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Abstract 
This paper proposes a technique for the control of ana- 

lytic systems with no drift. It is based on the generation 
of "nonsingular loops" which allow linearized controlla- 
bility. Once such loops are available, it is possible to 
employ standard Newton or steepest descent methods. 
The theoretical justification of the approach relies on re- 
cent results on genericity of nonsingular controls as well 
as a simple convergence lemma. 

1. Introduction 

This paper deals with the problem of numerically find- 
ing controls that achieve a desired state transfer. That 
is, for any given initial and target states (0 and (J- in 
R", one wishes to find a time T > 0 and a control U 

defined on the interval [O,T], so that U steers ( 0  to (F, 
for the system 

More precisely, the question of approximate controlla- 
bility (for any E > 0, find a control that brings the state 
to within E distance of &) will be considered. 

A number of preliminary results will be developed for 
general analytic systems of the type (l), but the control- 
lability application is restricted to the case of systems 
without dr i f t :  

j. = f ( z , u )  . (1) 

X = G(z)u , (2) 

i.e., the right-hand side f(z,  U) is linear in U. For such 
systems it is relatively straightforward to decide control- 
lability, but the design of explicit control strategies has 
attracted considerable attention lately. 

Problems of steering systems without drift are in part 
motivated by the study of nonholonomic mechanical sys- 
tems. Many sophisticated control strategies have been 
proposed, based on a nontrivial analysis of the struc- 
ture of the Lie algebra of vector fields generated by the 
columns of G; see the various papers in this session. The 
approach presented in this paper is of an entirely differ- 
ent nature. It represents a simple-minded algorithm, in 
the style of classical numerical approaches, and it re- 
quires no symbolic computation to implement. In fact, 
a small piece of code in any numerical package such as 
MATLAB is all that is needed in order to obtain solu- 
tions. Obviously, as with any general procedure, it can 
be expected to be extremely inefficient, and to result in 
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poor performance, when compared with techniques that 
use nontrivial information about the system being con- 
trolled. Perhaps it will be useful mainly in conjunction 
with other techniques, to provide a first step of global 
control, to be followed by finer local control. 

Mathematically, the main contribution of this paper 
is in the formulation of the "generic loop" approach and 
the justification of the algorithm. The latter relies on a 
new result proving the existence of such loops with good 
controllability properties. This approach was motivated 
to a great extent by related work on time varying feed- 
back laws by Coron and others; the last section of the 
extended version of this paper, [8], makes some remarks 
regarding connections with that work. 

1 .l. Classical It erat ive Techniques 
It is assumed from now on that in (1) the states z( t> 

evolve in IR". (Systems on manifolds can also be consid- 
ered, but doing so only complicates notations and adds 
in this case little insight.) Controls ~ ( t )  take values in 
IR". Further, f is continuously differentiable (later re- 
sults will impose analyticity). Given a state €0 E R'I 
and a measurable and locally essentially bounded con- 
trol U : [0 ,  2'1 + IR" so that the solution z : [ 0 ,  TI + IR'& 
of the equation (1) with this control and the initial con- 
dition z(0) = (0 is defined on the entire interval [O,T] 
-that is, U is admissible for 2,- the state z(t) at time 
t E [0 ,  T] is denoted by 4(tl (0, U ) .  As discussed above, 
the objective, for any given initial and target states (0 
and (F in R", is to find a time T > 0 and a control U 
defined on the interval [0, TI, so that U steers (0 to &, 
that is, so that 4(T, (0, U )  = ( F ,  a t  least in an approx- 
imate sense. After a change of coordinates, one may 
assume without loss of generality that (J- = 0. 

Classical numerical techniques for this problem are 
based on variations of steepest descent; see for instance 
[l], or [2] for a recent reference. The basic idea is to start 
with a guess of a control, say E : [0,  T] -+ R", and to 
improve iteratively on this initial guess. More precisely, 
let G = q5(*,(0,E). If the obtained final state F(T) is 
already zero, or is sufficiently near zero, the problem 
has been solved. Otherwise, we look for a perturbation 
AE so that the new control E+AZ brings us closer to our 
goal of steering (0 to the origin. The various techiiiques 
differ on the choice of the perturbation; in particular, 
two possibilities are discussed next, later to be analized. 

The first is basically Newton's method, and proceeds 
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as follows. Denote, for any fixed initial state (0, a(u) := 
d(T, 40, U) thought of as a partially defined map from 
LZ(0, T) into IR" . This is a continuously differentiable 
map (see e.g. [6], Theorem l), so expanding to first order 
there results 

a@+ U )  = a@) + a*[ii](v) + o(v) 
for any other control v so that a(ii+v) is defined, where 
we use "*" as a subscript to denote differentials. If we 
can now pick v so that 

a*[ii](v) = -a(ii) (3) 

then for small enough h > 0 real, 

a ( E +  hv) = (1 - h)a(E) + o(h)  (4) 

will be smaller than the state a ( E )  reached with the 
initial guess control ii. In other words, the choice of 
perturbation is Aii:= hv, 0 < h << 1. 

It remains to solve equation (3) for U. The operator 

L : v H a*[E](v) (5) 

is the one corresponding to the solution of the varia- 
tional equation 

t = A ( t ) z  + B(t)v  z(0) = 0, ( 6 )  

where A ( t )  := g(?E(t) ,Ti(t))  and B ( t )  := g(E(t),ii(t)) 
for each t, that is, Lv = so O(T, s )B(s )v(s )  ds , where 
ip denotes the fundamental solution associated to X = 
A ( t ) X .  

The operator L maps LZ (0,T) into IR", and it is onto 
when ( 6 )  is a controllable linear system on the interval 
[ O , T ] ,  that is, when ii is a control nonsingvlar for €0 
relative to the system (1). In other words, ontoness of 
L = cu,[?l] is equivalent to first-order controllability of 
the original nonlinear system along the trajectory cor- 
responding to the initial state and the control 1. The 
main point of this paper will lie in showing that it is 
not difficult to generate useful nonsingular controls for 
systems with no drift. 

Assuming nonsingularity, there exist then many solu- 
tions to (3). Because of its use in (4) where a small v is 
desirable, and in any case because it is the most natural 
choice, it is reasonable to pick the least squares solution, 
that is the unique solution of minimum norm, 

T 

v := -L#a(ii) (7) 

where L# denotes the pseudoinverse operator (see e.g. 
[6], Section 3.5, for details; we are using the canonical 
inner product on Ht", and La norm in L=(O,T), and 
induced norms for elements and operators). 

The technique sketched above is well-known in nu- 
merical control. For instance, the derivation in pages 
222-223 of [l], when applied to solving the optimal con- 
trol problem having the trivial cost criterion J(u) = 0 

and subject to the final state constraints z. = $(z) = 0, 
results in formula (7), and is derived in the same manner 
as here. 

Alternatively, instead of solving (3) for v via (7), one 
might use the steepest descent choice 

v := -L*a( i i )  (8) 

where L* is the adjoint of L. Formula (8) also results 
from the above derivation in [l], now when applied us- 
ing the quadratic cost J ( u )  = llt~(u)11~ but relaxing the 
terminal constraints ($ 0). In place of (4), now one 
has 

a('iS+ hv) = ( I  - hLL*)a(E) + o(h) ,  (9) 

where I is the identity operator. If again L is onto, 
that is, if the control E is nonsingular for €0, then the 
symmetric operator LL* is positive definite, so 0 < h << 
1 will give a contraction as earlier. A possible advantage 
of using L* instead of L# is that no matrix inversion is 
required in this case. On the other hand, one may expect 
Newton's method to behave better locally and steepest 
descent to be more effective globally. 

It is also possible to combine these techniques with 
line searches over the scalar parameter h or, even more 
efficiently in practice, with conjugate gradient approches 
(see for instance [4]). Line search corresponds to leaving 
v fixed and optimizing on the step size h, only recomput- 
ing a variation v when no further improvement on h can 
be found. (The control applied at  this stage is then the 
one for the 'best" stepsize, not the intermediate ones 
calculated during the search.) 

Of course, in general there are many reasons for which 
the above classical techniques may fail to be useful in 
a given application: the initial guess B may be singular 
for 40, the iteration may fail to converge, and so forth. 
The main point of this paper is to show that, for a suit- 
able class of systems, a procedure along the above lines 
can be guaranteed to work. The systems with which we 
will deal here are often called "systems without drift" 
and are those expressed as in Equation (2). A result 
given below shows that for such systems (assuming an- 
alytic G) rather arbitrary controls provide the desired 
singularity, and can hence be used as the basis of the 
approach sketched above. 

The next section establishes the basic iterative pro- 
cedure and proves a convergence result assuming that 
nonsingular controls exist. After that, we explain the 
application to systems without drift and state the ex- 
istence theorem for nonsingular controls in the analytic 
case (a proof is cited). 

2. Justifhation of the Iterative Method 

We now prove the convergence of the algorithm con- 
sisting of repeatedly applying a control to obtain a non- 
singular trajectory, and at each step perturbing this con- 
trol by means of a linear technique. As a preliminary 
step, we establish a few results in somewhat more gen- 
erality; these are fairly obvious remarks about iterative 

2707 



methods, but we have not found them in the literature 
in the form needed here. 

Lemma 2.1 Let B be a compact subset of R", and 
let H > 0. Assume given F : €3 x [O,H]  + IR" and a 
continuous matrix function D : B + R"'" so that D ( z )  
is symmetric and positive definite for each z. Assume 
further that the function g(z, h) := F(z ,  h)+hD(z)z-  
z is o(h) uniformly on z, that is, for each E > 0 there is 
a ii > 0 so that 

h < ii + llg(z, h)ll < Eh for all z E B. (10) 

Then the following conclusion holds, for some constant 
X > 0: For each E > 0 there is some 6 > 0 so that, for 
each h E (0,s) and each 2: E 23, 

llFt.1 h)ll < m={(l - Xh)llzlI, E }  (11) 

Proof. Note that since D ( z )  is continuous on z, its 
singular values also depend continuously on z (see e.g. 
[GI, _Corollary A.4.4). Let 2X > 0 be a lower bound and 
let X be an upper bound fo_r the eigenvalues of D(z ) .  
Pick a k > 2 so that kX > 2X. 

Now fix any E > 0. There is then some 0 < ii < 1/x 
such that, for each 0 < h < 6, 

for all z E B and all the eigenvalues of hD(z )  are in the 
interval (0 , l ) .  

Pick any h E (0,i i)  and any ;G E B. As the eigenvalues 
of the symmetric matrix I - h D ( z )  are all again in (0, l),  
this matrix must be positive definite and so its norm 
equals its largest eigenvalue; thus: 111 - hD(z)ll 5 1 - 
2Xh. Therefore, for 1 1 ~ 1 1  > ~ / 2  it holds that: 

llF(z, h)ll I I l ( I  - hD(z))zll + Ildz, h)ll 
5 (1 - 2Xh)llzll+ X&h/k - 
= (1 -2Xh+-  1 1 ~ 1 1  

Wl 

so the conclusion holds in that case as well. I 

Observe that continuity of D ( z )  is only used in guar- 
anteeing that the singular values are bounded above and 
away from zero. 

Lemma 2.2 Let B be a closed ball in R", and let 
H > 0. Assume given a map F : 23 x [O,H]  + R" , 
with F ( z ,  0) = z for all z, so that F is continuously dif- 
ferentiable with respect to h E [0 ,  HI, with aF /ah  con- 
tinuous on (2, h) ,  and aF/ah(z,  0) = -D(z ) z ,  where 

D : B + R"'" is a continuous matrix function satis- 
fying that D ( z )  is symmetric positive definite for each 
z. Denote F h  := F(., h). Then the following property 
holds: For each E > 0, there is some 6 > 0 so that, for 
each 0 < h < 6 there is some positive integer N = N ( h )  
so that 

where FP denotes the Nth  iterate of F h .  

Proof. In order to apply Lemma 2.1, we only need to 
check that in the expansion F ( z ,  h )  = z - h D ( z ) z  + 
g ( x , h )  the last term is o(h) uniformly on z. But, by 
Lagrange's formula, one has g(z, h)  = F ( z ,  h)-F(z, 0)- 
E(zl 0) h = Jl G(z, h, t )hd t  where 

IIFhN(B)Il < E 1 

and (z, h)  is continuous by hypothesis. On the com- 
pact set B x [ O ,  HI, this function is uniformly continu- 
ous; in particular it is so at  the points of the form (z, 0). 
Thus for each E > 0 there is some 6 > 0 so that when- 
ever h < 6 then llG(z, h,t)ll < E for all z E B. Therefore 
also Ilg(z,h)ll < ~h holds, and Lemma 2.1 can indeed 
be applied. 

As B is a ball, the iterates remain in B. So for each 
N :  

IlFhNll < max((1 - Xh)Nllz(l, E }  

This gives the desired result. I 

For each ( E R" and each control ii E LG(0 ,T)  
admissible for (, we let Lc,v be the linear operator 
lZ(0 ,T)  -+ R" defined as in (5), that is, the reach- 
ability map for the time-varying linear system (6) that 
results along the ensuing trajectory. Introducing the 
matrix functions 

A = A ( z ,  U) = -(z, af U) and B = B(z ,  U) = -(zl af U ) ,  ax 8th 
we may consider the following new system (the "prolon- 
gation" of the original one): 

i =  f ( X l  U )  (13) 
(14) i = A(z,u)z+ B(z ,u)v  

seen as a system of dimension 2n and control ( u , v )  of 
dimension 2m. Observe that Lc,c(F) is the value of the 
z-coordinate of the solution that results a t  time T when 
applying controls E,F and starting at  the initial state 
(tl 0). If we add the equation 

Q = AQ + Q A  + BB* (15) 

(superscript * indicates transpose) to the prolonged sys- 
tem, the solution with the above controls and initial 
state (t, 0,O) has 

Q(t)  = J' @(tl s)B(s)B* ( s ) @ ( t ,  s)' ds 
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so that (see e.g. [6], Section 3.5) ontoness of LE,; is 
equivalent to the Grammian W = &(T) being positive 
definite. Note that, by continuous dependence on ini- 
tial conditions and controls, W depends continuously 
on (,Z. Similar arguments show that other objects as- 
sociated to the linearization also depend continuously 
on (,Ti, and any state q: application to q of the adjoint, 
Lc,;q, which is the same as the function B(t)**(T,t)*q, 
and of the pseudoinverse, L f q  = L' W q .  

Et" so that 
ii is admissible for all ( E B, and denote Lf ,z  just as Lc. 

Corollary 2.3 Assume that the control T i  is so that 

Fix now a control Ti and a closed ball 8 

@',(,E) = ( for all [ E B. 
Assume given, for each [ E B, a map Nc : IR" + 
LE (0, T )  so that Nc ( t )  depends continuously on ( and 
so that the operator D ( ( )  := LcNt is linear, and 
in the standard basis is symmetric and depends con- 
tinuously on (. Pick an X > 0 so that 'ii - hNc(() 
is admissible for each ( E B and h E [O,H], and let 
F(e ,  h) := d(T, (, 'ii - hNc(())  . Then, for each E > 0, 
there is some 6 > 0 so that, for each 0 < h < 6 there is 
some positive integer N = N ( h )  so that IIF;(B)I( < E , 
where Fh := F( . ,  h). 

P w f .  Observe that, since is the same as Le, 
we have that, in general, 

so in particular g((,O) = -D( ( ) ( ,  as needed in order 
to apply Lemma 2.2. Note that %((, h) is continuous, 
as it equals -LE,z-hNt(,)Nc(x) and each of L and N are 
continuous on all arguments. I 

3. Application to Systems wi th  no Drifi 
The application to systems without drift, those that 

are as in Equation (2), is as follows. As discussed in the 
next subsection, rescaling if necessary, we may assume 
that the system is complete. In order to apply the nu- 
merical techniques just developed, one needs to find a 
control Ti which leads to nonsingular loops: 

0 ii is nonsingular for every state x in a given ball B, 
0 #(Z',z,E) = x for all such x. 

It is shown later that for analytic systems that have the 
strong accesibility property, controls which are generic 
-in a sense to be made precise- are nonsingular for 
all states. (For analytic systems without drift, Chow's 
Theorem states that the strong accessibility property is 
equivalent to complete controllability.) Starting from 
such a control w ,  defined on an interval [O,T/2], one 
may now consider the control E on [O,T] which equals 
w on [0, T/2] and is then followed by the antisymmetric 
extension: 

E ( t )  = -w(T - t ) ,  t E (T/2, TI. (16) 

This is is as needed: nonsingularity is due to the fact 
that if the restriction of a control to an initial subinterval 
is nonsingular for the initial state, the whole control is, 
and the loop property is an easy consequence of the 
special form (2) in which the control appears linearly. 

In practice, one might try using a randomization tech- 
nique in order to obtain U, and from there E. More di- 
rectly, one might use instead a finite Fourier series with 
random coefficients: 

which automatically satisfies the antisymmetry prop- 
erty (16) on the time interval [0,1]. Of course, there is 
no theoretical guarantee that such a series will provide 
nonsingularity, for any given finite I ;  the study of Lie- 
algebraic conditions that insure it would be of interest. 
But experimentally, one may always proceed assuming 
that indeed all properties hold. 

The first application is with N, = Lf ,  the pseudoin- 
verse discussed earlier. Here D(x) = I is certainly posi- 
tive definite and continuous on t. 

The second application is with N, = Lz,  the adjoint 
operator, in which case D ( s )  = W = Q(T), as obtained 
for the composite system (13)-(15), and as remarked 
earlier this is also continuous on x (and positive definite 
for each x, by nonsingularity). 

To summarize the procedure: First find an Z that gen- 
erates nonsingular loops, in the above sense. Now cal- 
culate the effect of applying this control, starting at  ( 0 ,  

and compute the linearization along the corresponding 
trajectory, using this in turn in order to obtain the vari- 
ation that allows modifying E by hlVz(x), as described 
earlier. The original control Ti is not applied to the sys- 
tem, but the perturbed one is. Apply this new control to 
the system and compute the final state that results. If 
the state is not close enough to [F, repeat. There is then 
guaranteed convergence in finite time to any arbitrary 
neighborhood of the origin, for small enough stepsize. 
One may also combine this approach with line searches, 
or even conjugate gradient algorithms, as discussed ear- 
lier. 

Such techniques are classical in nonlinear control; see 
for instance [l], [4]. What appears to be new is the 
observation that, for analytic systems without drift, 
generic loops provide nonsingularity. 

3.1. Rescaling: Obstacles and Completeness 
For systems with no drift, a simple rescaling of the 

equations may be an extremely powerful tool that al- 
lows (a) dealing with workspace obstacles and (b) the 
reduction to systems that are complete (no explosion 
times). The basic idea is very simple, and is as follows. 

Assume that fl  : IEt" -+ R is any smooth mapping, 
and consider the new system without drift 
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Suppose that one has found a control U, defined on an 
interval [0,  TI, so that the state (0 is transferred into the 
state (F using this control, for the system (18). Let E(*)  
be the corresponding trajectory. Then, the new control 
w(t) := P(E( t ) )u( t ) ,  when applied to the original system 
( 2 ) ,  also produces the desired transfer. In other words, 
solving a controllability problem for (18) provides imme- 
diately a solution to the corresponding problem for the 
original system. (If one is interested in feedback design, 
as opposed to open-loop control as in this paper, the 
same situation holds: a feedback law U = k(z) for (18) 
can be re-interpreted as a feedback law U = P ( z ) k ( z )  
for ( 2 ) . )  If ,f3 never vanishes, the controllability proper- 
ties of the original and the transformed systems are the 
same. This is clear from the above argument. 

This construction is of interest in two ways. First of 
all, one is often interested in control of systems in such 
a manner that trajectories avoid a certain subset Q of 
the state-space (which may correspond to "obstacles" 
in the workspace of a robot, for instance). If P vanishes 
exactly on Q, then control design on the complement of 
Q can be done for the new system (IS), and controls can 
then be reinterpreted in terms of the original system, a 
discussed above. Since P vanishes on Q, no trajectories 
starting outside Q ever pass through Q (uniqueness of 
solutions). Of course, in planning motions in the pres- 
ence of obstacles, the control variations should be chosen 
so as to move in state space directions which do not lead 
to collisions. One possible approach is to first design a 
polyhedral path to be tracked, and then to apply the 
numerical technique explained in order to closely follow 
this path. 

Reparameterization also helps in dealing with possible 
explosion times in the original system, a fact that had 
been previously observed in [3], page 2542. In this case, 
one might use an P(z)  so that P(z)G(z) has all entries 
bounded; for instance, P(z)  could be the chosen as (1 + 

g:j(z))-'. This means that the new system has no 
finite escape times, for any bounded control. 

3.2. Some Implementation Questions 
Next are derived explicit formulas for the use of the 

above technique, in the case of systems without drift 
and when steepest descent variations are used. As just 
discussed, one may assume that the system is complete. 

Assume that Z ( t ) ,  t E [0, T] satisfies the antisymmetry 
condition 

C ( T -  t )  = - U ( t ) .  (19) 

If z(-) satisfies x = G(z)Z then z ( t )  := z(T - t )  satisfies 
the same equation; thus from the equality z ( T / 2 )  = 
z(T/2) and uniqueness of solutions it follows that E = z. 
In other words, 

for t E [ O , T ] .  To distinguish the objects which depend 
explicitely on time from those that depend on the cur- 

rent values of states and controls, use the notation 

where gj is the ith column of G ,  U ,  is the ith entry of 
the vector U E E", and the partial with respect to z 
indicates Jacobian. Note that A can be calcuted once 
and for all as a function of the variables z, U ,  before any 
numerical computations take place. For each ti, and the 
trajectory z( .) corresponding to this control and initial 
state (0, denote 

A ( t )  := d ( z ( t ) , U ( t ) ) ,  B ( t )  := G(z( t ) ) .  

Note that if (19), and hence also (20), hold then 

A(T - t )  = -A( t )  , B(T - t )  = B(t)  (21) 

hold as well. Consider next Q(t) := 9(T,  t ) ,  where @ is 
the fundamental solution as before, Corresponding to a 
given U and z(.) as above. Thus, 9 satisfies the matrix 
differential equation 

$(t)  = -Q( t )A( t )  , \k(T) = I. 

Consider the function G ( t )  := Q(T - t ) .  If U satis- 
fies the antisymmetry condition, then 5 satisfies the 
same differential equation as XP, from which the equality 
5 ( T / 2 )  = 9 ( T / 2 )  implies 5 = \E. Hence also 

Q(T - t )  = Q ( t )  ( 2 2 )  

and so Q ( 0 )  = 9(T) = 1. The perturbed control to 
be applied is E + hw = U - hL*cr(C) where a ( E )  = 
z ( T )  = z(0) = (0 if U satisfies the antisymmetry condi- 
tion. The adjoint operator is (L*(o ) ( t )  = B(t)*Q(t)*(o. 
Summarizing, the control to be applied, which for small 
h should result in a state closer to the origin than (0, is 

lz(t) - hG(z(t))*Q(t)*<o 1 t E [O,T] 

where 

i ( t )  = G(z ( t ) )Z ( t ) ,  x ( 0 )  = (0 
$(t) = -A(z(t) ,U(t))  9( t ) ,  Q(0) = 1. 

The equations for the system evolution are as follows 
(the state variable is now denoted by E in order to avoid 
confusion with the reference trajectory 2): 

i ( t )  = G(z(t)) P(t) - hG(~( t ) )*Q( t )*[o]  

for t E [0, TI, with initial condition a ( 0 )  = (0. In a line- 
search implementation, one would first compute z(T)  
for various choices of h; the control is only applied once 
that an optimal h has been found. Then the procedure 
can be repeated, using z ( T )  as the new initial state (0. 

Remark. Regarding the number of steps that are 
needed in order to converge to an &-neighborhood of the 
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desired target state, an estimate is as follows. For a 
fixed ball around the origin, and sufficient smoothness, 
one can see that h = O ( E )  provides the inequality in 
(IO), as required for (12). Thus, the number of iterations 
N needed, using such a stepsize, is obtained from (11): 
(1 - C E ) ~  < E where c is a constant. Taking logarithms 
and using log(1- x )  = z + o(z) there results the rough 
estimate N = o ($ log ($)) . 

4. Universal Inputs 

In this Section, the systems considered will be of the 
type (1) where x ( t )  E X ,  u( t )  E U ,  and: 

0 X 

0 U C Rm is open and connected, for some m >_ 1; 

f : X x U + IR” is real-analytic. 

A control is a measurable essentially bounded map 
w : [O,T] + U ;  it is said to be smooth (respectively, an- 
alytic) if it is infinitely differentiable (respectively, real- 
analytic) as a function o f t  E [O,T]. As before, we de- 
note by 4(t ,  z, w )  the solution of (1) at t imet with initial 
condition 2 and control w .  This is defined for all small 
t = t ( z ,  w )  > 0; when we write $(., z, w ) ,  we mean the 
solution as defined on the largest interval [0, 7) of exis- 
tence. 

Given a state z, a control w defined on [ O , T ] ,  and a 
positive TO 5 T so that ( ( t )  = d ( t , z , w )  is defined for 
all t E [O,T’], we may consider the linearization along 
the trajectory (<, w ) :  

Et” is open and connected, for some n 2 1; 

i ( t )  = A ( t ) z ( t )  + B ( t ) u ( t )  (23) 

where A ( t )  := g ( ( ( t ) , w ( t ) )  and B(t)  := $$((( t ) ,w(t))  
for each t .  A control w will be said to be nonsingular for  
3: if the linear time-varying system (23) is controllable on 
the interval [0, TO], for some TO > 0. When U is analytic, 
this property is independent of the particular TO chosen, 
and it is equivalent to a Kalman-like rank condition (see 
e.g. [6], Corollary 3.5.17). Nonsingularity is equivalent 
to a FrCchet derivative of d(To,z, .) having full rank a t  

If w is nonsingular for x E X ,  and To is as above, then 
the rechability set in time To from z has a nonempty in- 
terior. This is a trivial consequence of the Implicit Func- 
tion Theorem (see for instance [6], Theorem 6). Thus, 
if for each state z there is some control which is nonsin- 
gular for z, then (1) is strongly accessible. The converse 
of this fact is also true, that is, if a system is strongly 
accessible then for each state z there is some control 
which is nonsingular for z. This converse fact was al- 
ready known. The main purpose here is to point out 
that w can be chosen independently of the particular z, 
and moreover, a generic w has this property. We now 
give a precise statement of these facts. 

A control w : [0, T] + U will be said to be a universal 
nonsingular control for the system (1) if it is nonsingular 
for every z E X. 

W. 

Theorem 1 If (1)  is strongly accessible, there i s  an an- 
alytic universal nonsingular control. 

Let C”([O,T] ,U)  denote the set of smooth controls 
w : [ O , T ]  -, U, endowed with the C“ topology (uni- 
form convergence of all derivatives). A generic subset 
of Cw([O, T] ,U)  is one that contains a countable inter- 
section of open dense sets. 

Theorem 2 If (1) is strongly accessible, the set of 
smooth universal nonsingular controls is generic in 
C”([O, T],U),  for any T > 0.  

The proof is given [7], and is heavily based on Suss- 
mann’s universal input theorem, see [9]. This in turn 
generalized a weaker result in [5], which would have 
given only Theorem 1 for compact X; see also this spe- 
cial case in [lo], Lemma 4.10). 
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