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Abstract. This paper deals with a notion of “input to output stability” (ios), which formalizes the idea that
outputs depend in an “aymptotically stable” manner on inputs, while internal signals remain bounded. When
the output equals the complete state, one recovers the property of input to state stability (iss). When there
are no inputs, one has a generalization of the classical concept of partial stability. The main results provide
Lyapunov-function characterizations of ios.
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1 Introduction

This paper concerns itself with questions of stability
for general finite-dimensional systems, in the standard
sense of nonlinear control:

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)) (1)

(dot indicates derivative, and we often omit the time
argument “t”), whose states x(t) evolve in an Eu-
clidean space Rn. For the purposes of the present
paper, it is useful to think of the possible forcing in-
put functions u(·) as “disturbances” acting on the sys-
tem, rather than controls to be manipulated, and to
think of the output variable y(t) as a quantity to be
regulated, like a tracking error at time t. (Technical
assumptions on f , h, and admissible inputs, are de-
scribed later.) We wish to emphasize that the results
to be presented are new and of interest — though eas-
ier — even when there are no inputs (ẋ = f(x)), a
situation which we view as a special case of (1).

In many problems, it is usually the case that one
only wishes to stabilize the output values y(t) rather
than the full state x(t). Typically, it is required that
y(t) converge to zero as t → ∞, and in addition one
asks that internal variables x(t) remain bounded (un-
der suitable assumptions on the “disturbances” u). A
very special case of this kind of question has a long
and distinguished history in differential equation the-
ory. Indeed, when there are no inputs u, and the coor-
dinates of y are a subset of the coordinates of x (that
is to say, h is a projection on a subspace of the state
space Rn), the type of property being considered is a
concept of “partial” asymptotic stability; the reader
is directed to the excellent survey paper [16] for refer-
ences to partial stability, and to [6] for the somewhat
related notion of “stability with respect to two mea-
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sures”.
There are several ways of making mathematically

precise the objective described in the previous para-
graph, and these alternatives vary in subtle details.
For instance, one must decide how uniform is the rate
of convergence of y(t) to zero, and precisely how the
magnitude of inputs and initial states affect this con-
vergence. It is imperative to understand which of the
possible formulations give rise to a theory which is
both mathematically rich and has applied relevance
for control theory. That is the main objective of this
paper. One general guideline that we follow is that a
mathematically natural notion should admit a char-
acterization in Lyapunov-function terms.

In past work, we have studied a property which we
call “input to state stability” (iss, for short), intro-
duced in [9], and have provided several characteriza-
tions, including a necessary and sufficient Lyapunov-
theoretic one; for references see [12], [11], and the lat-
est paper [13]. (For applications and more discussion
of that concept see, for instance, [3], [4], [5], [15].)
In very informal terms, the iss property means that
“no matter what the initial conditions, if the future
inputs are small, then the state must eventually be
small”. In this work, we return to a subject also intro-
duced in [9]. There, we used the term input to output
stability (ios, for short) to mean that the output (as
opposed to the full state) must be eventually small,
no matter what the initial conditions, if future inputs
are small. It is possible to express the property in
purely input/output terms, using past inputs to rep-
resent initial conditions, or in state space terms, ex-
plicitly summarizing the effect of past inputs through
an initial state. Since we wish to provide Lyapunov-
theoretic characterizations, we adopt this latter point
of view here. (The relations between both views are
explained in [9] and in more detail in [7] and [4].)

It turns out, however, that the notion of ios given
in [9] is not the appropriate one for modeling the sit-
uation typical in regulation or in robust and adaptive
control, where a condition of boundedness of inter-



nal variables is required in addition to asking that
outputs become small. An equally important short-
coming, from a mathematical point of view, is that
it would appear to be difficult to obtain a Lyapunov-
theoretic characterization unless one imposes such in-
ternal boundedness. Thus, in this paper, we incor-
porate a state bound. For lack of a less cumbersome
name, we decided to use the same term “ios” for this
new concept. This should not cause much confusion
since the term has not been widely accepted.

We caution the reader not to confuse ios with the
notion named input/output to state stability (ioss)
in [14] (also called “detectability” in [10], and “strong
unboundedness observability” in [4]). This other no-
tion roughly means that “no matter what the initial
conditions, if future inputs and outputs are small,
the state must be eventually small”. It is not a no-
tion of stability; for instance, the unstable system
ẋ = x, y = x is ioss. Rather, it represents a prop-
erty of zero-state detectability. There is a fairly ob-
vious connection between the various concepts intro-
duced, however: a system is iss if and only if it is
both ioss and ios. This fact generalizes the linear
systems theory result “internal stability is equivalent
to detectability plus external stability” and its proof
follows by routine arguments ([9], [7], [4]).

The next section presents precise definitions and
statements of results. An appendix sketches the most
important steps; a journal paper will contain complete
proofs, which are fairly technical and long.

2 Statements of Results

We assume, for the systems (1) being considered, that
the map f : Rn × Rm → Rn is locally Lipschitz con-
tinuous, and the map h : Rn → Rp is continuous. We
also assume that f(0, 0) = 0 and h(0) = 0. We use
the symbol |·| for Euclidean norm in Rn, Rm, and Rp.

By an input we mean a measurable and locally es-
sentially bounded function u : I → Rm, where I is a
subinterval of R which contains the origin. The Lm∞-
norm (possibly infinite) of an input u is denoted by
‖u‖, i.e. ‖u‖ = (ess) sup{|u(t)| , t ∈ I}. Whenever
the domain I of an input u is not specified, it will be
understood that I = R≥0.

Given a system with control-value set Rm, we often
consider the same system but with controls restricted
to take values in some subset Ω ⊆ Rm; we useMΩ for
the set of all such controls.

Given any input u defined on an interval I contain-
ing t = 0, and given any ξ ∈ Rn, there is a unique max-
imal solution of the initial value problem ẋ = f(x, u),
x(0) = ξ. This solution is defined on some maximal
open subinterval of I, and it is denoted by x(·, ξ, u).
The corresponding output is denoted by y(·, ξ, u), that
is, y(t, ξ, u) = h(x(t, ξ, u)) on the domain of definition
of the solution.

As usual, we let K be the class of functions [0,∞)→
[0,∞) which are zero at zero, strictly increasing, and
continuous, K∞ the subset of K functions that are

unbounded, and KL the class of functions [0,∞)2 →
[0,∞) which are of class K on the first argument and
decrease to zero on the second argument.

2.1 Main Concepts

Definition 2.1 A system (1) is uniformly bounded
input bounded state (ubibs) if there exists some K-
function σ such that, for every input u and every ini-
tial state ξ, the solution x(t, ξ, u) is defined for all
t ≥ 0 and the estimate

|x(t, ξ, u)| ≤ max{σ(|ξ|), σ(‖u‖)}, ∀ t ≥ 0 . (2)

holds. 2

Remark 2.2 The term ubibs is sometimes employed
for a weaker property, in which an additive constant
is allowed in the right-hand side of the estimate (2),
that is, one does not ask that trajectories must remain
small if initial states and controls are small; see for
instance [1]. As with other stability concepts (cf. the
last section of [13]), much of what we do can be also
stated in this weaker sense of “practical stability”. 2

Note that for a system with no controls,

ẋ = f(x), y = h(x), (3)

the ubibs property reduces to a “bounded state” es-
timate:

|x(t, ξ)| ≤ σ(|ξ|), ∀ t ≥ 0,∀ ξ ∈ Rn (4)

This property amounts to (neutral) stability plus
(cf. [17]) “uniform boundedness”.

The main property that we wish to introduce is as
follows.

Definition 2.3 A system (1) is input to output stable
(ios) if:

• it is ubibs, and

• there exist a KL-function and a K-function γ such
that

|y(t, ξ, u)| ≤ β(|ξ| , t) + γ(‖u‖), ∀t ≥ 0, (5)

holds for all u and all ξ ∈ Rn. 2

For an autonomous system (3), we say simply output
stable (os). That is, such a system is os if it satisfies
an estimate (4) and there is some KL-function β such
that

|y(t, ξ)| ≤ β(|ξ| , t) ∀t ≥ 0, (6)

holds for all ξ ∈ Rn. Clearly, if system (1) is ios then
the associated 0-input system ẋ = f(x, 0) is os.

When h is the identity, ios coincides with the iss

property mentioned in the introductory section (and
os is exactly the same as global asymptotic stabil-
ity). Observe that the ubibs property is redundant
in that case, as it is obviously implied by the decay
estimate (5), letting σ = min{β(·, 0), γ}.

Our main result is as follows.



Theorem 1 The following statements are equivalent.

1. System (1) is ios.

2. The system is ubibs and there exist α1, α2 ∈ K∞,
χ ∈ K and α3 ∈ KL such that for each r ≥ 0,
there is a smooth function V so that:

• α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) for all ξ ∈ Rn;
• DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|) for all ξ

such that V (ξ) ≥ χ(r) and all |µ| ≤ r.
The statement of the Lyapunov condition in Theo-

rem (1) is more complicated than one would like. It
says in essence that ios is equivalent, for each bound
on controls, to the existence of an Lyapunov-like func-
tion V which vanishes only when the output van-
ishes, and whose derivative along trajectories is nega-
tive (unless either the function is already zero or the
current input is large). Moreover, the rate of decay
of V (x(t)) depends on the state and on the value of
V (x(t)) (the main role of α3 is to allow for slower
convergence if V (x(t)) is very small or if x(t) is very
large; the inequality can be restated in various alter-
native ways). We do not yet know if ios implies the
existence of one V (independent of the input level r)
with the stated properties. For the case of no inputs,
however, applying this theorem with r = 0 one has
the following, apparently new, result for os:

Corollary 2.4 The following statements are equiva-
lent for systems without inputs.

1. System (3) is os.

2. The boundedness condition (4) holds and there ex-
ist α1, α2 ∈ K∞, and α3 ∈ KL, and a smooth
function V so that:

• α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) for all ξ ∈ Rn;
• DV (ξ)f(ξ) ≤ −α3(V (ξ), |ξ|) for all ξ ∈ Rn.

For this case, no inputs, the above Lyapunov prop-
erty had already appeared in the literature, but only
as a sufficient condition; see [2].

Of course, in general, if there is a V that works
for all r, then the system is ios. Since this property
is probably the most useful one for verification, and
in any case because the (easy) result is needed as a
step in the proof of Theorem 1, we state the sufficient
condition separately:

Proposition 2.5 Assume that the system (1) is
ubibs and that there exists a smooth function V :
Rn → R≥0 so that the following two properties hold:

• There exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|), ∀ ξ ∈ Rn. (7)

• There exist χ ∈ K and α3 ∈ KL such that for all
ξ ∈ Rn and all µ ∈ Rm:

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|).
(8)

Then, the system is ios.

2.2 Robust Output Feedback

In the study of the iss property in [12], a central role
was played by the equivalence between iss and a ro-
bust stability property. Even though the analogous
equivalence does not hold for ios, it is nonetheless
of interest to study the connections with the corre-
sponding notion. Surprisingly, the notion that obtains
has an elegant characterization in Lyapunov function
terms.

To each given system (1) and each smooth function
λ, we associate the following system with inputs d(·):

ẋ = g(x, d) := f(x, dλ(|y|)) , y = h(x) , (9)

where d ∈ MΩ with Ω = [−1, 1]m. We will be us-
ing xλ(·, ξ, d) (and yλ(·, ξ, d), respectively) to denote
the trajectory (and the output function respectively)
of (9) corresponding to each initial state ξ, each func-
tion λ, and each input d(·).

Definition 2.6 We say that system (1) is robustly
output stable (ros) if it is ubibs and there exists a
smooth K∞-function λ such that the corresponding
system (9) is os uniformly (uos) with respect to all
d ∈MΩ, that is,

|yλ(t, ξ, d)| ≤ β(|ξ| , t), ∀ t ≥ 0, (10)

for all ξ ∈ Rn and all d ∈MΩ.

Observe that, for systems (3) with no controls, the
ros property is the same as os. In general, just one
implication holds:

Lemma 2.7 If a system is ios, then it is ros.

We now turn to a Lyapunov-like property that is
closely related to the one used in Proposition 2.5: the
difference between them lies in the conditions in (8)
and (12) which guarantee decrease of V .

Definition 2.8 A smooth function V : Rn → R≥0 is
an ros-Lyapunov function for system (1) if the fol-
lowing two properties hold:

• There exist α1 and α2 such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|), ∀ ξ ∈ Rn; (11)

• There exist χ ∈ K and α3 ∈ KL such that

|h(ξ)| ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|)
(12)

for all ξ ∈ Rn and all µ ∈ Rm. 2

Our main result regarding the ros property is:

Theorem 2 A system (1) is ros if and only if it is
ubibs and it admits an ros-Lyapunov function.

3 Appendix

In this appendix, we provide sketches of the proofs
of several of the results (the full paper will be found



in Web page cited in the bibliography). As it is the
generally in Lyapunov theory, it easier to establish suf-
ficiency statements than converse theorems, in which
V must be constructed. The following is the key tech-
nical result that underlies all proofs.

Lemma 3.1 Consider a ubibs system (1). Let Ω be
a compact subset of Rm, and let b ≥ 0. Then the
following two properties are equivalent:

1. There exists a KL-function β such that

|y(t, ξ, u)| ≤ β(|ξ| , t) + b, ∀ t ≥ 0, (13)

for all ξ ∈ Rn and all u ∈MΩ.

2. There exist continuous functions ω : Rn → R≥0,
V : Rn → R≥0 such that the following hold:

• |h(ξ)| ≤ ω(ξ) + b for all ξ ∈ Rn;
• V is locally Lipschitz on the set {ξ : V (ξ) 6=

0};
• there exist c1, c2 > 0 such that

c1ω(ξ) ≤ V (ξ) ≤ c2ω(ξ) (14)

for all ξ ∈ Rn;
• there exists α3 ∈ KL such that

DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|), (15)

for all µ ∈ Ω, for almost all ξ such that
V (ξ) 6= 0.

The proof of the result is fairly technical and long.
The complete proof will be given in the full paper.
We remark here that the choice of c1, c2 and α3 only
depends on the decay function β, and it is independent
of b. Below we show how to prove, with the help of
Lemma 3.1, the results stated in Section 2.

3.1 Proof of Theorem 1

Proof of [2⇒ 1]. Let αi (i = 1, 2, 3) and χ be given as
in Theorem 1. Fix r ≥ 0. Let Vr be the corresponding
function satisfying all the conditions in the theorem.
Pick ξ ∈ Rn and an input u with ‖u‖ = r, and use
x(t) := x(t, ξ, u). Consider the set

Sr = {ξ ∈ Rn : Vr(ξ) ≤ χ(r)} .

It then follows from condition 2 in the theorem that
whenever x(t) /∈ Sr,

d

dt
Vr(x(t)) ≤ −α3(Vr(x(t)), |x(t)|).

Following the same steps as in page 441 of [9], one can
show that if x(t0) ∈ Sr, then x(t) ∈ Sr for all t ≥ t0.

Observe that since the system is ubibs, there is
some σ ∈ K such that (2) holds, i.e.,

|x(t)| ≤ max{σ(|ξ|), σ(r)} ∀ t ≥ 0.

We now let t1 = min{t ≥ 0 : x(t) ∈ Sr}. If t1 < ∞,
then

Vr(x(t)) ≤ χ(r), ∀ t ≥ t1. (16)

On [0, t1), it holds that

V̇r(x(t)) ≤ −α3(Vr(x(t)), |x(t)|) ≤ −α3(Vr(x(t)), c),

where c = max{σ(|ξ|), σ(r)}. By a generalized
comparison principle, one knows that there exists a
family {βr(s, t)}r≥0 (which only depends on the KL-
function α3) of KL functions with the property that
βr1(s, t) ≤ βr2(s, t) for all s, t if r1 ≤ r2 such that

Vr(x(t)) ≤ βc(V (ξ), t) ∀ t ∈ [0, t1). (17)

Noticing that

βc(V (ξ), t) ≤ βc(α2(|ξ|), t)
≤ max{βσ(|ξ|)(α2(|ξ|), t), βσ(r)(α2(r), t)}

for all ξ ∈ Rn and r, t ≥ 0 (consider two cases: |ξ| ≥ r
and |ξ| < r), one obtains

Vr(x(t)) ≤ max{β̄(|ξ| , t), γ0(r)} ∀ t ∈ [0, t1), (18)

where β̄(s, t) := βσ(s)(α2(s), t), and γ(s) :=
βσ(s)(α2(s), 0). Combining (17) and (18), one obtains

Vr(x(t)) ≤ max{β̄(|ξ| , t), γ0(‖u‖), χ(‖u‖)}, ∀ t ≥ 0,

from which it follows that

|h(x(t))| ≤ max{β̂(|ξ| , t), γ(‖u‖)}, ∀ t ≥ 0, (19)

where β̂(s, t) := α−1
1 (β̄(s, t)), and

γ(s) = max{α−1
1 (γ0(s)), α−1

1 (χ(s))}.

Proof of [2⇒ 1]. Fix r ≥ 0, and letMr denote the
set of inputs u with ‖u‖ ≤ r. Then

|x(t, ξ, u)| ≤ β(|ξ| , t) + γ(r), ∀ t ≥ 0,

for all ξ and all u ∈ Mr. An immediate consequence
of Lemma 3.1 (with b = γ(r)) is the following:

Lemma 3.2 Assume that system (1) is ios. Then
there exist c1, c2 > 0 and α3 ∈ KL such that for any
r ≥ 0, there exist continuous functions ω : Rn → R≥0,
W : Rn → R≥0 so that the following holds:

• |h(ξ)| ≤ ω(ξ) + γ(r) for all ξ ∈ Rn;
• c1ω(ξ) ≤W (ξ) ≤ c2ω(ξ);

• W is locally Lipschitz on the set {ξ : W (ξ) 6= 0};
• it holds that DW (ξ)f(ξ, µ) < −α3(W (ξ), |ξ|) for

all |µ| ≤ r and almost all ξ such that W (ξ) 6= 0.

We now continue to prove Theorem 1. Let c1, c2
and α3 be as in above. Fix r ≥ 0. Let ωr and Wr be
as in Lemma 3.2 corresponding to the fixed value r.
Let Dr be the set defined by

Dr = {ξ : Wr(ξ) = 0}.



By [8, Theorem B.1], there exists a smooth function
Ŵr(ξ) defined on Rn \Dr such that∣∣∣Ŵr(ξ)−Wr(ξ)

∣∣∣ ≤Wr(ξ)/2, ∀ ξ 6∈ Dr,

and

DŴr(ξ)f(ξ, µ) ≤ −α3(Wr(ξ), |ξ|)/2, a.e. ξ 6∈ Dr.

Extend Ŵr to Rn by letting Ŵr(ξ) = 0 for all ξ ∈ Dr.
Then Ŵr is continuous everywhere,

ĉ1(ω̂r(ξ)− γ(r)) ≤ Ŵr(ξ) ≤ α̂2(|ξ|), ∀ ξ ∈ Rn,

where ĉ1 = c1/2, α̂2(s) = 2c2β(s, 0), ω̂r(ξ) = ωr(ξ) +
γ(r), and

DŴr(ξ)f(ξ, µ) ≤ −α̂3(Wr(ξ), |ξ|), whenever ω̂r(ξ) 6= 0,

where α̂3(s, r) = α(s/2, r)/2.
Let, for each r > 0, ϕr : Rn → [0, 1] be such that

ϕr(ξ) =
{

1, if ω̂r(ξ) ≥ 2γ(r),
0, if ω̂r(ξ) ≤ 3γ(r)

2 ,

and let ψ : Rn → R≥o be a smooth function such that
ρ(|h(ξ)|) ≤ ψ(ξ) ≤ ĉ1 |h(ξ)| /3 for some K∞-function
ρ. Define

Vr(ξ) = ϕr(ξ)Ŵr(ξ) + (1− ϕr(ξ))ψ(ξ).

Then Vr is smooth everywhere,

Vr(ξ) ≥
{
ĉ1ω̂r(ξ)/2, if ω̂r(ξ) ≥ 2γ(r),
ρ(|h(ξ)|), if ω̂r(ξ) ≤ 3γ(r)/2,

and for 3γ(r)/2 ≤ ω̂r(ξ) ≤ 2γ(r), one has

Vr(ξ) ≥ ĉ1ϕr(ξ)(ω̂r(ξ)− γ(r)) + (1− ϕr(ξ))ψ(ξ)

≥ ĉ1ϕr(ξ)ω̂r(ξ)
3

+ ψ(ξ)− ϕr(ξ)
ĉ1 |h(ξ)|

3
≥ ρ(|h(ξ)|).

Combining this with the fact that Vr(ξ) ≤ ĉ1|h(ξ)|
3 +

α̂2(|ξ|), one obtains:

α̃1(|h(ξ)|) ≤ Vr(ξ) ≤ α̃2(|ξ|), ∀ ξ ∈ Rn,

where α̃1(s) = min{ρ(s), ĉ1s}, and α̃2(s) = α̂2(s) +
ρ1(s), and where ρ1 is such a K-function such that
ĉ1|h(ξ)|

3 ≤ ρ1(|ξ|) for all ξ. Since Vr(ξ) = Wr(ξ) when
ω̂(ξ) ≥ 2γ(r), it holds that

ω̂(ξ) ≥ 2γ(r) ⇒ DVr(ξ)f(ξ, µ) ≤ −α̂3(Vr(ξ), |ξ|),
(20)

for all |µ| ≤ r. Observe that when ω̂(ξ) ≥ 2γ(r), it
holds that

Vr(ξ) = Ŵr(ξ) ≤ 2c2ω(ξ) ≤ 2c2ω̂(ξ),

and hence, it follows from (20) that

Vr(ξ) ≥ γ1(r) ⇒ DVr(ξ)f(ξ, µ) ≤ −α̂3(Vr(ξ), |ξ|)

for all |µ| ≤ r, where γ1(s) = γ(s)
c2

. This finishes the
construction of smooth Vr’s for r > 0. To get a smooth
function V0 from Ŵ0, one can follow exactly the same
steps as in the smoothing arguments used in [8].

3.2 Proof of Theorem 2

Proof of the sufficiency. Let V be an ros-Lyapunov
function for system (1) with αi (i = 1, 2, 3) and χ
as in (11) and (12). Without loss of generality, we
may assume that χ ∈ K∞. With λ = χ−1, one can
rewrite (12) as

DV (ξ)f(ξ, µλ(|h(ξ)|)) ≤ −α3(V (ξ), |ξ|)

for all ξ ∈ Rn, all |µ| ≤ 1. This implies that for any
ξ and any d ∈ MΩ with Ω = [−1, 1]m, the corre-
sponding trajectory xλ(t) := xλ(t, ξ, d) of system (9)
satisfies the following:

d

dt
V (xλ(t)) ≤ −α3(V (xλ(t)), |xλ(t)|), ∀ t ≥ 0.

(21)
It follows immediately that V (xλ(t)) ≤ V (ξ) for all
t ≥ 0, which, in turn, implies that

|h(xλ(t))| ≤ σ4(|ξ|), ∀ t ≥ 0, (22)

where σ4 = α−1
1 ◦α2. Since system (1) is ubibs, there

is some σ ∈ K such that

|xλ(t)| ≤ max{σ(|ξ|), σ(‖ud‖)},

where ud(t) = d(t)λ(|yλ(t)|). Combining this
with (22), one sees |xλ(t)| ≤ σ̂(|ξ|) for all t ≥ 0,
where σ̂(s) = max{σ(s), λ(σ4(s))}. Putting this back
into (21), we have

d

dt
V (xλ(t)) ≤ −α3(V (xλ(t)), σ̂(|ξ|)), ∀ t ≥ 0.

Again, by a generalized comparison principle, one
knows that there is some β ∈ KL depending only on
α3 and σ̂, such that V (xλ(t)) ≤ β(|ξ| , t) for all t ≥ 0,
from which it follows that

|h(xλ(t))| ≤ β̂(|ξ| , t), ∀ t ≥ 0,

where β̂(s, t) = α−1
1 [β(α2(s), t)].

The necessity part of Theorem 2 is an easy conse-
quence of Lemma 3.1. Due to space limitations, we
must omit the detailed arguments here.

3.3 Proof of Lemma 2.7

Assume that system (1) is ubibs with estimation (2).
Without loss of generality, we may assume that σ(s) ≥
s for all s ≥ 0. Let κ

0
any K∞-function such that

κ
0
(2σ(s)) ≤ s/4.
Using the same arguments as used in [12], one can

show that if |u(t)| ≤ κ
0
(|x(t, ξ, u)|) for almost all t ≥

0, then |u(t)| ≤ |ξ|2 for almost all t ≥ 0.
Let E := {(ξ, µ) : |µ| ≤ κ

0
(|ξ|)}. The above conclu-



sion implies that if (x(t, ξ, u), u(t)) ∈ E for almost all
t ≥ 0, then |x(t, ξ, d)| ≤ σ(|ξ|) for all t ≥ 0.

Assume now that system (1) is ios with decay esti-
mation (5). Let t1 > 0. Then, for any t ≥ t1,

|y(t, ξ, d)| ≤ β(|ξ1| , t− t1) + γ(‖u‖[t1,∞)),

where ξ1 = x(t1, ξ, u), and ‖u‖[t,∞) denotes the
L∞ norm of u restricted to [t,∞). Thus, if
(x(t, ξ, u), u(t)) ∈ E a.e., then the following holds:

|y(t, ξ, d)| ≤ β1(|ξ| , t− t1) + γ(‖u‖[t1,∞]), ∀ t ≥ 0,

where β1(s, t) = β(σ(s), t) ∈ KL, and in particular,

|y(t, ξ, d)| ≤ β1(|ξ| , t/2) + γ(‖u‖[t/2,∞)), ∀ t ≥ 0,

if (x(t), u(t)) ∈ E a.e. Without loss of generality, we
assume that γ ∈ K∞. Now let

E1 = {(ξ, µ) ∈ E : |µ| ≤ γ−1(|h(ξ)| /2)} ⊂ E.

If (x(t, ξ, u), u(t)) ∈ E1 a.e., then

|y(t, ξ, d)| ≤ β1(|ξ| , t/2) +
‖y‖[t/2,∞)

2
, ∀ t ≥ 0.

Let σ3 ∈ K∞ such that |h(ξ)| ≤ σ3(|ξ|). Then

E1 ⊃ {(ξ, µ) : |µ| ≤ κ(|h(ξ)|)},

where κ(s) = min{γ−1(s/2), κ0(σ−1
3 (s))}. Consider

the system

ẋ = f(x, dκ(|y|)), y = h(x), (23)

with d ∈ MΩ. Pick any d ∈ MΩ and any ξ. Let
xκ(t) denote the corresponding trajectory of (23),
and yκ(t) the corresponding output function. Then
(xκ(t), d(t)yκ(t)) ∈ E1 a.e., and hence,

|yκ(t)| ≤ β2(|ξ| , t) +
‖yκ‖[t/2,∞)

2
, ∀ t ≥ 0,

where β2(s, t) = β1(s, t/2) ∈ KL. By [4, Lemma A.1],
there is some KL-function β̂, which only depends on
β2, such that |yκ(t)| ≤ β̂(|ξ| , t) for all t ≥ 0. Hence,
system (23) is os uniformly on all d ∈MΩ.

References

[1] A. Bacciotti, External stability of nonlinear sys-
tems, in Proceedings of IFAC Non-Linear Con-
trol Systems Design Symposium, (NOLCOS ’95),
Tahoe City, CA, June 1995.

[2] L. Hatvani, On the asymptotic stability by non-
decrescent Ljapunov function, Nonlinear Analysis,
Theory, Methods and Appl., 8 (1984), pp. 67-77.

[3] A. Isidori, Global almost disturbance decoupling
with stability for non minimum-phase single-input

single-output nonlinear systems, Systems & Con-
trol Letters. to appear.

[4] Z.-P. Jiang, A. Teel, and L. Praly, Small-gain the-
orem for ISS systems and applications, Mathemat-
ics of Control, Signals, and Systems, 7 (1994),
pp. 95–120.
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