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We consider recurrent analog neural nets where each gate is subject to 
Gaussian noise, or any other common noise distribution whose probabil­
ity density function is nonzero on a large set. We show that many regular 
languages cannot be recognized by networks of this type, for example 
the language {w E {O, I} * I w begins with O}, and we give a precise 
characterization of those languages which can be recognized. This result 
implies severe constraints on possibilities for constructing recurrent ana­
log neural nets that are robust against realistic types of analog noise. On 
the other hand we present a method for constructing feed forward analog 
neural nets that are robust with regard to analog noise of this type. 

1 Introduction 

A fairly large literature (see [Omlin, Giles, 1996] and the references therein) is devoted 
to the construction of analog neural nets that recognize regular languages. Any physical 
realization of the analog computational units of an analog neural net in technological or 
biological systems is bound to encounter some form of "imprecision" or analog noise at 
its analog computational units. We show in this article that this effect has serious conse­
quences for the computational power of recurrent analog neural nets. We show that any 
analog neural net whose computational units are subject to Gaussian or other common 
noise distributions cannot recognize arbitrary regular languages. For example, such analog 
neural net cannot recognize the regular language {w E {O, I} * I w begins with O}. 

• Partially supported by the Fonds zur F6rderung der wissenschaftlichen Forschnung (FWF), Aus­
tria, project P12153. 
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A precise characterization of those regular languages which can be recognized by such 
analog neural nets is given in Theorem 1.1. In section 3 we introduce a simple technique 
for making feedforward neural nets robust with regard to the same types of analog noise. 
This method is employed to prove the positive part of Theorem 1.1. The main difficulty in 
proving Theorem 1.1 is its negative part, for which adequate theoretical tools are introduced 
in section 2. 

Before we can give the exact statement of Theorem 1.1 and discuss related preceding work 
we have to give a precise definition of computations in noisy neural networks. From the 
conceptual point of view this definition is basically the same as for computations in noisy 
boolean circuits (see [Pippenger, 1985] and [Pippenger, 1990]). However it is technically 
more involved since we have to deal here with an infinite state space. 

We will first illustrate this definition for a concrete case, a recurrent sigmoidal neural net 
with Gaussian noise, and then indicate the full generality of our result, which makes it 
applicable to a very large class of other types of analog computational systems with analog 
noise. Consider a recurrent sigmoidal neural net N consisting of n units, that receives 
at each time step t an input Ut from some finite alphabet U (for example U = {O, I}). 
The internal state of N at the end of step t is described by a vector Xt E [-1, l]n, which 
consists of the outputs of the n sigmoidal units at the end of step t. A computation step of 
the network N is described by 

Xt+1 = a(Wxt + h + UtC + Vi) 

where W E IRnxn and c, h E IRn represent weight matrix and vectors, a is a sigmoidal 
activation function (e.g., a(y) = 1/(1 + e-Y» applied to each vector component, and 
VI, V2 , • •• is a sequence of n-vectors drawn independently from some Gaussian distribu­
tion. In analogy to the case of noisy boolean circuits [Pippenger, 1990] one says that this 
network N recognizes a language L ~ U* with reliability c (where c E (O,~] is some 
given constant) if immediately after reading an arbitrary word w E U* the network N is 
with probability 2: ~ + c in an accepting state in case that w E L, and with probability 
:::; ! - c in an accepting state in case that w rf. LI. 

We will show in this article that even if the parameters of the Gaussian noise distribution for 
each sigmoidal unit can be determined by the designer of the neural net, it is impossible to 
find a size n, weight matrix W, vectors h, C and a reliability c E (0, !] so that the resulting 
recurrent sigmoidal neural net with Gaussian noise accepts the simple regular language 
{w E {0,1}*1 w begins with O} with reliability c. This result exhibits a fundamental 
limitation for making a recurrent analog neural net noise robust, even in a case where the 
noise distribution is known and of a rather benign type. This quite startling negative result 
should be contrasted with the large number of known techniques for making a feedforward 
boolean circuit robust against noise, see [Pippenger, 1990]. 

Our negative result turns out to be of a very general nature, that holds for virtually all related 
definitions of noisy analog neural nets and also for completely different models for analog 
computation in the presence of Gaussian or similar noise. Instead of the state set [-1, l]n 
one can take any compact set n ~ IRn , and instead of the map (x, u) t-+ W x + h + uc one 

can consider an arbitrary map I : n x U ~ 0 for a compact set 0 ~ IRn where f (', u) is 
Borel measurable for each fixed U E U. Instead of a sigmoidal activation function a and a 
Gaussian distributed noise vector V it suffices to assume that a : IRn ~ n is some arbitrary 
Borel measurable function and V is some IRn -valued random variable with a density ¢(.) 
that has a wide support2• In order to define a computation in such system we consider for 

1 According to this definition a network N that is after reading some w E U· in an accepting state 
with probability strictly between t - c and t + c does not recognize any language L ~ U·. 

2More precisely: We assume that there exists a subset no of n and some constant Co > 0 such 
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each U E U the stochastic kernel Ku defined by Ku(x, A) := Prob [a(f(x, u) + V) E A] 
for x E n and A S;;; n. For each (signed, Borel) measure /-l on n, and each U E U, we 
let lKu/-l be the (signed, Borel) measure defined on n by (lKu/-l)(A) := J Ku(x , A)d/-l(x) . 
Note that lKu /-l is a probability measure whenever /-l is. For any sequence of inputs W = 
U1 , .•. ,Ur , we consider the composition of the evolution operators lKu. : 

(1) 

If the probability distribution of states at any given instant is given by the measure /-l, then 
the distribution of states after a single computation step on input U E U is given by lKu /-l, 
and after r computation steps on inputs W = U1,"" U r , the new distribution is IKw /-l, 
where we are using the notation (1). In particular, if the system starts at a particular initial 
state ~, then the distribution of states after r computation steps on W is IKwbe, where be is 
the probability measure concentrated on {O. That is to say, for each measurable subset 
Fen 

Prob [Xr+1 E F I Xl =~, input = w] = (lKwbe)(F). 
We fix an initial state ~ E n, a set of "accepting" or "final" states F, and a "reliability" 
level E > 0, and say that the resulting noisy analog computational system M recognizes 
the language L S;;; U* if for all w E U* : 

wEL ~ 

w(j.L 

1 
(lKwbe)(F) ;::: 2 + E 

1 
(lKwbe)(F) :::; 2 - E . 

In general a neural network that simulates a DFA will carry out not just one, but a fixed 
number k of computation steps (=state transitions) of the form x' = a(W x + h + 
uc + V) for each input symbol U E U that it reads (see the constructions described in 
[Omlin, Giles, 1996], and in section 3 of this article). This can easily be reflected in our 
model by formally replacing any input sequence w = UI, U2 , . . . , U r from U* by a padded 
sequence W = UI , bk - I , U2 , bk - I , ... ,Ur , bk - I from (U U {b})*, where b is a blank sym­
bol not in U, and bk - I denotes a sequence of k - 1 copies of b (for some arbitrarily fixed 
k ;::: 1). This completes our definition of language recognition by a noisy analog compu­
tational system M with discrete time. This definition essentially agrees with that given in 
[Maass, Orponen, 1997]. 

We employ the following common notations from formal language theory: We write WI w2 

for the concatenation of two strings WI and W2, ur for the set of all concatenations of r 
strings from U, U* for the set of all concatenations of any finite number of strings from U, 
and UV for the set of all strings WI W2 with WI E U and W2 E V . The main result of this 
article is the following: 

Theorem 1.1 Assume that U is some arbitrary finite alphabet. A language L S;;; U* can 
be recognized by a noisy analog computational system of the previously specified type if 
and only if L = E1 U U* E2 for two finite subsets E1 and E2 of U* . 

A corresponding version of Theorem 1.1 for discrete computational systems was previously 
shown in [Rabin, 1963]. More precisely, Rabin had shown that probabilistic automata with 
strictly positive matrices can recognize exactly the same class of languages L that occur 
in our Theorem 1.1. Rabin referred to these languages as definite languages. Language 
recognition by analog computational systems with analog noise has previously been in­
vestigated in [Casey, 1996] for the special case of bounded noise and perfect reliability 

that the following two properties hold: <jJ(v) :::: Co for all v E Q := a-I (no) - n (that is, Q is the 
set consisting of all possible differences z - y, with a(z) E no and yEn) and a-I (no) has finite 
and nonzero Lebesgue measuremo =). (a- 1 (no)). 
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(i.e. ~ l vll:S;71 ¢>(v)dv = 1 for some small TJ > 0 and c = 1/2 in our terminology), and in 
[Maass, Orponen, 1997] for the general case. It was shown in [Maass, Orponen, 1997] that 
any such system can only recognize regular languages. Furthermore it was shown there 
that if ~lvll:S;71 ¢>(v)dv = 1 for some small TJ > 0 then all regular languages can be recog­
nized by such systems. In the present paper we focus on the complementary case where the 
condition "~lvll:S;71 ¢>(v)dv = 1 for some small '" > 0" is not satisfied, i.e. analog noise may 
move states over larger distances in the state space. We show that even if the probability of 
such event is arbitrarily small, the neural net will no longer be able to recognize arbitrary 
regular languages. 

2 A Constraint on Language Recognition 

We prove in this section the following result for arbitrary noisy computational systems M 
as specified at the end of section 1: 

Theorem 2.1 Assume that U is some arbitrary alphabet. If a language L ~ U* is rec­
ognized by M, then there are subsets E1 and E2 of u:S;r, for some integer r, such that 
L = E1 U U* E2. In other words: whether a string w E U* belongs to the language L 
can be decided by just inspecting the first r and the last r symbols of w. 

2.1 A General Fact about Stochastic Kernels 

Let (5, S) be a measure space, and let K be a stochastic kernel3. As in the special case of 
the Ku's above, for each (signed) measure f-t on (5, S), we let II<¥t be the (signed) measure 
defined on S by (II<¥t)(A) := J K(x, A)df-t(x) . Observe that II<¥t is a probability measure 
whenever f-t is. Let c > 0 be arbitrary. We say that K satisfies Doeblin's condition (with 
constant c) if there is some probability measure p on (5, S) so that 

K(x, A) ~ cp(A) for all x E 5, A E S. (2) 
(Necessarily c ::; 1, as is seen by considering the special case A = 5.) This condition is 
due to [Doeblin, 1937]. 

We denote by Ilf-til the total variation of the (signed) measure f-t. Recall that Ilf-til is de­
fined as follows. One may decompose 5 into a disjoint union of two sets A and B, in 
such a manner that f-t is nonnegative on A and nonpositive on B. Letting the restrictions 
of f-t to A and B be "f-t+" and "-f-t-" respectively (and zero on B and A respectively), 
we may decompose f-t as a difference of nonnegative measures with disjoint supports, 
f-t = f-t+ - f-t- . Then, Ilf-til = f-t+ (A) + f-t- (B). The following Lemma is a "folk" 
fact ([Papinicolaou, 1978]). 

Lemma 2.2 Assume that K satisfies Doeblin's condition with constant c. Let f-t be any 
(signed) measure such that f-t(5) = o. Then 111I<¥t11 ::; (1 - c) 1If-t1l. • 

2.2 Proof of Theorem 2.1 

Lemma 2.3 There is a constant c > 0 such that Ku satisfies Doeblin's condition with 
constantc,foreveryu E U. 

Proof Let no, co, and 0 < rno < 1 be as in the second footnote, and introduce the 
following (Borel) probability measure on no: 

Ao(A) := ~A (0'-1 (A)) . 
rno 

3That is to say, K(x,·) is a probability distribution for each x, and K(-, A) is a measurable 
function for each Borel measurable set A. 



Analog Neural Nets with Gaussian Noise 

Pick any measurable A ~ no and any yEn. Then, 

Z(y, A) Prob [O"(y + V) E A] = Prob [y + V E 0"-1 (A)] 

= (¢(v) dv ~ coA(Ay) = CoA (0"-1 (A») = comoAo(A) , JAy 
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where Ay := 0"-1 (A) - {y} ~ Q. We conclude that Z(y, A) ~ cAo(A) for all y, A, 
where c = como. Finally, we extend the measure AO to all of n by assigning zero measure 
to the complement of no, that is, p(A) := Ao(A n no) for all measurable subsets A of n . 
Pick u E U; we will show that Ku satisfies Doeblin's condition with the above constant 
c (and using p as the "comparison" measure in the definition). Consider any x E nand 
measurable A ~ n. Then, 

Ku(x, A) = Z(f(x, u), A) ~ Z(f(x, u), A n no) ~ cAo(A n no) = cp(A) , 

as required. • 
For every two probability measures 1-'1,1-'2 on n, applying Lemma 2.2 to I-' := 1-'1 -1-'2, we 
know that 111Ku1-'1 -1Ku1-'211 ::; (1 - c) 111-'1 - 1-'211 for each u E U. Recursively, then, we 
conclude: 

IllKwl-'l -lKw1-'211 ::; (1 - ct 111-'1 - 1-'211::; 2(1 - ct 
for all words w of length ~ r. 

Now pick any integer r such that (1 - ct < 2c. From Equation (3), we have that 

(3) 

for all w of length ~ r and any two probability measures 1-'1,1-'2. In particular, this means 
that, for each measurable set A, 

(4) 

for all such w. (Because, for any two probability measures VI and V2, and any measurable 
set A, 2Ivl(A) - v2(A)1 ::; Ilvl - v211 ·) 

Lemma 2.4 Pick any v E U* and wE ur. Then 

w E L {:::::::} vw E L . 

Proof Assume that w E L, that is, (lKw t5e)(F) ~ ~+E. Applying inequality (4) to the mea­
sures 1-'1 := t5e and 1-'2 := lKvt5e and A = F, we have that l(lKwt5e)(F) - (lKvw t5e)(F) I < 
2E,andthisimpliesthat(lKvwt5e)(F) > ~-E,i.e. , vw E L. (Since ~-E < (lKvwt5e)(F) < 
~ + E is ruled out.) If w ~ L, the argument is similar. • 

We have proved that 

So, 

where El := L n u~r and E2 := L n ur are both included in u~r. This completes the 
proof of Theorem 2.1. • 



286 W. Maass and E. D. Sontag 

3 Construction of Noise Robust Analog Neural Nets 

In this section we exhibit a method for making feedforward analog neural nets robust with 
regard to arbitrary analog noise of the type considered in the preceding sections. This 
method will be used to prove in Corollary 3.2 the missing positive part of the claim of the 
main result (Theorem 1.1) of this article. 

Theorem 3.1 Let C be any (noiseless) feedfOlward threshold circuit, and let u : ~ -+ 
[-1, 1] be some arbitrary function with u( u) -+ 1 for u -+ 00 and u( u) -+ -1 for 
u -+ -00. Furthermore assume that 8, p E (0, 1) are some arbitrary given parameters. 
Then one can transform for any given analog noise of the type considered in section 1 the 
noiseless threshold circuit C into an analog neural net Nc with the same number of gates, 
whose gates employ the given function u as activation function, so that for any circuit input 
~ E {-I, l}m the output of the noisy analog neural net Nc differs with probability ~ 1- 8 
by at most p from the output ofC. 

Idea of the proof Let k be the maximal fan-in of a gate in C, and let w be the maximal 
absolute value of a weight in C. We choose R > ° so large that the density function ¢>(.) of 
the noise vector V satisfies for each gate with n inputs in C 

{ ¢>(v)dv:c:; 28 for i= 1, ... ,n. 
JIVil~R n 

Furthermore we choose Uo > ° so large that u(u) ~ 1 - p/(wk) for u ~ Uo and u(u) :c:; 
-1 + p/(wk) for u :c:; -Uo . Finally we choose a factor "/ > ° so large that ,,/(1- p) - R ~ 
Uo. LetNc be the analog neural net that results from C through multiplication of all weights 
and thresholds with "/ and through replacement of the Heaviside activation functions of the 
gates in C by the given activation function u. • 

The following Corollary provides the proof of the positive part of our main result Theorem 
1.1. It holds for any u considered in Theorem 3.1. 

Corollary 3.2 Assume that U is some arbitrary finite alphabet, and language L ~ U* is 
of the form L = El U U* E2 for two arbitrary finite subsets El and E2 of U*. Then the 
language L can be recognized by a noisy analog neural net N with any desired reliability 
E E (0, ~), in spite of arbitrary analog noise of the type considered in section 1. 

Proof. We first construct a feed forward threshold circuit C for recognizing L, that receives 
each input symbol from U in the form of a bitstring u E {a, 1}' (for some fixed I ~ 
log2 \ U\), that is encoded as the binary states of l input units of the boolean circuit C. Via 
a tapped delay line of fixed length d (which can easily be implemented in a feedforward 
threshold circuit by d layers, each consisting of l gates that compute the identity function on 
a single binary input from the preceding layer) one can achieve that the feed forward circuit 
C computes any given boolean function of the last d sequences from {O, 1}1 that were 
presented to the circuit. On the other hand for any language of the form L = El U U* E2 
with E 1 , E2 finite there exists some dEN such that for each w E U* one can decide 
whether w E L by just inspecting the last d characters of w. Therefore a feedforward 
threshold circuit C with a tapped delay line of the type described above can decide whether 
wE L. 

We apply Theorem 3.1 to this circuit C for 8 = p = min(~ - E, t). We define the set F 
of accepting states for the resulting analog neural net Nc as the set of those states where 
the computation is completed and the output gate of Nc assumes a value ~ 3/4. Then 
according to Theorem 3.1 the analog neural net Nc recognizes L with reliability E. To be 
formally precise, one has to apply Theorem 3.1 to a threshold circuit C that receives its 
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input not in a single batch, but through a sequence of d batches. The proof of Theorem 3.1 
readily extends to this case. • 

4 Conclusions 

We have exhibited a fundamental limitation of analog neural nets with Gaussian or other 
common noise distributions whose probability density function is nonzero on a large set: 
They cannot accept the very simple regular language {w E {O, 1 }*I w begins with O}. 
This holds even if the designer of the neural net is allowed to choose the parameters of 
the Gaussian noise distribution and the architecture and parameters of the neural net. The 
proof of this result introduces new mathematical arguments into the investigation of neural 
computation, which can also be applied to other stochastic analog computational systems. 

We also have presented a method for makingfeedfOlward analog neural nets robust against 
the same type of noise. This implies that certain regular languages, such as for example 
{w E {O, 1 }*I wends with O} can be recognized by a recurrent analog neural net with 
Gaussian noise. In combination with our negative result this yields a precise characteri­
zation of all regular languages that can be recognized by recurrent analog neural nets with 
Gaussian noise, or with any other noise distribution that has a large support. 
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