
and all (x, y) ∈ V :
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1. − f ′
1(x) + λ| f ′

2(x)| < −μ < 0;

2. −g′
2(y) + 1

λ
|g′

1(y)| < −μ < 0;

3. for any p0 ∈ R

lim
y→∞

(
g′
1(y) − p0g′

2(y)
)2

g′
2(y)

= ∞.

Then

1. for every (x, y) ∈ V , μ1,Q(J (x, y)) < 0, where Q = diag(1,λ); and
2. for each positive definite, symmetric matrix P, there exists some (x, y) ∈ V , such

that μ2,P (J (x, y)) ≥ 0.

Proof The proof of μ1,Q(J (x, y)) < 0 is straightforward from the definition of μ1,Q

and conditions 1 and 2. Now we show that for any positive matrix P =
[

p1 p
p p2

]
,

there exists some (x0, y0) ∈ V such that μ2,P (J (x0, y0)) ≥ 0. By Lemma 2, it’s
enough to show that for some (x0, y0) ∈ V , P J (x0, y0) + J T (x0, y0)P ≮ 0. We
compute:

P J =
[

p1 p
p p2

] [− f ′
1(x) g′

1(y)

f ′
2(x) −g′

2(y)

]

=
[−p1 f ′

1(x) + p f ′
2(x) p1g′

1(y) − pg′
2(y)

−p f ′
1(x) + p2 f ′

2(x) pg′
1(y) − p2g′

2(y)

]
.

Therefore, P J + (P J )T is equal to

[
2
(−p1 f ′

1(x) + p f ′
2(x)

)
p1g′

1(y) − pg′
2(y) − p f ′

1(x) + p2 f ′
2(x)

p1g′
1(y) − pg′

2(y) − p f ′
1(x) + p2 f ′

2(x) 2
(

pg′
1(y) − p2g′

2(y)
)

]
.

(not showing x and y arguments in f ′
1 and f ′

2 for simplicity). Now fix x0 ∈ [0,∞)

and let
A := 2

(−p1 f ′
1(x0) + p f ′

2(x0)
)
,

and
B := −p f ′

1(x0) + p2 f ′
2(x0).

Then det
(
P J + (P J )T

)
is equal to

2A
(

pg′
1(y) − p2g

′
2(y)

) − (
p1g

′
1(y) − pg′

2(y) + B
)2

. (3.26)

We will show that det < 0. Dividing both sides of (3.26) by p21g
′
2(y), we get:
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det
(
P J + (P J )T

)

p21g
′
2(y)

= 2A
(

pg′
1(y) − p2g′

2(y)
)

p21g
′
2(y)

−
(
g′
1(y) − p0g′

2(y) + B ′)2

g′
2(y)

= A′ p
g′
1(y)

g′
2(y)

− A′ p2

−
(
g′
1(y) − p0g′

2(y)
)2

g′
2(y)

− 2B ′ g′
1(y)

g′
2(y)

+ 2B ′ p0 − B ′2

g′
2(y)

where p0 = p

p1
, A′ = 2A

p21
, and B ′ = B

p1
.

(Note that p21g
′
2(y) > 0 because by condition 2, g′

2 ≥ μ > 0, and P > 0 implies
p1 �= 0.)

By condition 2, 0 ≤ g′
1(y)

g′
2(y)

≤ λ < ∞ for all y. Now using condition 3, we can

find y large enough such that det < 0.
Since det

(
P J (x0, y0) + (P J (x0, y0))T

)
< 0 for some (x0, y0) ∈ V , the matrix

P J + (P J )T has one positive eigenvalue. Therefore P J + (P J )T
≮ 0. �

Example 3 As a concrete example, take the following system

xt = −x + y2+ε + d1Δx
yt = δx − (y3 + y2+ε + dy) + d2Δy,

where 0 < δ < 1, 0 < ε � 1, d, d1, and d2 are positive constants and (x, y) ∈ V =
[0,∞) × [0,∞).

In this example we show that, the system is contractive in a weighted L1 norm;
while for any positive, symmetricmatrix P , and some (x, y) ∈ V ,μ2,P JF (x, y) ≮ 0.
To this end, we verify the conditions of Lemma 8.

For any (x, y) ∈ V , we take in Lemma 8, λ = 1, and any μ ∈ (0,min{d, 1− δ}):
1. −1 + δ < 0, because 0 < δ < 1.
2. − (

3y2 + (2 + ε)y1+ε + d
) + (2 + ε)y1+ε = −3y2 − d ≤ −d < 0.

3. For any p0 ∈ R,

lim
y→∞

(
(1 − p0)(2 + ε)y1+ε − p0

(
3y2 + d

))2

3y2 + (2 + ε)y1+ε + d
= ∞

So the conditions in Lemma 8 are verified. �
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3.3 Spatial Uniformity in Diffusively-Coupled Systems of ODEs

We next consider a compartmental ODE model where each compartment represents
a spatial domain interconnected with the other compartments over an undirected
graph:

u̇(t) = F̃(u(t)) − Lu(t). (3.27)

Recall that if A = (ai j ) is an m × n matrix and B = (bi j ) is a p × q matrix, then
the Kronecker product, denoted by A ⊗ B, is the mp × nq block matrix defined as
follows:

A ⊗ B :=
⎡

⎢
⎣

a11B . . . a1n B
...

. . .
...

am1B . . . amn B

⎤

⎥
⎦,

where ai j B denote the following p × q matrix:

ai j B :=
⎡

⎢
⎣

ai j b11 . . . ai j b1q
...

. . .
...

ai j bp1 . . . ai j bpq

⎤

⎥
⎦.

The following are some properties of Kronecker product:

1. (A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D);
2. (A ⊗ B)T = AT ⊗ BT .

3. Suppose that A and B are square matrices of size n and m respectively. Let
λ1, . . . ,λn be the eigenvalues of A andμ1, . . . ,μm be those of B (listed according
to multiplicity). Then the eigenvalues of A ⊗ B are λiμ j for i = 1, . . . , n, and
j = 1, . . . , m.

Assumption 2 In (3.27), we assume:

• For a fixed convex subset of R
n , say V , F̃ : V N → R

nN is a function of the form:

F̃(u) =
(

F(u1)T , . . . , F(uN )T
)T

,

where u = (
(u1)T , . . . , (uN )T

)T
, with ui ∈ V for each i , and F : V → R

n is a
(globally) Lipschitz function.

• For any u ∈ V N we define ‖u‖p,Q as follows:

‖u‖p,Q =
∥∥∥∥
(
‖Qu1‖p, . . . , ‖QuN ‖p

)T
∥∥∥∥

p
,

where Q is a symmetric and positive definite matrix and 1 ≤ p ≤ ∞.
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With a slight abuse of notation, we use the same symbol for a norm in R
n :

‖x‖p,Q := ‖Qx‖p.

• u : [0,∞) → V N is a continuously differentiable function.
•

L =
n∑

i=1

Li ⊗ Ei ,

where for any i = 1, . . . , n, Li ∈ R
N×N is a symmetric positive semidefinite

matrix and L1N = 0, where 1N = (1, . . . , 1)T ∈ RN . The matrix Li is the sym-
metric generalized graph Laplacian (see, e.g., [10]) that describes the interconnec-
tions among component subsystems. For any i = 1, . . . , n, Ei = ei eT

i ∈ R
n×n is

the product of the i th standard basis vector ei multiplied by its transpose.

Similar to the PDE case, we assume that there exists r ≤ n distinct matrices,
L1, . . . , Lr such that

diag
(
L1, . . . , Ln1 , . . . , Ln−nr +1, . . . , Ln

)

= diag
(
d11, . . . , d1n1 , . . . , dr1, . . . , drnr

)
diag (L1, . . . , L1, . . . , Lr , . . . , Lr ) ,

where n1 + · · · + nr = n. For each i = 1, . . . , r , let Di be an n × n diagonal
matrix with entries [Di ]ni−1+ j,ni−1+ j = di j , for j = 1, . . . , ni , n0 = 0 elsewhere.
Therefore we can write L as follows:

L =
r∑

i=1

Li ⊗ Di (3.28)

For a fixed i ∈ {1, . . . , n}, let λk
i be the kth eigenvalue of the matrix Li and ek

i be
the corresponding normalized eigenvector. Also for a fixed i ∈ {1, . . . , r}, let λk

i be
the kth eigenvalue of the matrix Li . Note that

Λk =
r∑

i=1

λk
i Di , (3.29)

where Λk = diag(λk
1, . . . ,λ

k
n).

For each k ∈ {1, 2, . . . , N }, let Ek
i be the subspace spanned by the first kth

eigenvectors:
Ek

i = 〈e1i , . . . , ek
i 〉.

Now let πk,i be the orthogonal projection map from R
N onto Ek−1

i . Namely for

any v =
∑N

j=1
(v · e j

i )e j
i ,



3 Guaranteeing Spatial Uniformity in Reaction-Diffusion Systems 91

πk,i (v) =
k−1∑

j=1

(v · e j
i )e j

i ,

for 1 < k ≤ N and π1,i (v) = 0.
Now for u = (u1, . . . , uN ) with u j ∈ R

n , define πk(u) as follows:

πk(u) =
n∑

j=1

(π j,k(u j ))
T ⊗ e j , (3.30)

for 1 < k ≤ N , where u j := (u1 · e j , . . . , uN · e j )
T ; and π1(u) = 0.

Note that for each k and any u, v ∈ R
nN ,

(u − πk(u))T πk(v) =
n∑

j=1

(
u j − π j,k(u j )

)T
π j,k(v j ) = 0. (3.31)

We also can define πk(u) as follows:

For i = 1, . . . , n, let ei :=
∑N

j=1
e j

i ⊗ e j . It is straightforward to show that

e1, . . . , en are linearly independent and for any i, j ∈ {1, . . . , n}, ei T
e j = 0. Hence

one can extend
{
ei
}
1≤i≤n to an orthogonal basis forR

nN ,
{
ei
}
1≤i≤nN . Then for each

k = 2, . . . , nN , and any u ∈ RnN ,

πk(u) =
k−1∑

j=1

(
u · e j

)
e j ,

and π1(u) = 0. Note that for k = 1, . . . , n, this definition is compatible with (3.30).
We now state Courant-Fischer minimax theorem, from [14].

Lemma 9 Let L be a symmetric, positive semidefinite matrix in R
N×N . Let λ1 ≤

· · · ≤ λN be N eigenvalues with e1, . . . , eN corresponding normalized orthogonal
eigenvectors. For any v ∈ R

N , if vT e j = 0 for 1 ≤ j ≤ k − 1, then

vT Lv ≥ λkvT v.

Lemma 10 Let w := u − x, where u is a solution of (3.27) and x = v is another

solution of (3.27) or x = π2(u), i.e. x = 1N ⊗
(

1
N

∑N
j=1 u j

)
. For a positive,

symmetric matrix Q, let

Φ(w) := 1

2
wT (IN ⊗ Q) w.
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Then

dΦ

dt
(w) = wT (IN ⊗ Q) (F̃(u, t) − F̃(x, t)) − wT (IN ⊗ Q)Lw. (3.32)

Proof When x = v, the claim is trivial because both u and v satisfy (3.27). When
x = π2(u), then, by orthogonality, Eq. (3.31), and the definition of π2, we have:

dΦ

dt
(w) = (u − π2(u))T (IN ⊗ Q) (F̃(u, t) − π2(F̃(u, t))) + wT (IN ⊗ Q)Lw

= (u − π2(u))T (IN ⊗ Q) F̃(u, t) + wT (IN ⊗ Q)Lw

= (u − π2(u))T (IN ⊗ Q) (F̃(u, t) − F̃(π2(u), t)) + wT (IN ⊗ Q)Lw,

The last equality holds because

(u − π2(u))T (IN ⊗ Q) F̃(π2(u), t)) =
N∑

j=1

(u j − ū)QF(ū)

=
⎛

⎝
N∑

j=1

u j − Nū

⎞

⎠ QF(u) = 0,

where ū = 1

N

∑N

j=1
u j .

Theorem 3 Consider the ODE system (3.27) and suppose Assumption 2 holds. For
k = 1, 2, let

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk),

for a positive symmetric matrix P such that for every i = 1, . . . , r ,

P2Di + Di P2 > 0.

Then for any two solutions, namely u and v, of (3.27), we have:

‖(u − v)(t)‖2,P ≤ eμ1t‖(u − v)(0)‖2,P . (3.33)

In addition
‖(u − π2(u))(t)‖2,P ≤ eμ2t‖(u − π2(u))(0)‖2,P . (3.34)

Proof By Lemma 2,

Q(JF − Λk) + (JF − Λk)
T Q ≤ 2μk Q, (3.35)
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where Q = P2. Define w and Φ(w) as in Lemma 10 for Q = P2. Since Φ(w) =
1

2
‖Pw‖22, to prove (3.33) and (3.34), it’s enough to show that for k = 1, 2

d

dt
Φ(w) ≤ 2μkΦ(w).

We rewrite the second term of the right hand side of (3.32) as follows. Since
Q = P2 and P2Di + Di P2 > 0, there exists symmetric, positive definite matrices
Mi such that Q Di + Di Q = 2MT

i Mi .

wT (IN ⊗ Q)Lw = wT (IN ⊗ Q)

(
r∑

i=1

Li ⊗ Di

)

w

= wT

(
r∑

i=1

IN Li ⊗ Q Di

)

w

= 1

2

r∑

i=1

wT (Li ⊗ (Q Di + Di Q)) w

=
r∑

i=1

wT
(

Li ⊗ MT
i Mi

)
w

=
r∑

i=1

wT (IN ⊗ MT
i ) (Li ⊗ In) (IN ⊗ Mi ) w

≥
r∑

i=1

λk
i ((IN ⊗ Mi )w)T (IN ⊗ Mi )w (for k = 1, 2)

=
r∑

i=1

λk
i w

T (IN ⊗ MT
i Mi )w

=
r∑

i=1

λk
i w

T (IN ⊗ Q Di )w

= wT (IN ⊗ QΛk)w [by Eq. (29)]

Therefore
− wT (IN ⊗ Q)Lw ≤ −wT (IN ⊗ QΛk)w. (3.36)

Note that the first inequality holds for k = 2 by Lemma 9 and the fact that for
x = π2(u), by definition,wT 1nN = 0 and hence (IN ⊗ Mi ) w1nN = 0. It also holds
for k = 1, since Li and hence Li ⊗ In are positive definite, and λ1

i = 0.
Now, by the Mean Value Theorem for integrals, and using (3.21), we rewrite the

first term of the right hand side of (3.32) as follows:
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wT (IN ⊗ Q) (F̃(u, t) − F̃(x, t)) =
N∑

i=1

wi T
Q(F(ui , t) − F(xi , t))wi ds

=
N∑

i=1

1∫

0

wi T
Q JF (xi + swi , t)wi ds.

This last equality together with (3.36) imply:

wT (IN ⊗ Q) (F̃(u, t) − F̃(x, t)) − wT (IN ⊗ Q)Lw

=
N∑

i=1

1∫

0

wi T
Q
(

JF (xi + swi , t) − Λk

)
wi ds

≤
N∑

i=1

2μk

2

1∫

0

ds wi T
Qwi

= 2μk

2
wT (IN ⊗ Q)w

= 2μkΦ(w).

Therefore
dΦ

dt
(w) ≤ 2μkΦ(w).

This last inequality implies (3.33) and (3.34) for k = 1 and k = 2 respectively. �

Corollary 3 In Theorem 3, if μ1 < 0, then (3.27) is contracting, meaning that
solutions converge (exponentially) to each other, as t → +∞ in the P-weighted L2
norm.

Corollary 4 In Theorem 3, if μ2 < 0, then solutions converge (exponentially) to
uniform solutions, as t → +∞ in the P-weighted L2 norm.

3.4 LMI Tests for Guaranteeing Spatial Uniformity

The next two results are modifications of Theorems 2 and 3 in [3]. They allow us to
apply check the conditions in Theorems 1 and 3 through numerical tests involving
linear matrix inequalities.

Proposition 1 If there exist constant matrices Z1, . . . , Zq and Sl , . . . , Sm such that
for all x ∈ V, t ∈ [0,∞),

JF (x, t) ∈ conv{Z1, . . . , Zq} + cone{Sl , . . . , Sm}, (3.37)
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where
conv(Z1, . . . , Zq) = {a1Z1 + · · · aq Zq | ai ≥ 0,

∑

i

ai = 1},

and
cone(S1, . . . , Sm) = {b1S1 + · · · bm Sm | bi ≥ 0},

then the existence of a scalar μ and symmetric, positive definite matrix Q satisfying

Q (Zi − Λk) + (Zi − Λk)
T Q < μQ, i = 1, . . . , q

QSi + ST
i Q ≤ 0, i = 1, . . . , m

(3.38)

implies that:
Q(JF (x, t) − Λk) + (JF (x, t) − Λk)

T Q < μQ (3.39)

for all (x, t) ∈ V × [0,∞); or equivalently

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk) <
μ

2
, (3.40)

where P2 = Q.
If the image of V × [0,∞) under JF is surjective onto conv{Z1, . . . , Zq} +

cone{Sl , . . . , Sm}, then the converse is true.

Proof First, we rewrite the first set of conditions of (3.38) as:

Q
(

Zi − Λk − μ

2
I
)

+
(

Zi − Λk − μ

2
I
)T

Q < 0, i = 1, . . . , q (3.41)

Defining D = Λk + μ
2 I , we can rewrite (3.41) as:

Q (Zi − D) + (Zi − D)T Q < 0, i = 1, . . . , q. (3.42)

An application of [3, Theorem 2] concludes the proof. Also an application of
Lemma(2) implies that (3.39) and (3.40) are equivalent. �

We define a convex box as:

box{M0, M1, . . . , Mp} = {M0 + ω1M1 + . . . + ωp Mp | ωi ∈ [0, 1]
for each i = 1, . . . , p}. (3.43)

Proposition 2 Suppose that JF (x, t) is contained in a convex box:

JF (x, t) ∈ box{A0, A1, . . . , Al} ∀ x ∈ V, t ∈ [0,∞), (3.44)
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where A1, . . . , Al are rank-one matrices that can be written as Ai = Bi CT
i , with

Bi , Ci ∈ R
n. If there exists a scalar μ and symmetric, positive definite matrix Q

with:

Q =

⎡

⎢⎢⎢
⎣

Q 0 . . . 0
0 p1 0 0
...

. . .
. . .

...

0 . . . 0 pl

⎤

⎥⎥⎥
⎦

(3.45)

Q ∈ R
n×n, pi ∈ R, i = 1, . . . , l,

satisfying:

Q
[

A0 − Λk B
CT −In

]
+

[
A0 − Λk B

CT −In

]T

Q <

[
μQ 0
0 0

]
, (3.46)

with B = [B1 . . . Bl ] and C = [C1 . . . Cl ], then the upper left (symmetric, positive
definite) principal submatrix Q satisfies

Q(JF (x, t) − Λk) + (JF (x, t) − Λk)
T Q < μQ; (3.47)

or equivalently

μk := sup
(x,t)∈V ×[0,∞)

μ2,P (JF (x, t) − Λk) <
μ

2
, (3.48)

where P2 = Q.
If l = 1 and the image of V × [0,∞) under J is surjective onto box{A0, A1},

then the converse is true.

Proof First, we rewrite condition (3.46) as

Q
[

A0 − Λk − μ
2 I B

CT −In

]
+

[
A0 − Λk − μ

2 I B
CT −In

]T

Q < 0. (3.49)

Defining D = Λk + μ
2 I , we can rewrite (3.41) as:

Q
[

A0 − D B
CT −In

]
+

[
A0 − D B

CT −In

]T

Q < 0. (3.50)

An application of [3, Theorem 3] concludes the proof. Also an application of Lemma
(2) implies that (3.47) and (3.48) are equivalent. �

The problem of finding the smallest μ such that there exists a matrix Q as in
Proposition 1 or a matrix Q as in Proposition 2 is quasi-convex and may be solved
iteratively as a sequence of convex semidefinite programs.
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Example 4 Ring Oscillator Circuit Example
Consider the n-stage ring oscillator whose dynamics are given by:

ẋ k
1 = −η1xk

1 − α1 tanh(β1xk
n ) + wk

1

ẋ k
2 = −η2xk

2 + α2 tanh(β2xk
1 ) + wk

2

... (3.51)

ẋ k
n = −ηn xk

n + αn tanh(βn xk
n−1) + wk

n,

with coupling between corresponding nodes of each circuit. Ring oscillators have
found wide application in biological oscillators such as the repressilator in [6]. The
parameters ηk = 1

RkCk
, αk , and βk correspond to the gain of each inverter. The input

is given by:
wk

i = di

∑

j∈Nk,i

(x j
i − xk

i ), (3.52)

wheredi = 1
R(i)Ci

andNk,i denotes the nodes towhichnode i of circuit k is connected.
We wish to determine if the solution trajectories of each set of like nodes of the
coupled ring oscillator circuit given by (3.51)–(3.52) synchronize, that is:

x j
i − xk

i → 0 exponentially as t → ∞ (3.53)

for any pair ( j, k) ∈ {1, . . . , N } × {1, . . . , N } and any index i ∈ {1, . . . , n}.
For clarity in our discussion, we take n = 3 as in Fig. 3.1. We first write the

Jacobian of the system (3.51), wherewe have omitted the subscripts indicating circuit
membership:

J (x)
∣
∣
x=x̄ =

⎡

⎣
−η1 0 γ1(x̄1)

γ2(x̄2) −η2 0
0 γ3(x̄3) −η3

⎤

⎦ , (3.54)

with γ1(x̄1) = −α1β1sech2(β1 x̄3), γ2(x̄2) = α2β2sech2(β2 x̄1), and γ3(x̄3) =
α3β3sech2(β3 x̄2). Define the matrices

A0 =
⎡

⎣
−η1 0 0
0 −η2 0
0 0 −η3

⎤

⎦ A1 =
⎡

⎣
0 0 −α1β1
0 0 0
0 0 0

⎤

⎦

A2 =
⎡

⎣
0 0 0

α2β2 0 0
0 0 0

⎤

⎦ A3 =
⎡

⎣
0 0 0
0 0 0
0 α3β3 0

⎤

⎦ . (3.55)

Then it follows that J (x) is contained in a convex box:

J (x) ∈ box{A0, A1, A2, A3}. (3.56)
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R2

C2

R3

C3

R1

C1

R2

C2

R3

C3

R1

C1

R2

C2

R3

C3

R(1)

R(1)

R(1)

x1,1

x2,1

x3,1

R(2)

R(2)

x1,2

x2,2

x3,2

Fig. 3.1 An example of a network of interconnected three-stage ring oscillator circuits as in (3.51)
coupled through nodes 1 and 2

While the method of Proposition 1 involves parametrizing a convex box as a convex
hull with 2p vertices, and potentially a prohibitively large linear matrix inequality
computation, the problem structure can be exploited using Proposition 2 to obtain
a simple analytical condition for synchronization of trajectories. In particular, the
Jacobian of the ring oscillator exhibits a cyclic structure. The matrix M for which
we seek a Q satisfying (3.49), or equivalently (3.46), is given by:

M =
[

A0 − Λ2 − μ
2 I B

CT −I

]
, B =

⎡

⎣
0 0 −α1β1

α2β2 0 0
0 α3β3 0

⎤

⎦ , C = I3. (3.57)



3 Guaranteeing Spatial Uniformity in Reaction-Diffusion Systems 99

Note that the matrix M exhibits a cyclic structure, and by a suitable permutation G
of its rows and columns, it can be brought into a cyclic form M̃ = G MGT . Since M̃
is cyclic, it is amenable to an application of the secant criterion [2], which implies
that the condition

Π3
i=1αiβi

Π3
l=1(ηl + λl + μ

2 )
< sec3

(π

3

)
(3.58)

holds if and only if M̃ satisfies

Q̃M̃ + M̃T Q̃ < 0 (3.59)

with negative μ, for some diagonal Q̃ > 0. Pre- and post-multiplying (3.59) by GT

and G, respectively, (3.59) is equivalent to:

GT Q̃G M + MT GT Q̃G < 0. (3.60)

Thus, if Q̃ is diagonal and satisfies (3.59), then Q = GT Q̃G is diagonal and sat-
isfies (3.46). We conclude that if the secant criterion in (3.58) is satisfied, then by
Proposition 2, we have:

sup
(x,t)∈V ×[0,∞)

(JF (x, t) − Λ2) <
μ

2
.

Because Q is diagonal and positive, Q is diagonal and positive. Therefore:

Q Di + Di Q > 0 for each i = 1, . . . , r.

Therefore, since μ < 0, by Corollary 4, we get:

x j
i − xk

i → 0 exponentially as t → ∞ (3.61)

for any pair ( j, k) ∈ {1, . . . , N } × {1, . . . , N } and any index i ∈ {1, 2, 3}.
We note that the condition for synchrony that we have found recovers Theorem

2 in [7], which makes use of an input-output approach to synchronization [20]. We
have derived the condition using Lyapunov functions in an entirely different manner
from the input-output approach.

3.5 Conclusions

We have derived Lyapunov inequality conditions that guarantee spatial uniformity
in the solutions of compartmental ODEs and reaction-diffusion PDEs even when the
diffusion terms vary between species. We have used convex optimization to develop
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tests using linear matrix inequalities that imply the inequality conditions, and have
applied the tests to several examples of biological interest.
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