
JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 14, Number 7, 2007

© Mary Ann Liebert, Inc.

Pp. 927–949

DOI: 10.1089/cmb.2007.0015

A Novel Method for Signal Transduction Network
Inference from Indirect Experimental Evidence �

�

�

�
AU1

RÉKA ALBERT,1 BHASKAR DASGUPTA,2 RICCARDO DONDI,3 SEMA KACHALO,4

EDUARDO SONTAG,5 ALEXANDER ZELIKOVSKY,6 and KELLY WESTBROOKS6

ABSTRACT

In this paper, we introduce a new method of combined synthesis and inference of biological

signal transduction networks. A main idea of our method lies in representing observed causal

relationships as network paths and using techniques from combinatorial optimization to

find the sparsest graph consistent with all experimental observations. Our contributions are

twofold: (a) We formalize our approach, study its computational complexity and prove new

results for exact and approximate solutions of the computationally hard transitive reduction

substep of the approach (Sections 2 and 5). (b) We validate the biological usability of our

approach by successfully applying it to a previously published signal transduction network

by Li et al. (2006) and show that our algorithm for the transitive reduction substep performs

well on graphs with a structure similar to those observed in transcriptional regulatory and

signal transduction networks.

Key words: combinatorial optimization, signal transduction networks, systems biology.

1. INTRODUCTION

MOST BIOLOGICAL CHARACTERISTICS of a cell arise from the complex interactions between its
numerous constituents such as DNA, RNA, proteins, and small molecules (Alberts, 1994). Cells use

signaling pathways and regulatory mechanisms to coordinate multiple functions, allowing them to respond
to and acclimate to an ever-changing environment. Genome-wide experimental methods now identify
interactions among thousands of proteins (Lee et al., 2002; Giot et al., 2003; Han et al., 2004; Li et al.,
2004); however these experiments are rarely conducted in the specific cell type of interest and are not
able to probe the directionality of the interactions (i.e., to distinguish between the regulatory source and
target). Identification of every reaction and regulatory interaction participating even in a relatively simple

1Department of Physics, Pennsylvania State University, University Park, Pennsylvania.
2Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois.
3Dipartimento di Scienze dei Linguaggi della Comunicazione e degli Studi Culturali, Università degli Studi di

Bergamo, Bergamo, Italy.
4Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.
5Department of Mathematics, Rutgers University, New Brunswick, New Jersey.
6Department of Computer Science, Georgia State University, Atlanta, Georgia.

927

928 ALBERT ET AL.

function of a single-celled organism requires a concerted and decades-long effort. Consequently, the state
of the art understanding of many signaling processes is limited to the knowledge of key mediators and of
their positive or negative effects on the whole process.

Experimental information about the involvement of a specific component in a given signal transduction
network can be partitioned into three categories. First, biochemical evidence that provides information on
enzymatic activity or protein-protein interactions. This first category is a direct interaction, e.g., binding
of two proteins or a transcription factor activating the transcription of a gene or a chemical reaction with a
single reactant and single product. Second, pharmacological evidence, in which a chemical is used either
to mimic the elimination of a particular component, or to exogenously provide a certain component, leads
to observed relationships that are not direct interactions but indirect causal effects most probably resulting
from a chain of interactions and reactions. For example, binding of a chemical to a receptor protein starts
a cascade of protein-protein interactions and chemical reactions that ultimately results in the transcription
of a gene. Observing gene transcription after exogeneous application of the chemical allows inferring a
causal relationship between the chemical and the gene that however is not a direct interaction. Third,
genetic evidence of differential responses to a stimulus in wild-type organisms versus a mutant organism
implicates the product of the mutated gene in the signal transduction process. This category is a three-
component inference that in a minority of cases could correspond to a single reaction (namely, when the
stimulus is the reactant of the reaction, the mutated gene encodes the enzyme catalysing the reaction and
the studied output is the product of the reaction), but more often it is indirect. As stated above, the last
two types of inference do not give direct interactions but indirect causal relationships that correspond to
reachability relationships in the unknown interaction network. Here we describe a method for synthesizing
indirect (path-level) information into a consistent network by constructing the sparsest graph that maintains
all reachability relationships.

This method’s novelty over other network inference approaches is that it does not require expression
information, as all reverse engineering approaches do (Carter, 2005). Moreover, our method significantly
expands the capability for incorporating indirect (pathway-level) information. Previous methods of synthe-
sizing signal transduction networks (Ma’ayan et al., 2005) only include direct biochemical interactions,
and are therefore restricted by the incompleteness of the experimental knowledge on pairwise interactions.
Our method is able to incorporate indirect causal effects as network paths with known starting and end
vertices and (yet) unknown intermediary vertices.

The first step of our method is to distill experimental conclusions into qualitative regulatory relations
between cellular components. Following DasGupta et al. (2006) and Li et al. (2006), we distinguish between
positive and negative regulation, usually denoted by the verbs “promote” and “inhibit” and represented
graphically as ! and a. Biochemical and pharmacological evidence is represented as component-to-
component relationships, such as “A promotes B,” and is incorporated as a directed arc from A to B. Arcs
corresponding to direct interactions are marked as such. Genetic evidence leads to double causal inferences
of the type “C promotes the process through which A promotes B.” The only way this statement can
correspond to a direct interaction is if C is an enzyme catalyzing a reaction in which A is transformed
into B. We represent supported enzyme-catalized reactions as both A (the substrate) and C (the enzyme)
activating B (the product). If the interaction between A and B is direct and C is not a catalyst of the
A-B interaction, we assume that C activates A. In all other cases we assume that the three-node indirect
inference corresponds to an intersection of two paths (A) B and C) B) in the interaction network;
in other words, we assume that C activates an unknown intermediary (pseudo)-vertex of the AB path.
The main idea of our method is finding the minimal graph, both in terms of pseudo vertex numbers and
non-critical edge numbers, that is consistent with all reachability relationships between real vertices. The
algorithms involved are of two kinds: (i) transitive reduction of the resulting graph subject to the constraints
that no edges flagged as direct are eliminated and (ii) pseudo-vertex collapse subject to the constraints that
real vertices are not eliminated.

Note that we are not claiming that real signal transduction networks are the sparsest possible; our
goal is to minimize false positive (spurious) inferences, even if risking false negatives. This means that
we want to be as close as possible to a “tree topology” while supporting all experimental observations.
The implicit assumption of chain-like or tree-like topologies permeates the traditional molecular biology
literature: signal transduction and metabolic pathways were assumed to be close to linear chains, genes
were assumed to be regulated by one or two transcription factors (Alberts, 1994). According to current

AU: PLEASE SUPPLY SHORT TITLE 929

observations the reality is not far: the average in/out degree of transcriptional regulatory networks (Shen-
Orr et al., 2002; Lee et al., 2002) and the mammalian signal transduction network (Ma’ayan et al., 2005) is
close to 1. Philosophically, the approach of obtaining the sparest network can be called as a “parsimony”
approach used in the construction of phylogenies and elsewhere.

The rest of the paper is organized as follows:

� In Section 2, we formalize our approach for network synthesis and identify the computational complex-
ities of various steps.

� In Section 5, we provide new algorithmic results on the computationally hard transitive reduction substep
of our approach.

� In Section 6.1, we validate the biological usability of our approach by successfully applying it to a
previously published signal transduction network by Li et al. (2006).

� In Section 6.2, we show that our algorithm for the transitive reduction substep performs well on graphs
with a structure similar to those observed in transcriptional regulatory and signal transduction networks.

2. FORMAL DESCRIPTION OF THE NETWORK SYNTHESIS PROCEDURE

The goal of this section is to introduce a formal framework of the network synthesis procedure that is
sufficiently general in nature, and amenable to algorithmic analysis and consequent automation. First, we
need to describe a graph-theoretic problem which we refer to as the binary transitive reduction (BTR)
problem. We are given a directed graph G D .V; E/ with an edge labeling function w W E 7! f0; 1g.

Biologically, edge labels 0 and 1 in edges u
0

!v and u
1

!v correspond to the “u promotes v” and “u

inhibits v,” respectively.
The following definitions and notations are used throughout the paper:

� All paths are (possibly self-intersecting) directed paths unless otherwise stated. A non-self-intersecting
path or cycle is called a simple path or cycle.

� If edge labels are removed or not mentioned, they are assumed to be 0 for the purpose of any problem
that needs them.

� The parity of a path P from vertex u to vertex v is
P

e2P w.e/ .mod 2/. A path of parity 0 (resp., 1) is
called a path of even (resp, odd) parity. The same notions carries over to cycles in an obvious manner.

� The notation u
x

) v denotes a path from u to v of parity x 2 f0; 1g. If we do not care about the parity,

we simply denote the path as u) v. An edge will simply be denoted by u
x

! v or u ! v.

� For a subset of edges E 0 � E , reachable.E 0/ is the set of all ordered triples .u; v; x/ such that u
x

) v

is a path of the restricted subgraph .V; E 0/. We will sometimes simply say u
x

) v is contained in E 0 to

mean u
x

) v is a path of the restricted subgraph .V; E 0/.

The BTR problem is defined as follows:

Instance: A directed graph G D .V; E/ with an edge labeling function w W E 7! f0; 1g and a set of critical
edges Ecritical � E .

Valid solutions: A subgraph G0 D .V; E 0/ where Ecritical � E 0 � E and reachable.E 0/ Dreachable.E/.
Objective: Minimize jE 0j.

Note that an exact or an approximate solution to the BTR problem is not unique; alternate solutions
represent alternate interpretations of the same data. Intuitively, the BTR problem is useful for determining
the sparsest graph consistent with a set of experimental observations. The set of “critical edges” represent
edges which are known to be direct interactions with concrete evidence. By maximizing sparseness we do
not simply mean to minimize the number of edges per se, but seek to minimize the number of spurious
feed-forward loops (i.e., a node regulating another both directly and indirectly). This means that we want
to be as close as possible to a “tree topology” while supporting the experimental observations.

930 ALBERT ET AL.

We also need to define one more problem that will be used in the formal framework of the network
synthesis approach. The pseudo-vertex collapse (PVC) problem is defined as follows:

Problem name: Pseudo-Vertex Collapse (PVC)
Instance: A directed graph G D .V; E/ with an edge labeling function w W E 7! f0; 1g and a subset

V 0 � V of vertices called pseudo-vertices. The vertices in V n V 0 are called “real” vertices.
Definition:

� For any vertex v, let in.v/ D f.u; x/ j u
x

)v; x 2 f0; 1gg n fvg and let out.v/ D f.u; x/ j v
x

)u; x 2
f0; 1gg n fvg.

� Collapsing two vertices u and v is permissible provided both are not “real” vertices and in.u/ Din.v/

and out.u/ Dout.v/.
� If permissible, the collapse of two vertices u and v creates a new vertex w, makes every incoming

(resp. outgoing) edges to (resp. from) either u or v an incoming (resp. outgoing) edge from w,
removes any parallel edge that may result from the collapse operation and also removes both vertices u

and v.
Valid solutions: A graph G00 D .V 00; E 00/ obtained from G by a sequence of permissible collapse opera-

tions.
Objective: Minimize jV 00j.

Intuitively, the PVC problem is useful for reducing the pseudo-vertex set to the the minimal set that
maintains the graph consistent with all indirect experimental observations. As in the case of the BTR
problem, our goal is to minimize false positive (spurious) inferences of additional components in the
network.

A formal framework for the network synthesis procedure is presented in Figure 1. As described in
�

�

�

�
F1

Section 1, in the first step we incorporate biochemical interaction or causal evidence as labeled edges,
noting the critical edges corresponding to direct interactions. Then we perform a binary transitive reduction
to eliminate spurious inferred edges (i.e., edges that can be explained by paths of the same label). In step

two we incorporate double causal relationships A
x

! .B
y
! C/ by (i) adding a new edge A

x
! B

if B
y

! C is a critical edge, (ii) doing nothing if existing paths in the network already explain the
relationship, or (iii) adding a new pseudo-vertex and three new edges. To correctly incorporate the parity

of the A
xCy .mod 2/

�! C relationship, positive B
y

! C paths will be broken into two positive edges, while
negative paths will be broken into a positive edge (a D 0) and a negative edge (b D 1), summarized in
a concise way by the equation b D a C b D y .mod 2/. The unnecessary redundancy of the resulting
graph is reduced by performing pseudo-vertex collapse, then a second round of binary transitive reduction.
Intuitively speaking, the approach in Figure 1 first expands the network by the addition of the pseudo-
vertices at the intersection of the two paths corresponding to three-node inferences, then uses the additional
information available in the network to collapse these pseudo-vertices, i.e., to identify them with real
vertices or with each other. The PVC is the heart of the algorithm, the final BTR is akin to a final cleanup
step; thus it is important to perform PVC before BTR in Step 2.2 of Figure 1.

An example of a set of input interactions for a network synthesis approach such as shown in Figure 1
appears in Table 2 in Appendix 1 and the finally constructed network appears in Figure 2b.

�

�

�

�
AU2
�

�

�

�
F2

It is very easy to add new pseudo-vertices in Step 2.1 using a Floyd-Warshall type transitive closure
algorithm (Cormen et al., 2001). Thus the two remaining major steps in the synthesis procedure are in fact
the BTR and the PVC problems. It is easy to design a polynomial-time algorithm for the PVC problem.

Proposition 1. The PVC problem can be solved in polynomial time.

Proof. Partition the vertices into equivalence classes such that two vertices are in the same partition
provided in.u/ Din.v/ and out.u/ Dout.v/. It can be easily seen if two vertices u and v in the same
partition are collapsed into a new vertex w then the resulting equivalence partition is same as before
except that the two vertices u and v are replaced by a new vertex w in the same equivalence partition.
Thus, an optimal solution would consist of collapsing all pseudo-nodes with one arbitrary real-node (if it
exists) in each equivalence partition.

AU: PLEASE SUPPLY SHORT TITLE 931

1 [encoding single causal inferences]

1.1 Build a network for each causal inference of the type A
0

!B or A
1

!B noting
each critical edge.

1.2 Solve the BTR problem for this network.

2 [encoding double causal inferences]

2.1 Consider each indirect causal relationship A
x

! .B
y
! C/ where x; y 2 f0; 1g.

We add new nodes and/or edges in the network based on the following cases:
� If B

y
! C 2 Ecritical, then we add A

x
! .B

y
! C/.

� If there is no subgraph of the form

A

+ x

B
a

) D
b

) C

for some node D where b D a C b D y .mod 2/ then add the subgraph

A

x

B
a

! P
b

! C

to the network where a new “pseudo-node” P is added and b D a C b D y

.mod 2/.
2.2 Solve the PVC problem for the resulting graph.

3 [final reduction] Solve the BTR problem for the network.

FIG. 1. The overall network synthesis approach.

Thus, we have proved the following proposition.

Proposition 2. All the steps in the network synthesis procedure except the steps that involve BTR can

be solved in polynomial time.

3. PREVIOUS RESULTS ON THE BTR PROBLEM

Obviously, BTR is NP-complete since the special case with all-zero edge labels includes the problem of
finding a directed Hamiltonian cycle in a graph. If Ecritical D ;, BTR with all-zero edge labels is known
as the minimum equivalent digraph (MED) problem. MED is known to be MAX-SNP-hard, admits a
polynomial time algorithm with an approximation ratio of 1:617 C " for any constant " > 0 (Khuller et al.,
1995) and can be solved in polynomial time for directed acyclic graphs (Aho et al., 1972). More recently,
Vetta (2001) has claimed a 3

2
-approximation for the MED problem. A weighted version of the MED

problem, in which each edge has a non-negative real weight and the goal is to find a solution with a least
value of the sum of weights of the edges in the solution, admits a 2-approximation (Frederickson and JàJà,
1981; Khuller et al., 1999); this implies a 2-approximation for the BTR problem without the restriction
Ecritical D ;. In a previous paper (Albert et al., 2007), we have been able to design a 2Co.1/-approximation
for the BTR problem, provided a 1:78-approximation for the BTR problem when all edge labels are zero
but critical edges are allowed and observed that the BTR problem can be solved in polynomial time if the
input graph is a DAG.

932 ALBERT ET AL.

(a)

FIG. 2. (a) The network manually synthesized by Li et al. (2006) redrawn for easier visual comparison. (b) The
network synthesized in this paper. A pseudo-vertex is displayed as ~. (continued)

4. PERTINENT PREVIOUS WORKS ON NETWORK INFERENCE

The idea of transitive reduction, though in a more simplistic setting and/or integrated in an approach
different from what appears in this paper, has been used by a few researchers before. For example,
Wagner’s (2002) goal is to find the network from the reachability information. He constructs uniformly
random graphs and scale-free networks in a range of connectivities (average degrees), and matches their
reachability information to the range of gene reachability information found from yeast perturbation studies.
He concludes that the expected number of direct regulatory interactions per gene is around 1 (if the
underlying graph is uniformly random) or less than 0:5 (if the underlying graph is scale free with a degree
exponent of 2).

Chen et al. (1999) use time-dependent gene expression information to determine candidate activators and
inhibitors of each gene, then prune the edges by assuming that no single gene functions both as activator
and inhibitor. This assumption is too restrictive given that transcription factors can have both activation
and inhibition domains, and the same protein-level interactions (for example phosphorylation by a kinase)
can have positive or negative functional character depending on the target.

Li et al. (2006) manually synthesize a plant signal transduction network from indirect (single and double)

inferences introducing a first version of pseudo-vertex collapse. They assume that if A
0

!B , A
0

!C and

C
0

!.A
0

!B/, the most parsimonious explanation is that A
0

!C
0

!B .
The reader is elsewhere (Filkov, 2005; Jong, 2002) for further general information on biological network

inference and modeling.

AU: PLEASE SUPPLY SHORT TITLE 933

(b)

FIG. 2. (Continued)

In our previous publication (Albert et al., 2007), we considered the BTR problem, generalized it to a so-
called p-ary transitive reduction problem and provided an approximation algorithm for this generalization.
The results in Albert et al. (2007) are purely theoretical in nature with no experimental or implementation
results, moreover the network synthesis process described in Figure 1 does not appear in Albert et al.
(2007). All the theoretical results reported in this paper are disjoint from the results reported in Albert
et al. (2007). A copy of Albert et al. (2007) can be obtained online by following the publications link in
the webpage www.cs.uic.edu/�dasgupta of the second author.

5. NEW ALGORITHMIC RESULTS FOR BTR

Our new theoretical results on the computational complexity of the BTR problem appear in Sec-
tions 5.1–5.3. In Section 5.4, we explain the algorithmic approach that we implemented for BTR to
test on real and simulated data.

5.1. Polynomial time algorithm when maximum cycle length is 3

In this section we consider the restriction of the BTR problem where the maximum cycle length of
the input graph G is 3. We denote such restriction by BTR.3/. We show that BTR.3/ is polynomial time
solvable. Observe that BTR.3/ with all zero edge labels and no critical edges is already known to be
polynomial time solvable (Khuller et al., 1996); the algorithm of Khuller et al. (1996) reduces this special
case to bipartite edge cover problem, which is known to be equivalent to maximum bipartite matching
(Norman and Rabin, 1959) and thus polynomial time solvable (Hopcroft and Karp, 1973). Due to the

934 ALBERT ET AL.

result in Section 7.4 of Albert et al. (2007), we may assume that the input graph G is a strong connected
component since otherwise the problem can be decomposed in polynomial time to computing an optimum
solution in each strongly connected component. One can prove the following result; critical steps in the
algorithm involve observing that all the critical edges must belong to any solution and that in an optimum
solution the edges that are needed to be added must be a minimum edge cover over a certain bipartite
graph.

Theorem 1. BTR can be solved in polynomial time if the graph has no cycles of length more than 3.

Now, we discuss the proof of the above theorem. Let G D .V; E/ be a strongly connected digraph
instance of BTR.3/. We assume that jV j > 3 and none of the vertices of G are cut vertices. A cut vertex

is a vertex whose removal disconnects the underlying undirected graph. By standard techniques the cut
vertices can be found in polynomial time, the graph can be partitioned in 2-connected components and the
problem can be solved separately in each 2-connected component.

First we will review the approach proposed in Khuller et al. (1996) for BTR.3/ with all-zero edge labels
and no critical edge. In order to apply this approach to our case, we just do not consider the labels of the
edges and the fact that edges can be critical. Let G0 be the graph obtained from G making the labels of
all the edges as zeroes and assuming that all the edges are not critical.

An edge of G0 is called redundant if deleting the edge from G0 leaves a strongly connected graph,
otherwise it is called necessary. Moreover an edge .u; v/ is unsatisfied if there is no path from v to u

consisting of necessary edges. A redundant edge e provides a cycle for an unsatisfied edge .u; v/ if there
is a path from v to u consisting of necessary edges and edge e.

The authors in Khuller et al. (1996) prove the following fact:

Fact 1. Each redundant edge lies on exactly one cycle of G0.

From Fact 1 it follows that each redundant edge provides a cycle for at most two unsatisfied edges.
Moreover, another fundamental result from Khuller et al. (1996) is the following.

Fact 2. Each cycle in G0 contains at most one redundant edge.

Hence in order to find a solution for BTR.3/ over input graph G0, we have to find the minimum
number of redundant edges that have to be added to necessary edges so that the obtained subgraph is a
solution for G0. Observe that a solution for BTR.3/ with all-zero edge labels and no critical edges over
input graph G0 consists of the set of necessary edges and a set of redundant edges Er such that for each
unsatisfied edge e, a redundant edge providing a cycle for e is contained in Er .

Let G00 D .V 00; E 00/ be an undirected graph, such that the nodes in V 00 are the unsatisfied edges and
if a redundant edge provides a cycle for two unsatisfied edges, then we add an edge between the two
corresponding nodes. Hence we can state the following lemma:

Lemma 2 (Khuller et al., 1996). The optimum solution for BTR.3/ with all-zero edge labels and no

critical edges over an input graph G0 consists of the set of necessary edges and of a minimum edge cover

of G00.

A second result from Khuller et al. (1996) states that G00 is a bipartite graph. Now, since the graph G00

is bipartite, an edge cover of G00 can be computed in polynomial time (Hopcroft and Karp, 1973).
In what follows we will show that, starting from bipartite graph G00, we build a new bipartite graph Gc ,

such that the optimum solution for BTR.3/ over input G can be computed from an edge cover of Gc .
First, we have to consider that some of the edges of G are critical. So let G1 be the graph obtained

from G by ignoring the labels of the edges, i.e., making all the edge labels as zeroes. Observe that G1

can be obtained from G0 by considering the fact that some of the edges are critical. We will construct an
optimum solution S of G1 for the BTR.3/ problem starting from a solution S 0 for G0. In particular we
have to consider the fact the all critical edges of G1 must be in S . If a critical edge is necessary in G0,
then surely it will be add to any solution of G0, thus also in S 0. Hence we have to consider the case when

AU: PLEASE SUPPLY SHORT TITLE 935

there exists a set Ex of critical edges of G such that each e 2 Ex is classified as redundant. We add the
set of edges Ex to S and we build the graph Gc deleting from G00 the edges in Ex and all the nodes that
are endpoints of an edge in Ex.

Observe that Gc is a bipartite graph, since it is a subgraph of G00, which is bipartite. Thus in order to
compute an optimum solution S for the BTR.3/ problem over G, we have to add to the set of redundant
and critical edges the minimum set of redundant edges so that the solution obtained cover all the unsatisfied
edges. Hence we have to compute a Minimum Edge Cover of Gc , which can be computed in polynomial
time. This leads to a minimum solution of BTR.3/.

Next we extend the optimum solution S to an optimum solution Sf of BTR.3/ for G. Observe that the
input to our problem is now the graph G, i.e., we have to consider the labels of edges. Observe that each
optimum solution of BTR.3/ for G must contain at least one cycle of odd parity. Now let Ez be the set
of critical and necessary edges. If at least one cycle of odd parity is contained in the set of edges Ez, then
the solution S of BTR.3/ for G1 is also a minimum solution of BTR.3/ for G. Thus assume that no cycle
of odd parity is included in the solution. By Fact 2 each such cycle contains exactly one redundant edge.
Let S 0 be an optimum solution of BTR.3/ and let C be an odd cycle contained in S 0. Thus C consists of
two necessary edges and one redundant edge.

Now let Eo be the set of redundant edges such that, adding e 2 Eg to the set of edges Ez , the solution
contains an odd cycle. For each edge e 2 Eo, we compute a feasible solution Sf .e/ as follows. First we
add Ez and e to Sf .e/. Then we remove edge e (and the endpoints of e) from graph Gc and we add to
Sf .e/ a Minimum Edge Cover of the resulting graph. The algorithm outputs Sf the minimal of all the
solutions Sf .e/.

Lemma 3. Solution Sf is a minimum solution for BTR.3/.

Proof. Note that any optimum solution must contain one of the edges of Eo, otherwise no cycle of
odd parity is included in the solution. Furthermore, let e 2 Eo, observe that, since Sf .e/ is obtained by
computing an optimum solution of Gc after the removal of e, Sf .e/ is an optimal solution with respect to
the solutions that contain edge e.

Now assume that Sf contains edge e 2 Eo. Since Sf is an optimum solution with respect to the
solutions that contain edge e, if there is an optimum solution that contains e, it follows that Sf is an
optimum solution. Thus, assume that there is no optimum solution containing e. An optimum solution
must contain another edge e0 2 Eo, and since each solution Sf .e0/ is an optimum solution with respect to
the solutions that contain edge e, the algorithm would have output Sf .e0/.

This concludes the proof of Theorem 1.

5.2. Approximation guarantee of a greedy procedure

Recall that an approximation algorithm for a minimization problem of performance or approximation
ratio ˛ (or simply an ˛-approximation) is a polynomial-time algorithm that provides a solution with a
value of the objective function that is at most ˛ times the optimal value of the objective function. In Li
et al. (2006), the authors used the following ad-hoc greedy procedure for BTR within the network synthesis
procedure to manually create the network for ABA-induced stomatal closure:

Definition

an edge u
x

!v is redundant if there is an alternate path u
x

)v

GREEDY
while there exists a redundant edge

delete the redundant edge

It is not difficult to see that this greedy procedure for BTR is in fact optimal if the graph is a DAG
(Aho et al., 1972; Albert et al., 2007). Below we prove that this simple approach in fact produces a
3-approximation for the BTR problem.

936 ALBERT ET AL.

Theorem 4. The GREEDY procedure is a 3-approximation for the BTR problem. Moreover, there are

input instances of BTR for which GREEDY has an approximation ratio of at least 2.

The rest of the section discusses the proof of the above theorem. First, we prove the following.

Lemma 5. The GREEDY procedure is a 3-approximation if the input graph is strongly connected.

Proof. Let G D .V; E/ denote the given input graph and OPT.G/ denotes the number of edges in
an optimal solution of BTR for G. Note that OPT.G/ � jV j. For a given graph H , let H0 be the graph
obtained from H by setting all edge labels to zeroes and an edge e in H0 is called superfluous if it would
be removed in H0 by GREEDY but not in H . Let GGREEDY be the graph obtained from G by GREEDY.
The proof follows via the following steps:

(a) We first consider the case when Ecritical D ; and show a 2-approximation for this case. The proof of
2-approximation proceeds via the following steps.
(i) We first show that G0

GREEDY contains at most one superfluous edge.
(ii) We then show that using (i) one can show that the number of edges in GGREEDY is at most 2�jV jC1.

(b) We then observe the constraint Ecritical ¤ ; adds at most one to the approximation ratio.

We first start with the proof of (a)-(i). First we show that a superfluous edge in G0
GREEDY induces a cycle

of odd parity in GGREEDY. Let i ! j be a superfluous edge in G0
GREEDY. Since i ! j is superfluous in

G0
GREEDY, it follows that there is a path pi;j in G0

GREEDY from i to j that does not contain the edge i ! j .
Now consider edge i ! j and path pi;j in GGREEDY. Since the heuristics does not remove edge i ! j from
GGREEDY, it implies that w.i ! j / ¤ w.pi;j /. Since GGREEDY is a strongly connected component, there
must be also a path qj;i from node j to node i of parity w.qj;i /. Consider the following two (not necessary
simple) cycles: cycle �1 consists of the edge i ! j and the path qj;i of parity w.�1/ D w.i ! j /Cw.qj;i /

.mod 2/; cycle �2 consists of the path pi;j and the path qj;i of parity w.�2/ D w.pi;j / C w.qj;i /

.mod 2/. w.�1/ � w.�2/ D w.i ! j / � w.pi;j / .mod 2/ Since w.i ! j / ¤ w.pi;j /, it follows that
w.�1/ � w.�2/ D w.i ! j / � w.pi;j / ¤ 0 .mod 2/ and thus at least one of the two cycles must be of
odd parity. Assume without loss of generality that �1 is of odd parity.

Now suppose that there exist other superfluous edges in G0
GREEDY. We will arrive at a contradiction by

showing that GREEDY can delete all these superfluous edges except for one in GGREEDY. Indeed suppose
that we delete all the superfluous edges from G0

GREEDY by applying GREEDY to G0
GREEDY. Let G0 be the

resulting graph; observe that it is a strongly connected graph. Now, let G00 be the strongly connected graph
which consists of the edges in G0 and one superfluous edge i ! j . This induces a cycle of odd parity in
GGREEDY which implies from every vertex to every other vertex there is a both an even parity path and an
odd parity path. Thus, GREEDY will definitely remove all other superfluous edges in GGREEDY.

Now we show (a)-(ii) that the number of edges in GGREEDY is at most 2 � jV j C 1. We show this by
showing that the graph H D .V; EH / obtained by applying GREEDY to G0

GREEDY has at most 2 � jV j
edges. An edge u ! v is called a chord if u and v are two non-adjacent vertices in a path u) v.
Note that H does not contain a chord. We use a counting method used in the cycle contraction approach
in Khuller et al. (1995) to show that jEH j � 2 � jV j. Contraction of an edge u ! v is to merge u

and v into a single vertex and delete any resulting self-loops or multi-edges. Contracting a cycle is
equivalent to contracting the edges of a cycle. Consider the simple procedure of starting with H , contract
an arbitrary cycle of the current graph, and continue in this manner until we have collapsed H into a single
vertex. Note that a cycle contraction cannot produce self-loops or multi-edges since H has no chords. A
contraction of a cycle of x edges reduces the number of edges by x and the number of vertices by x � 1.
Thus, jEH j � 2 � jV j.

Now, we observe (b) by noting that since the edges in Ecritical must also appear in any optimal solution,
the constraint Ecritical ¤ ; adds an additional one in the approximation ratio.

We now continue with the proof of Theorem 4 by extending the above result to the general case. Let
G D .V; E/ be the given graph with C1 D .VC1

; EC1
/; C2 D .VC2

; EC2
/; : : : ; Cm D .VCm ; ECm/ being

the m strongly connected components where the i th component Ci contains ni vertices; thus

AU: PLEASE SUPPLY SHORT TITLE 937

� [m
iD1VCi

D V and
Pm

iD1 ni D jV j;
� VCi

\ VCj
D ; if i ¤ j ;

� [m
iD1ECi

� E .

First, we recall some pertinent definitions and results from Albert et al. (2007).

Definition 6 (Albert et al., 2007). Consider a strongly connected component Ci D .VCi
; ECi

/ of the

given graph G. Ci is called a multiple parity component if for any two vertices u; v 2 VCi
, u

x
) v exists

in Ci for every x 2 f0; 1g and a single parity component if for any two vertices u; v 2 VCi
, u

x
) v exists

in Ci for exactly one x from f0; 1g.

Lemma 7 (Albert et al., 2007).

(a) Every strongly connected component of G is either single parity or multiple parity.

(b) It is possible to design a straightforward dynamic programming approach to determine, given a strongly

connected component Ci , if Ci is of single or multiple parity using ideas similar to that in the Floyd-

Warshall transitive closure algorithm (Cormen et al., 2001). The running time of the algorithm is

O.jVCi
j3/.

We now recall some results which follow directly from the results in Sections 6 and 7.4 of (Albert et al.,
2007).1 For notational convenience let G0 D .V 0; E0/ be a graph identical to the given graph G; thus

�

�

�

�
FN1

V 0 D V and E0 D E . A doubly-labeled edge u
0;1
! v is an edge such that traversing the edge gives a path

from u to v of both parity 0 and parity 1. Let G0 be a new graph obtained from G by a polynomial-time
procedure Tcycle-to-gadget of the following nature:

� For i D 1; 2; : : : ; m do the following:
—The starting graph for the i th iteration is Gi�1.
—The component Ci in Gi�1 is replaced by a single vertex
i .
—The edge replacement mapping is as follows:

* An edge e in Gi�1 with both end-points not in Ci stays the same, i.e., the replacement of the edge
is the edge itself.

* If Ci is a multiple parity component then we do the following.

� For an incoming edge u
x

! v in Gi�1 from a vertex u not in Ci to a vertex v in Ci the replacement

is an edge u
0;1
!
i .

� For an outgoing edge u
x

! v in Gi�1 from a vertex u in Ci to a vertex v not in Ci the replacement

is an edge
i

0;1
! v.

* If Ci is a single parity component then we do the following.

� For an incoming edge u
x
! v in Gi�1 from a vertex u not in Ci to a vertex v in Ci the replace-

ment is an edge u
y

!
i for some y 2 f0; 1g.

� For an outgoing edge u
x

! v in Gi�1 from a vertex u in Ci to a vertex v not in Ci the replacement

is an edge
i

y
! u for some y 2 f0; 1g.

* The resultant graph at the end of the i th iteration is denoted by is Gi D .V i ; E i/.
� Remove identical edges from Gm. If there are two edges u

x
! v in Gm, remove one of them. Let G0

be the resulting graph.

1The reader may find the following correspondence between our descriptions and those in Albert et al. (2007) useful.

A “gadget” for a strongly connected component is simply a vertex in our context. A doubly labeled edge u
0;1
! v in

our context is a set of two parallel edges in Albert et al. (2007), one labeled 0 and one labeled 1, such that a solution
can contain either both of them or none of them.

938 ALBERT ET AL.

Given an optimal solution E.m/ � Em of the BTR problem on the DAG G0 D Gm D .V m; Em/ with
jE.m/j D OPT 0, we associate it with a subgraph E.0/ � E0 of G D G0 D .V 0; E0/ via a procedure
Tgadget-to-cycle in the following manner:

� For i D m; m � 1; : : : ; 1 do the following:
—Replace the vertex
i by the vertices and edges in an 3-approximate solution of Ci produced by

GREEDY on Ci .

—Replace an edge u
y

!
i incoming to the vertex
i by its “corresponding edge” u
x

! v in Gi�1.

—Replace an edge
i

y
! v outgoing from vertex
i by its “corresponding edge” u

x
! v in Gi�1.

—The replacement of any other edge is the edge itself.

Lemma 8 (Albert et al., 2007).

(a) G0 is a DAG.

(b) GREEDY on G0 produces an optimal solution for the BTR problem on G0.

(c) To prove that procedure Tcycle-to-gadget followed by the procedure Tgadget-to-cycle produces a 3-approx-

imation for G it suffices to just show the following with the stated assumptions:

(i) G is assumed to contain at least one strongly connected component of either single or multiple

parity.

(ii) Tcycle-to-gadget replaces just one arbitrarily strongly connected component, say C D .VC ; EC /, of

G to transforms G to G0 D .V 0; E 0/. Suppose that Tgadget-to-cycle transforms an optimal E1 � E 0

solution of G0 to a solution E2 � E of G. This procedure satisfy the following invariants:

(?) If E1 is an optimal solution for G0 then E2 is a valid solution for G.

(??) A subgraph G2 D .V; E2/ that is an optimal solution E2 for G, after application of the

procedure Tcycle-to-gadget on the connected component C , is transformed to a subgraph G1 D
.V 0; E1/ that is a valid solution for G0.

Section 7.4.1 of Albert et al. (2007) show that our edge replacement procedures for a multiple parity
component satisfies .?/ and .??/.

We now provide exact details of the procedure Tcycle-to-gadget for a single parity component. Let vC 2 VC

be any vertex in the single parity component C D .VC ; EC /. Let
C be the vertex that replaces the
component C . Define the following two notations:

Œ0� D fv0 2 VC j vC

0
) v0 exists in C g

Œ1� D fv0 2 VC j vC

1
) v0 exists in C g

The edge replacement is as follows:2
�

�

�

�
FN2

� For an incoming edge u
x

!u0 in G from a vertex u 62 VC to a vertex u0 2 Œj� of C the replacement is an

edge u
xCj .mod 2/

�!
C .
� For an outgoing edge u0 x

!u in G from a vertex u0 2 Œj� of C to a vertex u 62 VC the replacement is an

edge
C

xCj .mod 2/
�! u.

Lemma 9 (see Lemma 10 of Albert et al. [2007]). For any two vertices u; u0 2 VC with u 2 Œi� and

u0 2 Œj� the path u
j �i .mod 2/

H) u0 exists in C but the path u
j �iC1 .mod 2/

H) u0 is not in C .

To verify .?/, one must consider the following cases.

2This is different from the corresponding edge replacement procedure discussed in Albert et al. (2007).

AU: PLEASE SUPPLY SHORT TITLE 939

(i) u
x

) w is in G when u 2 VC and w 62 VC . Suppose that u0 is the last vertex on this path that

belongs to VC . Thus the path is of the form u
x1

) u0
x2
! w0

x3

) w with x D x1 C x2 C x3 .mod 2/.
Suppose that u 2 Œr � and u0 2 Œs�; then, by Lemma 9, s � r D x1 .mod 2/. The set of edges E1

contains the path
C

x2Cs .mod 2/
H) w0

x3

) w since the edge
C

x2Cs .mod 2/
�! w0 exists in G0. Suppose

that Tgadget-to-cycle translated this path to a path u00
x2Cs�t .mod 2/

H) w0
x3

) w for some u00 2 Œt�. Then the

path u
x1

) u0
t�s .mod 2/

H) u00
x2Cs�t .mod 2/

H) w0
x3

) w is of parity x.

(ii) w
x

) u is in G when u 2 VC and w 62 VC . Similar to (i).

(iii) u
x

) w is in G when u; w 62 VC but the path contains at least one vertex from VC . Let u
x1

) u0
x2

)

v0
x3

) w where u0 and v0 are the first and the last vertices that belong to VC . But, then u
x1

) u0

and v0
x3

) w exist in E1 by (i) and (ii), respectively, and u0
x2

) v0 exist in E2 because Tgadget-to-cycle

replaced the vertex
C by the vertices and edges in an 3-approximate solution of C .

Now we turn our attention to the verification of .??/. To verify .??/ one needs to consider the following
cases:

(i)
C
x

! w exists in G0. Using Lemma 9 and the construction of Tcycle-to-gadget it follows that G2

contains u
x�j .mod 2/

H) w for some u 2 Œj � � VC . Suppose that this path is of the form u
y1

) w0
y2

)

w00
x�j �y1�y2 .mod 2/

H) w where w0 is the last vertex on the path that belongs to VC . By Lemma 9

w0 2 Œj C y1 .mod 2/�. Thus, the path w0
y2

) w00
x�j �y1�y2 .mod 2/

H) w in G2 translates to the path

C

j Cy1Cy2 .mod 2/
) w00

x�j �y1�y2

H) w in G1 which is a path of parity x from
C to w.

(ii) w
x

!
C is in G0. Similar to (i).

(iii) w1

x1
!
C

x2
! w2 is in G0. w1

x1

)
C and �C

x2

) w exist in G1 by (ii) and (i), respectively.

To complete a proof of 3-approximation for GREEDY, we need to show that Tcycle-to-gadget and Tgadget-to-cycle

can indeed produce the same sequence of edges for removal as produced by GREEDY.
First, we show that it is sufficient to consider a “canonical” version of GREEDY that considers those

edges that belong to the same strongly connected component for removal “consecutively.” By a valid

sequence of edges for removal for GREEDY we mean a sequence of edges that can be considered by
GREEDY in that order for removal.

Proposition 3. Let Ee D .e1; e2; : : : ; et/ be the set of t edges removed by GREEDY on G. Let ep and

eq be two edges are in the sequence such that:

� both end-points of ep belong to the same strongly connected component, say Ci ;
� at most one end-point of eq belongs to Ci .

Then, exchanging ep and eq in Ee produces a a valid sequence of edges for removal for GREEDY.

Proof. Assume that p < q. Then, we need to show that the removal of edge eq has no effect on a

subsequent removal of ep . The edge ep D u
x

!v can be removed by GREEDY because of the existence of

an alternate path u
x

)v that does not involve ep . Since both u and v belong to VCi
, the path u

x
)v does

not include a vertex w not in Ci as an intermediate vertex. Thus, removal of edge eq has no effect on this
path.

Otherwise, assume that p > q. Then, we need to show that the removal of edge ep has no effect on a

subsequent removal of eq . The edge eq D u0
x

!v0 can be removed by GREEDY because of the existence

of an alternate path u0
x

)v0 that does not involved eq . Since Ci is a strongly connected component, the

path u0
x

)v0 is of the following form u0
x1

) u00
x2

) v00
x3

) v0 with x1 C x2 C x3 D x .mod 2/ and the path

940 ALBERT ET AL.

u00
x2

) v00 involve vertices from VCi
only. But, since ep was removed because an alternate path of same

parity existed, removal of ep does not affect the path u00
x2

) v00.

Now consider a sequence of edges Ee that GREEDY selected for removal. By Proposition 3, we may
assume that Ee is of the following form:

�

„ ƒ‚ …

edges connecting
strong components

(Group 0)

;
„ ƒ‚ …

edges in Cm

(Group m)

;
„ ƒ‚ …

edges in Cm�1

(Group m � 1)

; : : : : : :
„ ƒ‚ …

edges in C1

(Group 1)

�

Every edge e in Group 0 can first be removed by removing the corresponding edge e0 in G0 that Tcycle-to-gadget

mapped e to. Because of .?/ and .??/ an alternate path in G0 not involving e0 exists. Then, while
Tgadget-to-cycle gradually replaces components by their 3-approximate solutions, replacing component Ci can
be done by removing the edges of Group i from Ci .

For the following example input instance GREEDY has an approximation ratio 2. Let the graph G have
a “root” vertex r and vertices x1; : : : ; xn, for each xi we have an edge xi ! r and an edge r ! xi ,
for each i we have edges xi ! xiC1 and all edge labels are zeroes. GREEDY may remove the edges
xi ! xiC1 for i D 1; 2; : : : ; n � 1 thus providing a solution with 2n edges. But an optimal solution with
n C 1 edges contains the edge r ! x1, the edges xi ! xiC1 for each i and the edge xn ! r .

This concludes the proof of Theorem 4. The following corollary follows directly from the above proof
and will be useful in experimental evaluation of the performance of our implemented algorithms for the
BTR problem.

Corollary 10. Let G D .V; E/ be the given graph with m strongly connected components where the

i th component Ci D .VCi
; ECi

/ contains ni D jVCi
j vertices. Let qi be defined as

qi D

8

<

:

maxfni ; jEcritical \ ECi
jg if ni > 1

0 otherwise
:

Suppose that GREEDY removed all but d edges when it was run on G0. Let L D d C
Pm

iD1 qi . Then,

OPT.G/ � L.

Proof. Let E be an optimal solution of BTR on G and Ei be an optimal solution of BTR on Ci . It
is easy to see that (see, for example, Proposition 6 of Albert et al. (2007)) jE \ ECi

j D jEi j. If ni > 1,
then trivially jEi j � ni since a directed Hamiltonian cycle is the best possible solution. The optimality of
GREEDY on a DAG (and, thus, in particular on the DAG G0) ensures that an optimal solution must select
at least d edges that do not belong to [m

iD1ECi
.

5.3. A mixed ILP formulation for BTR

In theory, the BTR problem can be formulated as a mixed integer programming problem. Details are
provided in Appendix 2. Obviously, this approach is not scalable for larger graphs.

5.4. Our implemention for the BTR problem

Given an instance graph G D .V; E/ of the BTR problem, it is easy to design a straightforward dynamic

programming approach to determine, for every u; v 2 V and every x 2 f0; 1g, if u
x

)v exists in G using
ideas similar to that in the Floyd-Warshall transitive closure algorithm; Albert et al. (2007) provides the
details for the sake of completeness. The worst-case running time of the algorithm is O.jV j3/. To solve the
BTR problem within a acceptable time complexity while ensuring a good accuracy, we have implemented
the following two major approaches:

AU: PLEASE SUPPLY SHORT TITLE 941

Approach 1 (applicable for smaller graphs). If the number of nodes in the graph is at most a threshold N ,
we implemented the GREEDY heuristic of Section 5.2 on the entire graph. The heuristic is implemented

by iteratively selecting a new non-critical edge e D u
x

!v for removal, tentatively removing it from G

and checking if the resulting graph has a path u
x

)v. If so, we remove the edge; otherwise, we keep it
and mark it so that we never select it again. We stop when we have no more edges to select for deletion.

Approach 2 (applicable for larger graphs). If the number of nodes in the graph is above the threshold N ,
we first use Approach 1 for every strongly connected component of G. Then we use the procedures
Tcycle-to-gadget and Tgadget-to-cycle to identify the remaining edges that can be deleted.

To speed up our implementations and/or to improve accuracy, we also use some rather obvious algorithmic
engineering approaches, such as:

� Stop the Floyd-Warshall iteration in Approach 1 as soon as a path u
x

)v is discovered.
� Randomize the selection of the next edge for removal.
� In Approach 2, if the strongly connected component has very few vertices, calculate an exact solution

of BTR on this component exhaustively.

Both Approach 1 and Approach 2 are guaranteed to be a 3-approximate solution by Theorem 4. However,
in Approach 1 there is no bias towards a particular candidate edge for removal among all candidate edges;
in contrast, in Approach 2 a bias is introduced via removal of duplicate edges in the gadget replacement
procedure. Thus, the two approaches may return slightly different solutions in practice. Choosing N to
be 150, our implementation takes mostly neglible time to run on networks with up to thousands of nodes,
taking time of the order of seconds for the manually curated network that is described in Section 6.1 to
about a minute for the 1000 node random biological networks described in Section 6.2 on which we tested
the performance of our implementations. Theoretical worst-case estimates of the running times of the two
approaches are as follows. Approach 1 runs in O.d � jV j3/ time where d is the number of non-critical
edges. By using a linear-time solution of the BTR problem on a DAG (see the algorithm described in
Lemma 2 of Albert et al. (2007)), Approach 2 runs in O.m2 C jEj C

Pm
iD1 di � n3

i / time where the given
graph has m strongly connected components and di and ni are the number of non-critical edges and
vertices in the i th strongly connected component, respectively.

6. VERIFICATION OF THE METHODS

6.1. Synthesizing a network for ABA-induced stomatal closure

Here we discuss our computational results on synthesizing experimental results into a consistent guard
cell signal transduction network for ABA-induced stomatal closure using our detailed procedure described
in Section 2 and compare it with the manually curated network obtained in Li et al. (2006). Our starting
point is the list of experimentally observed causal relationships in ABA-induced closure collected and
published as Table S1 in Li et al. (2006). This table contains around 140 interactions and causal inferences,
both of type “A promotes B” and “C promotes process(A promotes B).” We augment this list with critical
edges drawn from biophysical/biochemical knowledge on enzymatic reactions and ion flows and with
simplifying hypotheses made by Li et al., both described in Text S1 of Li et al. (2006); the complete list
of causal relationships is given in our Table 2 in Appendix 1.

The synthesis of the network is carried out using the formal method described in Section 2. We also
formalize an additional rule specific to the context of this network (and implicitly assumed by Li et al.
[2006]) regarding enzyme-catalyzed reactions. We follow Li et al. in representing each of these reactions
by two directed critical edges, one from the reaction substrate to the product and one from the enzyme to
the product. As the reactants (substrates) of the reactions in Li et al. (2006) are abundant, the only way to
regulate the product is by regulating the enzyme. The enzyme, being a catalyst, is always promoting the
product’s synthesis, thus positive indirect regulation of a product will be interpreted as positive regulation of
the enzyme, and negative indirect regulation of the product will be interpreted as negative regulation of the

942 ALBERT ET AL.

enzyme. In graph-theoretic terms, this leads to the following rule. We have a subset Eenzymatic � Ecritical of

edges that are all labeled 0. Suppose that we have a path A
a

! x
b

! B , an edge C
0

! B 2 Eenzymatic. Then,
we identify the node C with x by collapsing them together and set the parities of the edges A ! .x D C/

and .x D C/ ! B based on the following two cases:

� if a C b D 0 .mod 2/ then both A ! .x D C/ and .x D C/ ! B have zero parities.
� if a C b D 1 .mod 2/ then A ! .x D C/ has parity 1 and .x D C/ ! B has parity 0.

The manually synthesized network of Li et al. includes a pseudo-vertex for each non-critical edge, indicating
the existence of unknown biological mediators. For the ease of comparison we omit these degree two
pseudo-vertices. The two networks are shown in Figure 2a,b. Here is a brief summary of an overall
comparison of the two networks:

� Li et al.’s (2006) network has 54 vertices and 92 edges; our network has 57 vertices (3 extra pseudo-
vertices) but only 84 edges.

� Both Li et al.’s (2006) and our network have identical strongly connected component (SCC) of vertices.
There is one SCC of size 18 (KOUT Depolarization KAP CaIM Ca2+c Ca2+ATPase HATPase KEV
PLC InsP3 NOS NO GC cGMP ADPRc cADPR CIS AnionEM), one SCC of size 3 (Atrboh ROS
ABI1), one SCC of size 2 (GPA1 AGB1) and the rest of the SCCs are of size 1 each.

� All the paths present in the Li et al. (2006) reconstruction are present in our network as well. Our

network has the extra path ROP10
1

)Closure that Li et al. cited in their Table S1 but did not include in
their network due to weak supporting evidence.

� The two networks have 71 common edges.

Thus, the two networks are highly similar but diverge on a number of edges. Li et al. keep a few

graph-theoretically redundant edges such as ABA
0

!PLC, PA
1

!ABI1 and ROS
0

!CaIM that would be

explainable by feedback processes. Some of our edges such as NO
0

!AnionEM correspond to paths
in Li et al.’s reconstruction. Our graph contains the full pseudo-vertex-using representation of the pro-

cess AtPP2C
1

!(ABA
0

!Closure) that Li et al. simplifies to AtPP2C
1

!ABA. We have pHc
0

!ROS and

ROS
0

)Atrboh where Li et al. (2006) has pH
0

!Atrboh and a positive feedback loop on Atrboh. All these
discrepancies are due not to algorithmic deficiencies but to human decisions.

Finally, the entire network synthesis process was done within a few seconds by our implemented algo-
rithms.

6.2. Performance of our solutions for BTR on simulated networks

A variety of cellular interaction and regulatory networks have been mapped and graph theoretically
characterized. One of the most frequently reported graph measures is the distribution of node degrees,
i.e., the distribution of the number of incoming or outgoing edges per node. A variety of networks,
including many cellular interaction networks, are heterogeneous (diverse) in terms of node degrees and
exhibit a degree distribution that is close to a power-law or a mixture of a power law and an exponential
distribution (Jeong et al., 2000; Albert and Barabási, 2002; Giot et al., 2003; Li et al., 2004; Ma’ayan
et al., 2005). Transcriptional regulatory networks exhibit a power-law out-degree distribution, while the
in-degree distribution is more restricted (Shen-Orr et al., 2002; Lee et al., 2002). To test our algorithm
on a network similar to the observed features, we generate random networks with a prescribed degree
distribution using the methods in Newman et al. (2001). We base the degree distributions on the yeast
transcriptional regulatory network that has a maximum out-degree of �150 and maximum in-degree of �15
(Lee et al., 2002). In our generated network the distribution of in-degree of the network is exponential, i.e.,
Pr[in-degreeD x]D Le�Lx with L between 1=2 and 1=3 and the maximum in-degree is 12. The distribution
of out-degree of the network is governed by a power-law, i.e., for x � 1 Pr[out-degreeD x]D cx�c and
for x D 0 Pr[out-degreeD 0]� c with c between 2 and 3 and the maximum out-degree is 200. We varied
the ratio of excitory to inhibitory edges between 2 and 4. Since there are no known biological estimates

AU: PLEASE SUPPLY SHORT TITLE 943

FIG. 3. A plot of the empirical performance of our BTR algorithm on the 561 simulated interaction networks. E
0

is our solution, OPT is the trivial lower bound on the minimum number of edges described in Equation (1) and

100 �
�

jE 0j
OPT

� 1

�

is the percentage of additional edges that our algorithm keeps. On an average, we use about 5:5%

more edges than the optimum (with about 4:8% as the standard deviation).

of critical edges3 we tried a few small and large values, such as 1%, 2%, and 50%, for the percentage of
�

�

�

�
FN3

edges that are critical to catch qualitatively all regions of dynamics of the network that are of interest.
To empirically test the performance of our algorithm, we used the following (rather loose) lower bound

OPT for the optimal solution

OPT D maxfn C s � c; t;Lg (1)

where n is the number of vertices, s is the number of strongly connected components, c is the number of

connected components of the underlying undirected graph, t is the number of those edges u
x

!v such that

either u
x

!v 2 Ecritical or there is no alternate path u
x

)v in the graph and L is the lower bound that was
mentioned in Corollary 10.

We tested the performance of our BTR algorithm on 561 randomly generated networks varying the
number of vertices between roughly 100 and 900. A summary of the performance is shown in Figure 3,
indicating that our transitive reduction procedure returns solutions close to optimal in many cases even

�

�

�

�
F3

with such a simple lower bound of OPT. The running time of BTR on an individual network is negligible
(from about one second for a 100 node networks to about no more than a minute for a 1000 node network).
A summary of the various statistics of these 561 networks is given in Table 1. More meticulous details

�

�

�

�T1
about the performance of our algorithm for BTR together with the characteristics of the random networks
(spanning over 24 pages and thus not suitable for a direct inclusion as an appendix) are available as a
table from the website www.cs.uic.edu/�dasgupta/network-synthesis/. To verify the performance of our
BTR algorithm, we perturb most of these networks with increasing amounts of additional random edges
chosen such they do not change the optimal solution of the original graph. The subcolumn in the table in
the above-mentioned website under each random addition of edges shows that average number of edges
after reduction over 100 runs. In many cases, our algorithm returns a solution that is very close to the
original network on which additional edges are added.

3By “estimates of critical edges,” we mean an accurate estimate of the percentage of total edges that are critical on an
average in a biological network. Depending on the experimental or inference methods, different network reconstructions
have widely varying expected fractions of critical edges. For example, the curated network of Ma’ayan et al. (2005)
is expected to have close to 100% critical edges as they specifically focused on collecting direct interactions only.
Protein interaction networks are expected to be mostly critical (Giot et al., 2003; Han et al., 2004; Li et al., 2004).
The so-called genetic interactions (e.g., synthetic lethal interactions) represent compensatory relationships, and only a
minority of them are direct interactions. Network inference (reverse engineering) approaches lead to networks whose
interactions are close to 0% critical.

944 ALBERT ET AL.

TABLE 1. BASIC STATISTICS OF THE SIMULATED NETWORKS

USED IN FIGURE 3

Average number of edges
Number of nodes

(range) Total Excitory Inhibitory Critical

98–100 206 147 59 31
250–282 690 552 138 33
882–907 2489 1991 498 118

7. DISCUSSION

The comparison of our method with previous work enables us to conclude that our methodology serves as
a very important first step in formalizing the logical substrate of an inferred signal transduction network. We
foresee its optimal application in conjunction with human expertise, as part of an interactive and iterative
process. The user of the algorithm would give the experimentally known information as input, then use
the resulting network to augment the input information with additional facts or hypotheses through several
rounds of iterations. This will allow biologists to simultaneously synthesize their knowledge and formalize
their hypotheses regarding a signal transduction network. On the theoretical side, we conjecture that the
GREEDY procedure produces a 2 C o.1/-approximation but have been unable to prove it.

A preliminary version of implementations of the network synthesis procedure is available from www.cs.

uic.edu/�dasgupta/network-synthesis/. We eventually plan to refine the algorithms further, include more
help files in the webpage on how to use the software, and make the source codes available as well.

8. APPENDIX 1

TABLE 2. REGULATORY INTERACTIONS BETWEEN ABA SIGNAL TRANSDUCTION PATHWAY COMPONENTS

Interaction Critical Enzymatic Interaction Critical Enzymatic

ABA
0

! SphK No No ABA
0

! OST1 No No

ABA
0

! CaIM No No ABA
0

! InsP6 No No

ABA
0

! Ca2+c No No ABA
0

! NO No No

ABA
0

! InsP3 No No ABA
0

! AnionEM No No

ABA
1

! PEPC No No ABA
1

! Malate No No

ABA
1

! HATPase No No ABA
1

! RAC1 No No

ABA
0

! PLD No No ABA
0

! ROS No No

Ca2+c
1

! CaIM No No Ca2+c
0

! KEV No No

Ca2+c
0

! AnionEM No No InsP6
0

! Ca2+c No No

InsP6
0

! CIS No No ROS
0

! CaIM No No

ROS
0

! Closure No No ROS
1

! ABI1 No No

ROS
1

! KOUT No No pHc
0

! KOUT No No

pHc
0

! ABI1 No No pHc
0

! ROS No No

pHc
0

! HATPase No No PA
1

! ABI1 No No

PA
0

! Closure No No PA
0

! ROS No No

NO
0

! Closure No No NO
0

! AnionEM No No

(continued)

AU: PLEASE SUPPLY SHORT TITLE 945

TABLE 2. (Continued)

Interaction Critical Enzymatic Interaction Critical Enzymatic

NO
1

! KOUT No No RAC1
1

! Actin No No

RAC1
1

! Closure No No ABH1
1

! AnionEM No No

AnionEM
1

! Malate No No ERA1
0

! ROP10 No No

Depolarization
1

! Ca2+c No No GPA1
0

! PLD Yes No

Sph
0

! S1P Yes No InsPK
0

! InsP6 Yes Yes

PLC
0

! DAG Yes Yes PIP2
0

! DAG Yes No

PLC
0

! InsP3 Yes Yes PIP2
0

! InsP3 Yes No

GC
0

! cGMP Yes Yes GTP
0

! cGMP Yes No

ADPRc
0

! cADPR Yes Yes NAD
0

! cADPR Yes No

NADPH
0

! NO Yes No Nitrite
0

! NO Yes No

Arg
0

! NO Yes No NOS
0

! NO Yes Yes

NIA12
0

! NO Yes Yes NADPH
0

! ROS Yes No

Atrboh
0

! ROS Yes Yes Ca2+ATPase
1

! Ca2+c Yes No

Ca2+c
0

! Ca2+ATPase Yes No HATPase
1

! Depolarization Yes No

KOUT
1

! Depolarization Yes No KAP
1

! Depolarization Yes No

AnionEM
0

! Depolarization Yes No Ca2+c
0

! Depolarization Yes No

KEV
0

! Depolarization Yes No RCN1
0

! NIA12 No No

CIS
0

! Ca2+c Yes No CaIM
0

! Ca2+c Yes No

Malate
1

! Closure Yes No GCR1
1

! GPA1 Yes No

ABA
0

! RCN1 No No AnionEM
0

! Closure Yes No

KAP
0

! Closure Yes No KOUT
0

! Closure Yes No

ERA1
1

! CaIM No No ABH1
1

! CaIM No No

cGMP
0

! CIS No No cADPR
0

! CIS No No

InsP3
0

! CIS No No Ca2+c
0

! NOS No No

ROS
0

! (ABA
0

! Closure) — — AnionEM
0

! (ABA
0

! Closure) — —

PLC
0

! (ABA
0

! Closure) — — SphK
0

! (ABA
0

! Closure) — —

SphK
0

! (ABA
0

! AnionEM) — — SphK
0

! (ABA
0

! S1P) — —

S1P
0

! (ABA
0

! Closure) — — GPA1
0

! (S1P
0

! AnionEM) — —

GPA1
0

! (ABA
0

! ROS) — — GCR1
1

! (ABA
0

! Closure) — —

PLC
0

! (ABA
0

! Ca2+c) — — cADPR
0

! (ABA
0

! Ca2+c) — —

NOS
0

! (ABA
0

! Closure) — — NO
0

! (ABA
0

! Closure) — —

NO
0

! (ABA
0

! Closure) — — NO
0

! (ABA
0

! AnionEM) — —

Ca2+c
0

! (NO
0

! AnionEM) — — NO
0

! (Ca2+c
0

! CIS) — —

ADPRc
0

! (NO
0

! Ca2+c) — — GC
0

! (NO
0

! Ca2+c) — —

KOUT
0

! (ABA
0

! Closure) — — GPA1
0

! (ABA
0

! AnionEM) — —

pHc
0

! (ABA
0

! Closure) — — ERA1
1

! (ABA
0

! AnionEM) — —

ERA1
1

! (ABA
0

! Closure) — — ERA1
1

! (Depolarization
0

! KOUT) — —

Atrboh
0

! (ABA
0

! Closure) — — Atrboh
0

! (ABA
0

! ROS) — —

Atrboh
0

! (ABA
0

! Ca2+c) — — Atrboh
0

! (ABA
0

! CaIM) — —

(continued)

946 ALBERT ET AL.

TABLE 2. (Continued)

Interaction Critical Enzymatic Interaction Critical Enzymatic

ROS
0

! (ABA
0

! CaIM) — — NADPH
0

! (ABA
0

! CaIM) — —

NAD
0

! (ABA
0

! CaIM) — — ERA1
1

! (ABA
0

! CaIM) — —

ERA1
1

! (ABA
0

! Closure) — — RCN1
0

! (ABA
0

! Closure) — —

RCN1
0

! (ABA
0

! AnionEM) — — RCN1
0

! (ABA
0

! Ca2+c) — —

OST1
0

! (ABA
0

! Closure) — — OST1
0

! (ABA
0

! ROS) — —

PLC
0

! (ABA
0

! Closure) — — Ca2+c
0

! (ABA
0

! Closure) — —

AnionEM
0

! (ABA
0

! Closure) — — PLD
0

! (PC
0

! PA) — —

PLD
0

! (ABA
0

! Closure) — — PLC
0

! (ABA
0

! Closure) — —

ABA
0

! (PLD
0

! PA) — — ABA
0

! (PLD
0

! PA) — —

ROP2
0

! (PA
0

! ROS) — — Actin
0

! (ABA
0

! Closure) — —

Ca2+c
0

! (ABA
0

! Actin) — — RAC1
1

! (ABA
0

! Closure) — —

ROP10
1

! (ABA
0

! Closure) — — ROS
0

! (ABA
0

! Closure) — —

GCR1
1

! (ABA
0

! Closure) — — GCR1
1

! (S1P
0

! Closure) — —

cADPR
0

! (Ca2+c
0

! CIS) — — AnionEM
0

! (ABA
0

! Closure) — —

CaIM
0

! (ABA
0

! KOUT) — — cADPR
0

! (ABA
0

! KOUT) — —

PLC
0

! (ABA
0

! KOUT) — — ROS
0

! (ABA
0

! CaIM) — —

Ca2+c
1

! (Depolarization
0

! KAP) — — pHc
1

! (Depolarization
0

! KAP) — —

ABH1
1

! (ABA
0

! Closure) — — ABH1
1

! (ABA
0

! Ca2+c) — —

ROS
0

! (ABA
1

! HATPase) — — ABI1
1

! (ABA
0

! AnionEM) — —

ABI1
1

! (ABA
0

! ROS) — — ABI1
1

! (ABA
0

! Ca2+c) — —

AtPP2C
1

! (ABA
0

! Closure) — — Ca2+c
0

! (PLC
0

! InsP3) — —

GPA1
0

! AGB1 No No AGB1
0

! GPA1 No No

AtPP2C
1

! Closure No No NO
0

! ADPRc No No

Ca2+c
0

! HATPase No No ABI1
1

! Atrboh No No

NO
0

! GC No No ABA
0

! pHc No No

PA
0

! ROP2 No No PEPC
0

! Malate Yes Yes

ABI1
1

! (ABA
0

! ROS) — — ABA
0

! PLC No No

Depolarization
0

! KOUT Yes No Depolarization
0

! KAP Yes No

Depolarization
1

! CaIM Yes No ABI1
0

! (ABA
1

! RAC1) — —

InsPK
0

! (ABA
0

! AnionEM) — — InsPK
0

! (ABA
0

! InsP6) — —

S1P
0

! GPA1 No No

Data from Li et al. (2006).

9. APPENDIX 2

Details of a mixed ILP formulation for BTR

We describe one way to encode the BTR problem as a mixed integer program that makes use of the idea
of a flow network between vertices in the problem instance. The reader is referred to a standard textbook
such as Cormen et al. (2001) for basic concepts of network flows.

AU: PLEASE SUPPLY SHORT TITLE 947

First, we use the following procedure to construct a new graph G1 D .V1; E1/ from the original graph
G D .V; E/ which preserves the reachability relationships in the original graph G while simultaneously

eliminating the need for edge labels. For each edge e D u
1

!v 2 E , add e to E1 and if e 2 Ecritical, then

mark e as a critical edge in G1. For each edge e D u
0

!v 2 E , add a new vertex w to G1, add the edges

e1 D u
1

!w and e2 D w
1

!v to E1 and if e 2 Ecritical, then mark both e1 and e2 as critical edges in E1.
Every edge in G1 has the same label and thus we may disregard the edge labels in G1. To find a binary
transitive reduction of G, we will compute the binary transitive reduction of G1 and map the results back
onto G. Abusing notations slightly, we use Ecritical to refer to the set of critical edges in G1.

We below describe flow-based mixed ILP for the BTR problem on G1. It uses the following variables:

� For every e 2 E1 we introduce the edge variable xe 2 f0; 1g where xe D 0 (resp. xe D 1) indicates that
edge e is a not member (resp. is a member) of the transitive reduction of G1.

� For every u; v 2 V; e 2 E1 we introduce flow variables, f even
u;v;e and f odd

u;v;e , both taking values in the
nonnegative real numbers, called the even and odd flow variables, respectively.

Note that, for the problem instance G D .V; E/, the solution space has jV j2 � jE1j C jE1j dimensions,
of which jE1j dimensions are discrete, taking values in f0; 1g, while the remaining jV j2 � jE1j dimensions
are continuous, taking any nonnegative real value. The mixed integer program which correctly solves the
binary transitive reduction program is given below (the notation incoming.x/ and outgoing.x/ refer to the
sets fu j u ! x 2 E1g and fu j x ! u 2 E1g, respectively):

minimize
X

e2E1

xe

subject to:

xe D 1 8e 2 E1 \ Ecritical

X

x2outgoing.u/

f even
u;v;x D 1 8e D u ! v 2 E1

X

x2incoming.v/

f even
u;v;x � f odd

u;v;x D �1 8e D u ! v 2 E1 and w.e/ D 0

X

x2incoming.v/

f even
u;v;x � f odd

u;v;x D 1 8e D u ! v 2 E1 and w.e/ D 1

X

y2incoming.x/

f even
u;v;y �

X

y2outgoing.x/

f odd
u;v;y D 0 8e D u ! v 2 E1 and 8x 2 V1 � fu; vg

X

y2incoming.x/

f odd
u;v;y �

X

y2outgoing.x/

f even
u;v;y D 0 8e D u ! v 2 E1 and 8x 2 V1 � fu; vg

X

f even
u;v;eCf odd

u;v;e

� xe 8e 2 E1; u; v 2 V

The objective ensures that the solution will be the minimum subgraph that satisfies the constraints, and
the first constraint in this mixed integer program ensures that the solution will contain every critical edge.
The second set of constraints are used to ensure that the solution has the same reachability properties as
the original graph.

948 ALBERT ET AL.

In the BTR problem, there are two different types of path parities: even and odd. For every edge in the
problem instance, the flow constraints in the mixed integer program assume the existence of a flow network
in the solution (an even or odd flow network, depending upon if the edge in the original problem instance
was labeled with 0 or 1). Each flow variable represents a specific edge relative to some flow and its parity
in the original problem instance. The first of the flow constraints states that there is some positive flow
coming from the source in the flow network. The second constraint, states that the flow is consumed at the
sink in the flow network. The final flow constraint is the flow conservation constraint. The last constraint
ensures that when an edge is used by flow it should chosen.

ACKNOWLEDGMENTS

This reserach was supported by a Sloan Research Fellowship, NSF grants DMI-0537992, MCB-0618402,
and USDA grant 2006-35100-17254 (to R.A.); NSF grants IIS-0346973, IIS-0612044, and DBI-0543365
(to B.D.); NSF grant IIS-0346973 (to S.K.); and NSF grant DMS-0614371 (to E.S.).

REFERENCES

Aho, A., Garey, M.R., and Ullman, J.D. 1972. The transitive reduction of a directed graph. SIAM J. Comput. 1,
131–137.

Albert, R., and Barabási, A.-L. 2002. Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97.
Albert, R., DasGupta, B., Dondi, R., et al. 2007. Inferring (biological) signal transduction networks via transitive

�

�

�

�
AU3

reductions of directed graphs. Algorithmica (in press).
Alberts, B. 1994. Molecular Biology of the Cell. Garland, New York.
Carter, G.W. 2005. Inferring network interactions within a cell. Briefings Bioinform. 6, 380–389.
Chen, T., Filkov, V., and Skiena, S. 1999. Identifying gene regulatory networks from experimental data. RECOMB

1999, 94–103.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al. 2001. Introduction to Algorithms. MIT Press, Cambridge, MA.
DasGupta, B., Enciso, G.A., Sontag, E.D., et al. 2006. Algorithmic and complexity results for decompositions of

biological networks into monotone subsystems. Lect. Notes Comput. Sci. 4007, 253–264.
Filkov, V. 2005. Identifying gene regulatory networks from gene expression data. In Aluru, S., ed., Handbook of

Computational Molecular Biology. Chapman & Hall/CRC Press.
Frederickson, G.N., and JàJà, J. 1981. Approximation algorithms for several graph augmentation problems. SIAM J.

Computing 10, 270–283.
Giot, L., Bader, J.S., et al. 2003. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736.

�

�

�

�
AU4

Han, J.D., Bertin, N., et al. 2004. Evidence for dynamically organized modularity in the yeast protein-protein interaction �

�

�

�
AU5network. Nature 430, 88–93.

Heinrich, R., and Schuster, S. 1996. The Regulation of Cellular Systems. Chapman & Hall, New York.
�

�

�

�
AU6

Hopcroft, J.E., and Karp, R.M. 1973. An n
5
2 algorithm for maximum matching in bipartite graphs. SIAM J. Comput.

2, 225–231.
Jeong, H., Tombor, B., Albert, R., et al. 2000. The large-scale organization of metabolic networks. Nature 407, 651–654.
Jong, H.D. 2002. Modelling and simulation of genetic regulatory systems: a literature review. J. Comp. Biol. 9, 67–103.
Khuller, S., Raghavachari, B., and Young, N. 1995. Approximating the minimum equivalent digraph. SIAM J. Comput.

24, 859–872.
Khuller, S., Raghavachari, B., and Young, N. 1996. On strongly connected digraphs with bounded cycle length. Discrete

Appl. Math. 69, 281–289.
Khuller, S., Raghavachari, B., and Zhu, A. 1999. A uniform framework for approximating weighted connectivity

problems. Proc. 19th Ann. ACM-SIAM Symp. Discrete Algorithms, 937–938.
Lee, T.I., Rinaldi, N.J., et al. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298,

�

�

�

�
AU7

799–804.
Li, S., Armstrong, C.M., et al. 2004. A map of the interactome network of the metazoan C. elegans. Science 303,

�

�

�

�
AU8

540–543.
Li, S., Assmann, S.M., and Albert, R. 2006. Predicting essential components of signal transduction networks: a dynamic

�

�

�

�
AU9

model of guard cell abscisic acid signaling. PLoS Biol. 4 (in press).
Ma’ayan, A., Jenkins, S.L., Neves, S., et al. 2005. Formation of regulatory patterns during signal propagation in a

mammalian cellular network. Science 309, 1078–1083.

AU: PLEASE SUPPLY SHORT TITLE 949

Newman, M.E.J., Strogatz, S.H., and Watts, D.J. 2001. Random graphs with arbitrary degree distributions and their
applications. Phys. Rev. E 64, 026118–026134.

Norman, R.Z., and Rabin, M.O. 1959. An algorithm for a minimum cover of a graph. Proc. Am. Math. Soc. 10,
315–319.

Shen-Orr, S.S., Milo, R., Mangan, S., et al. 2002. Network motifs in the transcriptional regulation network of Es-

cherichia coli. Nature Genetics 31, 64–68.
Vetta, A. 2001. Approximating the minimum strongly connected subgraph via a matching lower bound. Proc. 12th

ACM-SIAM Symp. Discrete Algorithms, 417–426.
Wagner, A. 2002. Estimating coarse gene network structure from large-scale gene perturbation data. Genome Res. 12,

309–315.

Address reprint requests to:
Dr. Bhaskar DasGupta

Department of Computer Science

University of Illinois at Chicago

1120 SEO

851 South Morgan St.

Chicago, IL 60607-7053

E-mail: dasgupta@cs.uic.edu

AU1

Please review your article as a whole for correctness. Your paper was generated

using an electronic file only – no hardcopy manuscript was provided. Please

ensure all artwork, symbols, and special characters are intact/correct as shown on

these proofs and that there were no software interpretation problems. Thank you!

Also, please provide short title for running head.

AU2

Tables were renumbered to be in numerical order, is this okay?

AU3

Please provide update if possible.

AU4

Please provide third author’s name and initial(s).

AU5

Please provide third author’s name and initial(s).

AU6

Please cite in text or delete.

AU7

Please provide third author’s name and initial(s).

AU8

Please provide third author’s name and initial(s).

AU9

Please provide update if possible.

