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Abstract.

This paper deals with the global smooth stabilization of nonlinear systems with respect to not necessarily compact sets.
We prove a converse Lyapunov theorem, and present a result on stability under input perturbations.
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1. Introduction

This paper deals with issues related to the stabilization
of nonlinear systems with respect to not necessarily com-
pact sets. We are motivated by potential applications to
a wide variety of areas.

As an illustration, consider problems of output feed-
back. In [3], the author poses a definition of “detectabil-
ity” which involves the existence of an observer for which
the error satisfies Lyapunov estimates which depend only
on the difference ||z(t) — z(t)||, where z(t) is the state of
the plant and z(t) is the state of the observer. For the joint
plant/observer system, detectability becomes stabilization
with respect to the set A := {(z,z)|z = z}.

In many applications, one is interested in stabilization
of an output variable (as opposed to the complete state).
Consider the following two-dimensional system:

£ = =z, (1)

y = —-y+us, (2)
with the variable y taken as the output. Observe that
when u = 0 the y variable converges exponentially to zero,
uniformly on the initial state (z(0), y(0)). However, for
nonzero %, no matter how small, the output diverges if
z(0) # 0. Indeed, if ¥ = ¢ and z(0) = =z, one has
y(t) = yoe ' + exgsinht — oo. This is in marked con-
trast to the case of state-space stability, where at least for
small controls and small initial states, bounded states re-
sult, if the system was asymptotically stable for « = 0.
Later in the paper we show how to construct a feedback
stabilizer so that the closed-loop system obtained for this
example after applying that feedback law does have suit-
able stability properties even for nonzero .

Another example arises in adaptive control, where one
does not usually obtain convergence of parameters but
only of states; that is, one has to study in effect stabil-
ity of the adaptive control system with respect to the set
A :={(0,)), X € A} where A is the vector of unknown pa-
rameters and “0” stands for the zero state. As yet another
motivation, many problems involving tracking and regula-
tion can be expressed as partial stabilization problems (of
an error signal). Finally, systems in which derivatives of
controls appear can be reduced, adding integrators, to sys-
tems in which such derivatives do not appear, but at the
cost of extra state variables which are not to be controlled.

We will not deal with the above applications in this pa-
per, but will instead concentrate on some basic questions
related to set stability. We give a converse Lyapunov the-
orem that does not assume compactness of the attracting
set. This result was motivated, and follows to some extent
the outline, of the converse Lyapunov result in [4], but
with some major differences. First of all, we want a global
rather than a local result, and several technical issues ap-
pear in that case. Second, we have not been able to follow
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many details of the proof in [4], especially those (criti-
cal ones) concerning Lipschitz properties, or those deal-
ing with global smoothness. Thus we give a detailed self-
contained proof. (We do use the material from [4] dealing
with smooth approximations of functions on manifolds.)
After establishing the converse theorem, we give a result
on input to state stabilization that generalizes that avail-
able in the case of stablization to equilibrium points.

2. Set Stability

We first review some standard concepts from stability
theory. A function v : Rs¢ — Ry is a K-function if it
is continuous, strictly increasing and satisfies v(0) = 0; it
is a Koo-function if in addition y(s) — oo as s — oo.
function B(s, t) : R>o X R>o — Ry is a KL-function if
for each fixed ¢ > 0 the function B(, t) is a K-function and
for each fixed s > 0 it is decreasing to zero as t — oco. A
function v : Ryo — R3¢ is positive definite if y(s) > 0
for all s > 0, and v(0) = 0.

We will use the following notation throughout the pa-
per: for each nonempty subset A of a metric space X, and
each ¢ € X, denote |¢]|4 := d(&, A) = inf ,cad(&, 1), the
common point-to-set distance. If ¥ = R", we let |£| be
the usual Enclidean norm, that is, |¢| = |¢[{03-

Consider the following system:

z=f(z), z€R", (3)

where f is assumed to be smooth (i.e., infinitely differen-
tiable). We will assume that the system is complete, and
denote by z(t, o) (and sometimes simply by z(t) if there
is no ambiguity from the context) the solution at time ¢
of (3) with £(0) = zo. Let A C IR"™ be a closed, invariant
set of (3). We emphasize that we do not require A to be
compact. We will also assume throughout the paper that

sup {[¢la} = oco. (4)
¢eRn

Definition 2.1 We say that (3) is uniformly globally
asymptotically stable (UGAS) with respect to the set A if
the following two properties hold:

1. Uniform Stability. There exists a Koo-function §(-)
such that for any € > 0,

|z(t, z0)|a < € whenever |zo|la < 6(¢) and t > 0.

(5)

2. Uniform Attraction. For any r,e > 0, there is a T >
0, such that

|z(t, o)l < € (6)

whenever |zo|la <7 and ¢t > T. o

Remark 2.2 This definition differs from that in [4] where

uniform attraction means there exist a fixed ro > 0 and

T : Ryo — IRy continuous, (T'(IRse) = Ryo), such
that for any € > 0,

|z(t, ©0)|a < € whenever |zo|a < 7o and t > T(e). O



Lemma 2.3 The uniform attraction property defined in
Definition 2.1 is equivalent to the following: There exists
a family of mappings {1, },>0 with

e for each fixed r > 0, T, : Rso onte R~ is continuous

and strictly decreasmg,

e for each fixed € > 0, T, (e) is increasing as r increases
and lim, . T, (g) = oo;

such that
|z(t, zo)|a < € whenever |zg|a < 7 and t > T;(g).0

We omit the proof here for lack of space.

When A consists just of an equilibrium point, the above
reduces to the usual notion of global asymptotic stability.
The following result is well-known in that special case:

Proposition 2.4 The system (3) is UGAS with respect
to a closed, invariant set 4 C IR" if and only if there exists
a KL-function B(s, t) : R, o) X IR>0 — IR0, such that,

given any initial state zo, the solution z(t zo) satisfies

|$(t7 $0)|.A S ﬁ(|$0|.,47 t)v

Proof. [<=] Assume that there exists a XL-function 3 such
that |z(t, zo)|a < ﬁ(|:1:0|,4, t), any 7o € R", anyt>0.
Let ¢; := supB(-, 0) < oo, and choose §(+) to be any Koo-
function with §(e) < 87" (), any 0 < e < ¢1, where 7!
denotes the inverse function of ,3( ):= (-, 0). (If ¢1 = o0,
we can simply choose §(e) := B7'(e).) Now for any e > 0,
and any zo € IR" satisfying |$0|A < 6(e), the ensuing
trajectory z(-, zo) satisfies |z(¢, zo)|la < B(|zola, t) <
B(|zola, 0) < B(6(e),0) < e, ife < e1 or |z(t, zo)|a <
B(lzola, t) < B(|zola, 0) <c1 <&, ife > e. This estab-
lishes the stability property.

Now for each r € (0, c0), let Br + Rso =5 Ry
be any continuous, strictly decreasing function satis-
fying (1) B.(t) > B(r,t) and (2) for any fixed t,
ﬁr(t) increases as r increases, and lim,_ o ﬁ,( ) = oo.
(For example, one of such a function can be defined as

ﬁr(t) = %—}-ﬁ(r, t).) Define T;(e) := Bt (¢). Then for

any v € (0,00), T» : Rso 2% Ry is continuous and
strictly decreasing, a.nd for any fixed t, T(.y(t) increases to
oo. It follows that for any given € > 0, any r € (0, co)
and any zo € R", if |zo|lu < r and t > T,(e), we have
202, 50)la < B(17olas £) < Blr, 1) < Brl®) < Br(T(e)) =
€.

[=>] Assume that (3) is UGAS with respect to the
closed set A, and let § be as in the definition. Let ¢(+)
be the K-function §7* ().

Claim: For any o € R™ and any t > 0, |z(t, zo)|u <
o(l7ol4)-

Proof: Otherwise, there exist tp > 0 and %, such that

any t > 0. (7

onto

|z (to, Zo)|4 > ¢(|Zoa) - (8)
Pick any positive number 7 < |z (i, ZTo)|a — (|i:0|,4) and
choose € := 67" (|Zo|4)+T. Then|zo|,4_5( (|z0|,4)) <

5(5_1(|i:0|,4) + 7') = 6(e) , so it follows from (5), applied
with ¢ = ¢, that

|z(to, 2o)la < &= @(|Zola) + 7 < [z(to, Zo)[a,  (9)

a contradiction.
Let {T:},¢(0, ) be as in Lemma 2.3, and for each r €
(0, 00) denote 9, := Ty '. Then, for each r € (0, 00),

onto
P, : Rso — IRy is continuous and strictly decreasing.

We also write 9, (0) = +oc0, which is consistent with that
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fact that lim,_ ¢+ 9,(t) = +o0o. (Note: The property that
T (t) increases to oo is not needed here.)

Claim: For any |zola < r and any ¢t > 0, |z(t, zo)|a <
b (1)
S’Zoof: Otherwise, there exist tg > 0, ro € (0, 00), To €
R", |Zola < 7o, such that |z(to, To)|la > %¥r(t0). Pick
any positive number 7 < |z(to, o)l — Pro(to), and
let g := T,_O1 (to) + 1 = %Pro(to) + 1. Then since
to = T, (TTTJI (tﬂ)) > T, (TTTJI (to) + Tl) = T, (50)7 we
have the contradiction |z(to, Zo)|lu < €0 = Pry (o) + 11 <
|(D(t0, i0)|,4 .

Now for any s > 0 and ¢ > 0, let

(s t) := min {mfre(,5 o00)¥r (), ¢ 3)} (10)
Because of the last two claims, we have
|z(t, z0)la < % (|zola, t). (11)

By its definition, for any fixed ¢, (-, t) is an in-

creasing function (not necessarily strictly). Also be-
cause for any fixed r € (0, 00), %.(t) decreases to 0
(this follows from the fact that %, : IRso onto R0

is continuous and strictly decreasing), it follows that
for any fixed s, (s, t) decreases to 0 as t — oo.

Pick any function 1 : IRjo, o) X R>9 — IR with the
following properties:

e for any fixed t > 0, ’(/;(,
increasing;

t) is continuous and strictly

o for any fixed s > 0, 1/;(3, t) decreases to 0 as t — oo;
. 1/;(3, 1) > P(s, t).

Such a function 1/; always exists; for instance, it can be
constructed as follows. Define first

s+1
Bls, 1) 1= / B, 1) ds. (12)

Then 1[1(, t) is an absolutely continuous function on ev-
ery compact subset of Ryo, and it satisfies (s, t) >
/ (s, 1) fs+1 d¢ = 7(3 t). It follows that %;B%Q = 1/;(3+
1 t) — (s, t) > 0, a.e., and hence 1/)( t) is increasing.

Also since for any ﬁxed s, (s, -) decreases, so does 1/;(3, ).
Note that

¥(s, t) < P(s,0) = min {mfre(S o) ¥ (0 3)}

= ¢(s),

(recall that 4,(0) = +o0), so by the Lebesgue dom-
inated convergence theorem, for any fixed s > 0,

lim¢— oo 't/;(.s, t) = f3+1 lim; .o %(s, t)ds = 0. Now we see
that the function 1/;(3, t) satisfies all of the requirements for
9 (s, t) except possibly for the strictly increasing property.
We define 1 as follows: (s, t) := 9(s, t) + m .
Clearly it satisfies all the desired properties.

Finally, define B(s, t) := v/ ¢(s) v/ 1/;(3, t). Then it fol-
lows that (3(s,t) is a KL-function, and |z(¢, zo)la <

\/<p(|:1:0|,4) \/'z/;(|:1:0|,4, t) < B(lzo|a, t), which concludes
the proof of the Proposition. [ |

2.1. Lyapunov Functions

For smooth functions V. : IR®™ — IR and vector
fields f, we use the standard Lie derivative notation

LV(€) = 2 (&) £(6)-



Definition 2.5 A Lyapunov function for the system (3)
with respect to a nonempty, closed, invariant set 4 C R"
is a function V : R"™ — IR such that V is smooth on

IR"\ A and satisfies

1. there exist two Ko -functions a1 and a2 such that for
any { € R™,

ai([€la) S V(E) < e2(l¢]a); (13)

2. there exists a continuous, positive definite function

a3 such that for any ¢ € R™"\ A,
LiV(€) < —as([¢la)- (14)

A smooth Lyapunov function is one which is smooth on all

of R"™. a

Remark 2.6 One may assume, in the above definition,
that all of aj,as2,as3 are smooth and of class K. For
a1 and a2, this is proved simply by finding two smooth
functions &1,z in Ko so that @1 < a1 < a2 < @2 for
all s. For a3, a new Lyapunov function W and a function
&3 which satisfies (14) with respect to W, but is smooth
and in Ko, can be constructed as follows. First, pick as
to be any smooth Ko -function such that @s(s) < sas(s)
for all s € [0, a7 "(1)]. This is possible since a3 is positive
definite. Then let vy : R5o — IR be a smooth K-
function such that - -

o y(r) > ay'(r) for all r € [0, 1];

T
o v(r) > M for all r > 1.
az(eg (1))
Now define B(s) := j: v(r)dr. Note that 8 is a smooth

Koo-function. Let W(¢) := B(V(¢)). This is smooth on
R"\A, and 8o a1,8 0 a; bound W as in equation (13).
Moreover, 8'(V(¢)) = v(V(£)) > v(e1(]¢|4)), so

Liw(©) =B'(V(E)LsV() < —v(al(leIA))as(lﬁlA)(-ls)

We claim that this is bounded by —das(|€|4). Indeed, if
s:= |¢|a < a7'(1), then from the first item above and the
definition of as,

?

Y(ei(s)) > s > Gas) .

R

w
PN

w
N

if instead s > a7 '(1), then from the second item, also

as(s)
s(s)
In either case, y(a1(s))as(s) > @s(s), as desired. From

now on, whenever necessary, we assume that a1, a2, as
are smooth -functions. [}

v(ea(s)) 2

R

Remark 2.7 The first condition in Definition 2.5 implies
that V is continuous on all of R", V(2) =0 <= z € A,

and V : R 28 R, (recall the assumption in equa-
tion (4)). |

For reasons of space, we omit the proof of the following
result; it relies on constructing a smooth function of the
form W = 8oV, where 8 : IR59o — IRy is built using a
partition of unity. - -

Proposition 2.8 If there is a Lyapunov function for (3)
with respect to A, then there is also a smooth such Lya-

punov function. a

The following lemma from [1] will be needed below.
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Lemma 2.9 For each K-function a of class C', there ex-
ists a CL-function B4(s, t) with the following property: if
y(-) is any (locally) absolutely continuous function defined
for ¢ > 0 and with y(¢) > O for all ¢, and satisfies the
differential inequality

9(t) < —a(y(t)), y(0) =30 20, (16)

then it holds that y(t) < Ba(yo, t) for all ¢ > 0. |

Remark 2.10 We only state the existence part of the
Lemma here. Interested readers can consult the origi-
nal paper [1] to see the concrete construction of the KL-
function B4 from the K-function a. [}

Since we are making a smoothness assumption on the
vector field f(z) in the system (3) (hence in particular,
f(z) is locally Lipschitz), and the system is assumed to
be complete, by Gronwall’s Lemma (see for instance, [2]
for further details), (¢, zo) is locally Lipschitz. For later
reference, we summarize this as follows:

Lemma 2.11 For any T > 0 and any compact K C R",
there is a constant C' > 0 which only depends on the set K
and the Lipschitz constant of f(z) on K, such that for the
trajectories (-, -) of the system (3), |z(¢, §) — z(¢, n)| <
Ce™|¢ — | for any ¢, € K and any |t| < T. |

We are now ready to state a converse Lyapunov theorem
in a form much useful later. It can be seen as a global
version of the result given in [4]. The idea of the proof that
we give is based on that in [4], but it differs substantially
at various points. Again we make the assumption that
A CIR" is a nonempty, closed invariant set of (3).

Theorem 1 The system (3) is UGAS with respect to A if
and only if there exists a Lyapunov function V with respect
to the set A.

Proof. [«<=] Pick any trajectory z(-); then, as long as
o(t) & A, YO < _gy(|2(t)]a) < —a(V(2(t))), where
«a is the Koo-function defined by a(-) := as (a;l(-)) . Now
let B be the KL-function as in Lemma 2.9 with respect
to «a, and define

B(s, t) :=a;" (ﬁa(ag(s), t)) . (17)

Then B is a KL-function, since both a; and az are Koo-
functions. By Lemma 2.9,

V(z(t)) < Ba (V(zo), t) , any t>0.

Hence |z(t)|a < B(|zola, t) . If z(t) € Aforall t > T, then
|z(t)]a = 0, and the same estimate holds. Therefore the
system (3) is UGAS with respect to .4, by Proposition 2.4.

[=>] Assume now that the system is UGAS with respect
to the set A. Let § and T, be as in Definition 2.1 and
Lemma 2.3.

Define g : R" — IR by

!](f) = inf:50{|'~"(tv f)|A} . (18)

By uniqueness of solutions, g(z(t, £)) < g(¢), for each ¢ >
0. Also

6(1¢la) < g(é) < |€la- (19)

The second half of (19) is obvious from (0, {) = £. On the
other hand, if the first half were not true, i.e., if there is a
to < 0 such that §(|¢|a) > |z(to, &)|.4, then because of the
definition of §, applied with € = |¢|4, t = —to, and 5o =
fl:(to, S)v |£|v4 = |$(_t07 :l:(to, 6))'#‘ < |£|A’ which is a con-
tradiction.



For any 0 < e < 7, define K. ,:={(§ e R" | e < |¢|lu <
T}.

Fact 1: For all € and r with 0 < ¢ < r, there ex-
ists ge,» < 0, such that: ¢ € K., and t < ¢.,r =
|z(t, E)|la>r.

Proof: If the statement is not true, then there would
exist e,7 with 0 < ¢ < r and ¢ € K. ,, and a sequence
{tx} with lim,_. o tx = —oo such that |z(tz, £)|a < r. Pick
k large enough so that —t; > T, (e), then by the uniform
attraction property, [¢|a = |z(—tk, z(tk, £))|a < €, which
is a contradiction. This proves the fact.

Therefore, for any ¢ € K. .,
g(§) = min g, ,, ql=(t €)|a. (Since for any t < ¢., -,
from Fact 1 and (19), |z(¢, &)|a > 7 > [€la > g(£).)

Claim 1: g(¢) is locally Lipschitz on R™\A.

Proof: For any ¢ € R™\A, let B(¢, %|E|A) denote the
closed ball centered at ¢ and with radius 1|¢|4. Then
B(¢, ;|§|A) C K., for some 0 < & < r (for instance,
€ and r can be chosen as —|£|,4 and 2|{|.4, respectively).
Pick a constant C as in Lemma. 2.11 with respect to this
closed ball. Then for any (,n € B(¢, %|$|A), there are
t¢yty € [ge, », 0] such that

9(¢) —g(n)

lz(te, O)la — [z (tn, n)la
|2 (ty, )4 — |2 (tn, m)|a

| () —z(tg, M <CI¢C—m|.
Similarly,

(
i g(m) —9(¢) < C|¢

Note that g is continuous at each ¢ € A, since g(¢) =0
so [g(n) —g(&)| = lg(n)] < [nla < |n—¢€]; thus g is globally
continuous. (We are not claiming that g is locally Lipschitz
on R, though.)

Now define U : R" — R by

INIA

— 7| . This establishes the

U(€) = sup (9(a(t. ) k(1)) . (20)

>0
where k : R59 — IR0 is any strictly increasing, smooth
function that satisfies

e there are some constants 0 < ¢1 < ¢2 < 00, such that
k(t) € [e1, c2], for any t > 0;

e there is a bounded positive decreasing continuous
function 7(-), such that k'(¢) > 7(t) for all ¢ > 0.

(For instance, -1 2% is one of such a function.) Observe
that
U(©) < sup (5O k(1)) < eag() S ealela,  (21)
and
U(E) > g(=(t, OV E®)|,_, > c19(8) > e18(|éla) . (22)

For any ¢ € IR", since 0 < g(z(t, &)) < |z(t, )|a and

|z(t, €)]a foeo 0, it follows that lim; .4 g(z(t, £)) =
0, and hence (using continuity of g) the supremum in the
definition of U in (20) is a maximum, i.e., there exists some

tgj € [0, co) such tha.t U ‘:.g(:l;(tg, f))k(tg) . In fact,
we can get the following explicit bound:

Fact 2: For any |¢|a <, t& <T ( (|vf|A))

Proof: If the statement is not true, i.e., if té’r >
T, (%6(|$|A)), then by the uniformly attractive property,
|z (te, €)|a < e-6(|¢|4) - So we have

560 < ZU©) = oot kD)
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< 2y, )
< 2t Ola
< 6(|$|A)7

which is a contradiction.

For any compact set K C R", let t% := max¢ex ¥ <
0o. (Finiteness follows from Fact 2, as K C {¢||¢|la < 7}
for some 7 > 0.)

Claim 2: The function U(-) defined by (20) is locally
Lipschitz on R™\A.

Proof: For any compact set K C IR"\ A, and any &, €
K, it follows from the definition of U(-) and Lemma 2.11
that

U@)-Um) = g(=z(te, &) k(te) — U(n)
< KE) (96, ©) = 9(a(t, )
< ealglz(ty, &) —g(=z(te, )l
S C|f - 77| ]

for some constant C that depends on K, where the last
inequality follows because g is locally Lipschitz on IR™\ A.
By symmetry, also U(y) — U(¢) < C|§ — n|. Hence, U
is locally Lipschitz, as desired. This finishes the proof of
Claim 2.

If n € A, then U(n) = 0, and hence for any &, |[U(§) —
Un)| =U(¢) <c2|é]lua < c2]€ — 1|, so U is continuous at
points of A. Thus U is continuous everywhere.

Pick any ¢ € R"\ A, and any k > 0. Let 5 := «(h, §).

Then there is some % := t(,{ > 0 such that

Um) = g(=(t, m)k(t)

= oo+ hy ) K(t+h) <1 - W)

< v (1 NGl fl;;“”)

< U (1 - w) , (23)
if h is small enough. Still for this ¢ and k, for any 7 > |¢| 4,
define

(Iz(t §)la))- (24)

Fact 3: t+ h < Tc,h-
Proof: If this were not true, then t + A > Ty ,, and
hence in particular picking ¢ = k in (24), we would have

that ¢+ h > Tr(%5(|n|,4)), so by definition of T, it is the
case that [z(t, n)|a = |z(t + h, €)|a < Z£6(In|a). Then,
using (22), and recalling that t = ¢,

6(|"7|A)SiU('ﬂ) = —g(=(t, n) k(t)
< Dt mla < dlala),

which is a contradiction. This proves Fact 3. From (23),
we have

U(z(h, §)) - U(&) _U©) (k(t+ k) — k(1))
h C2 h

_ _@ K (t+0R),

IN

where the last inequality follows from the mean value
theorem for some 0 < # < 1. Hence, by the assump-

tions made on the function &k, we have Mh_&h)ﬂﬁl <



YO r(t 4 0h) < —ZE 1 (T¢ ) . Since U is locally Lip-
schitz on R™\A, it is differentiable almost everywhere in

IR"\A, and hence for any r > |{| 4,
U(z(h, §)) —U(¢)
h

L;U(¢) = lim

h—s0+

— lim v 7(T¢ »)

h——0+ C2

IA

= —%f)r( lim TE h)

= 28 (2 Zaela)
- 2fllel) o (7 (L ielan)

—a-([€la), ae, (25)

where
C1

an(s) = 006) (T(a0s)) - (26)

Cc2 Cc2

Now define the function & by a(s) := sup,,, @-(s). Note
that @,(0) = 0 for any r > 0, so @(0) = 0. Also, since 7(-)
decreases and T{.)(s) increases, we have

abls) oo (Tr(i—; 5(8)))

C2 r>s

_ c16(s) r (infD"TT(Z_: 6(3)))

. (TM(C—1 5(3))) :

c16(s)
C2 C2

In particular @(s) > 0if s > 0. Hence & is positive definite.

Notice that (25) is true for any r > |¢|a, so

LyU(¢) < = sup (—ar([¢]a)) = —a([¢la) (27)

r>¢la

a(s) =

2

for almost all £&. From Theorem 2.5 of [4], there exists a
C* function V : R"\ A — IR such that, for almost all
e R"\A,

V(&) - U] < 3U(E) and L V(€) < 3L,U(E). (28)

Extend V to R"™ by letting V|4 = 0 and again denote the
extension by V. Note that V is continuous on IR", since
V(&) < 3—;2|£|A So V is a Lyapunov function, as desired,
with a1 (s) = 56(s), az(s) = 3—;23 and asz(s) = %o’z(s). [ |

3. Control Problem

For each 2 = 1,..., m, let o; : R — IR be a smooth
nondecreasing function satisfying ¢;(0) = 0 and a global
Lipschitz condition: there is some constant ¢ so that, for
all w, v € R, |oi(u) — 0i(v)| < clu —v]|.

Consider the following smooth nonlinear system:

= f(z) + ) oi(ui)gi(z) =

where z(t) € IR™ and u;(t) € R for all ¢ > 0 and

f(@)+G(z)o(w), (29)

we denote & ~€ u) = (al(ul), eovy Om(um))’ for each v =
(v1y .oy um) € R™

When all o;(u) = u, this is just a system affine in con-
trols.

Assume that the system (3) is smoothly stabilizable
with respect to a closed invariant set A C R" by means
of a feedback law u = k(z). The objective is to find a new
control law of the feedback type:

u=k(z)+v, (30)
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possibly with different &, which has the property that the
resulting closed-loop system

= f(z) + G(z) 6 (k(z) + u) (31)

is “bounded input bounded state” stable with respect to
the set A. This is a natural generalization of the case
studied in [1], in which A = {0}.

For any measurable function % : [0, c0) — R™, we
denote ||| :== ess. sup. {|u(t)], t > 0}. As earlier, |{|4 is
the distance from the point ¢ to the set A.

For each o € IR™ and each measurable locally essen-
tially bounded u, we denote by z(t, zo, u) the trajectory
of the system (29). This is defined on some maximal in-
terval [0, Tep, u), With Ty, o < 4o00.

Definition 3.12 The system (29) is globally input-to-
state stable (ISS) with respect to a closed set A if there
exist a KL-function 8 : RRyo X Ry — IR, and a
K-function v such that, for each measurable locally es-
sentially bounded u(-) and each zo € IR", the solution
z(t) = z(t, <o, u) satisfies the estimate

l=(t)].a < B(lzolas 1) + v(|[]]) (32)

for each t € [0, Tog, u). o

The above definition implies in particular that any
bounded input results in a state trajectory that stays
within a bounded distance — namely, 8(|zo|4, 0)+~(|[«||)
— from the set A. We allow for the trajectory to stop be-
ing defined (case in which Ty, o < oo) but it must remain
near A. (If A would be compact, this definition wuld imply
Teg,u = 00.)

Definition 3.13 The system (29) is smoothly stabilizable
with respect to a closed set A if there exists a smooth map
k : IR®™ — IR™ such that the system (31) with v = 0 is
UGAS with respect to the set A. It is smoothly input-to-
state stabilizable with respect to a closed set A if there is
such a k so that the system (31) becomes ISS with respect
to A. a

Prior to the stating the main result of the paper, we
first state a lemma which will be needed in the proof of
the main theorem.

Lemma 3.14 Consider the system (29). Assume that «
is a C! K-function and V is a C! function: R® — R
such that for any initial value zo € IR™ and any measurable
essentially bounded u, there exists a closed subset S C R™
such that

1. S is forward invariant;

2. for any tp > 0, if z(to) ¢ S, then necessarily

w < —a(V(z(t));

t=ty
3. V is positive definite and proper with respect to the

set A, i.e., there exist two Ks-functions a1 and a-
such that

a1([¢la) S V(§) < aa([¢la), any £ € R™.

Then, there exists an KL-function 8 (which depends only
on «) so that, for each zo and each essentially bounded
control u as above, the ensuing trajectory z(-) is so that,
for each ¢t > 0:

1. |z(t)|a < B(|zola, t) or
2. z(t) € Sforall t > T.



Proof. Proceeding as in the proof of Theorem 1, we let
Ba be the KL-function as in Lemma 2.9, with respect to
the K-function a, and define

B(s, t) == al_l (ﬂa(az(s), t)) . (33)
Then £ is a KL-function.

Because S is forward invariant, it is only necessary to
prove that if £(t) ¢ S for all ¢ in some interval [0, T'), then
the first case in the lemma must hold for such ¢. But then,
by assumption, this means

w < —a(V(z(t))) , any t € [0,T). (34)
By Lemma 2.9,
|z(t)|a < B(|zola, t), anyte[0, T). ]

The main result of this paper is as follows.

Theorem 2 Smoothly stabilizability with respect to a
closed set A implies smooth input-to-state stabilizability
with respect to the same closed set A.

Proof. Assume that ki is as in the definition of smooth
stabilizability, i.e., that

& = f(z) + G(2)5 (k1 (2)) := f(z) (35)

is UGAS with respect to the closed invariant set 4. Ap-
plying Theorem 1 to (35) (cf Remark 2.6 and Propo-
sition 2.8), we get a smooth V : R" — IRy¢ and
three smooth Ko-functions a1, a2 and as, sa.ti_sfying,

for any ¢ € R", a1(|¢a) < V(€) < az(|€]|a) and a :=

LiV(©) = 24©) - (56 + 603 (1(©)) < —as(léla)-
Define k(&) := k1(¢) — bm)' s

b('f), where b := (b, ba,...,
and b;(¢) := Ly, V(¢), i = 1,...,m. We will show that
this k£ provides input-to-state stabilizability with respect
to A.

We now analyze the closed-loop system (31). Pick any
measurable locally essentially bounded control u(-), and

an zo € R". Let z(-) = (-, zo, ). For almost all t €
(0, Teq, u),
TG = el 0)+ Y o) (36)

where d;(t) = b;(:z:(t)){a,' (k1 (z(2)i + ui(t) — b;(z(t))) —
o; (k1 (z(t))
cu? (t)

,)} . It is easy to see that, for each 7, and each

t, di(t) < . Indeed, fix an 7 and a ¢, and write p :=

ui(t), b := bi(z(t)), 0 := oi, and & := k1(z(t))i. If either
b=0or g — b =0 then the claim is clear; thus from now
on we assume that these are both nonzero. If b < 0 and
p—b<0,0(6+p—0)—0c(k) > —clp—bl=c(p—0), so
also

b{o(k+n—b)—o(k)} < cb(p—0b)
Bz | B
= —C(b— 5) +CZ
< c'u'—2
—_ 4 b

which is the desired inequality. The same argument applies
if both & > 0 and u — b > 0. We are left with the case
where these have different signs. If b > 0, then cr(n +
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p—0b)—0c(k) <0,s0b{o(k +p—b) —oc(k)} <0, and
again the desired inequality holds. Finally, if b < 0, then
o(k+p—b)—o(k) > 0, and multiplying by b we also
obtain the claimed inequality.

We conclude that (36) is bounded by a(z(t)) +
E:nlcf('—t) < a(z(t)) + f”u”2 This expression is in
turn bounded by M if the following inequality holds:

—a(z(t)) > 2||u||2 Introducing the Koo-function y(s) :=

(Vaz)™! (\/223) , where (y/a3)™'(:) denotes the inverse

as(-), we have that, for each t € [0, T):
l2(t)a > v(lul) = V(=(t) < —%QS(|$(t)|A)- (37)

Finally, let a(s) := Las(a;'(s)) . Observe that o is also a
smooth Co-function. We can summarize all of the above

by:

()4 2 v(lul) = V(z(t) < —a(V(z(1)) (38)

for each t € [0, T4y, ). Consider the following sublevel set
of V: 8= (¢ € RH V() < aa(r(]lul)) -

Claim: With respect to this trajectory, S is forward
invariant.

Proof: Otherwise, there exist € > 0 and #1 > tp such
that V(z(¢1)) > ¢+ €. Let t; be the smallest real number
so that this inequality holds, for this fixed €. It follows that
V(z(t)) > c in some neighborhood of ¢, so that also (38)
holds for all ¢ near ¢, and hence V(z(t)) > V(z(¢1)) for
some t € (io,%1), contradicting the minimality assumption
on t1. This establishes the claim.

Consider now the Koo-function defined by ¢(s) :=aj'o
az 0 v(s), and observe that |z(t)] < ((||u||) whenever
t € [0,T) is such that z(t) € S. Also note that for
any to € [0, T), if z(to) ¢ S, then from a>(|z(t0)|ua) >

V(z(to)) > az(y(||])), we have that (38) must hold for
such #p. Applying Lemma 3.14, we obtain a KL-function
[ associated to a. The theorem follows, as |z(t)|a is
bounded by the sum of B(|zo|a, t) and ((]|z||), for all
te[0,T).

As an illustration, consider the system (1) and (2) dis-
cussed in the introduction. Thisis GAS when v = 0. With

V(z,y) = y*/2, we compute the feedback law k(z,y) =
—z9y . Now the closed loop system is

function of

z = -z, (39)

g = —y—zy—uz. (40)

With for instance a constant control v = e and ini-

tial states £(0) = zo, y(0) = yo, we compute the solu-
$2e2i

1‘2
o+ 2) + ﬁ exp(—t) +

2_21 2
yo exp(—t — EJ;— + ﬂzl) which remains bounded (in fact,
it converges to zero, for any o, yo).

tion as y(t) = —iexp(—t —
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