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Abstract
This paper studies various types of input/output rep-

resentations for nonlinear continuous time systems. The
algebraic and analytic i/o equations studied in previous
papers by the authors are generalized to integral and
integro-differential equations, and an abstract notion is
also considered. New results are given on generic ob-
servability, and these results are then applied to give
conditions under which that the minimal order of an
equation equals the minimal possible dimension of a re-
alization, just as with linear systems but in contrast to
the discrete time nonlinear theory.

1. Introduction

Previous papers by the authors studied the relation-
ships between realizability of continuous-time operators
defined by generating series and the existence of alge-
braic or analytic differential equations relating inputs
and outputs. In linear systems identification practice,
it is often the case that one prefilters measured signals
prior to estimation, so as to eliminate noise. Various fil-
tering procedures have been suggested in the nonlinear
case; see for instance the paper [8] and other references
by the same author. This motivates the question of
establishing if i/o operators satisfy integral equations,
or even more general types of integral/differential equa-
tions, and we study this issue. We show that such equa-
tions still imply realizability, but they are not necessary
(as differential equations are). On the other hand, we
present an abstract notion of equation, based on suban-
alytic set theory, on the basis of which a general result
is indeed possible.

A question that we had not studied before is that
of the degree of an i/o equation in comparison with the
minimal possible dimension of a realization. In discrete-
time, it was known for a long time (see [10]) that these
numbers are in general distinct. It turns out, perhaps
surprisingly, that the numbers do coincide in the con-
tinuous time case: we prove that if there is a minimal
realization of dimension n then no i/o equation can have
degree less than n. The proof relies on yet another
characterization of observation spaces, this one differ-
ent from those obtained earlier, and is based on the
“universal inputs theorem” proved originally in [9] (that
result, valid only on compacts, was later strengthened
considerably in [14], but the weaker version suffices for
our purposes). As a side benefit from the proof, one
makes contact with a notion of observability proposed
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by Fliess, and we show that the latter coincides with the
standard observability rank condition.

Some proofs are omitted for lack of space; a Technical
Report with details is available.

The i/o operators we will deal with are those de-
fined by convergent generating series. For definitions
and properties of such i/o operators, we refer the reader
to the Appendix or [18] and [19]. An important prop-
erty of such an operator F is that for any analytic input
u, the output F [u] is also analytic.

2. Generalized Rational I/O Equations and
Realizability

In this section, we shall study realizability of i/o op-
erators. As in [19], we say an i/o operator F is locally
realizable by an analytic system if there exist some an-
alytic manifold M, some x0 ∈ M, (m + 1) analytic
vector fields g0, g1, . . . , gm on M, an analytic function
h : M → IR , and some δ > 0 such that for each in-
put u with ‖u‖∞ < 1, y(t) = h(x(t)) where x(·) is the
solution of the equations

x′ = g0(x) +
m∑

j=1

gj(x)uj , x(0) = x0 .

We now study a different class of operators mapping
Cω[0, T ]× Cω[0, T ] to Cω[0, T ], for any fixed T > 0. To
avoid possible confusion, we shall call such an operator
a GDIO (generalized differential integral operator). For
GDIO’s P1, P2, we define P1+P2 and P1·P2 by pointwise
operations:

(P1 + P2)(φ, ψ)(t) = P1(φ, ψ)(t) + P2(φ, ψ)(t),

(P1 · P2)(φ, ψ)(t) = P1(φ, ψ)(t) · P2(φ, ψ)(t),

for all φ, ψ ∈ Cω[0, T ]. The integral
∫
P of an operator

P is defined in the following way:(∫
P

)
(φ, ψ)(t) =

∫ t

0

P (φ, ψ)(s) ds, for 0 ≤ t ≤ T.

In this work, we are interested in a special class P of
GDIO’s . To define P, we first need to define Pk for
each fixed nonnegative integer k. For a given k, Pk is
defined to be the smallest set of GDIO’s satisfying the
following properties:

a. the derivation operators ei : (φ, ψ) 7→ φ(i) and di :
(φ, ψ) 7→ ψ(i) are all in Pk, for each i = 0, 1, . . . , k,



b.
∫
P ∈ Pk if P ∈ Pk,

c. P1 + P2, P1 · P2 ∈ Pk if P1, P2 ∈ Pk, and cP ∈ Pk

for any c ∈ IR if P ∈ Pk,

d. the “constant” GDIO (φ, ψ) 7→ 1 ∈ Pk.

For instance,
∫ t

0

∫ s

0
φ(s)ψ(τ) dτ ds ∈ P0 and φ′′′(t) ·∫ t

0
ψ(s) ds ∈ P3. It can be easily seen that Pk is in

fact the smallest IR-algebra satisfying properties a and
b.

We define P to be the union of all Pk’s, i.e, P :=⋃∞
k=0 Pk.

Now we turn back to i/o operators for control systems.
An i/o operator F is said to satisfy a generalized ratio-
nal i/o equation if there exist some integer k and two
operators P0, P1, both belonging to Pr for some r < k,
such that for every analytic i/o pair of (u, y) of F ,

P0(u, y)(t)y(k)(t) = P1(u, y)(t) , (1)

and, furthermore, the following nondegeneracy property
holds: P0(u, y) 6= 0 for some analytic i/o pair (u, y) of
F .

Roughly speaking, the i/o operator F satisfies an
equation of this type if the k-th derivative of the out-
put, for some k, can be expressed rationally in terms of
lower-order derivatives as well as integrals of inputs and
outputs.

The following result is proved using techniques that
generalize those employed in [18] and [19]:

Theorem 1 If an operator F satisfies a generalized ra-
tional i/o equation, then it is locally realizable by an
analytic system.

In identification, it is often the case that one pre-
filters signals in order to diminish the effects of noise.
This sometimes can be modeled through the use of the
following type of integral i/o equation:

E (u, u1, . . . , uky, y1, . . . , yk) = 0,

where E is a polynomial function, or more generally, an
analytic function. (There may also be more complicated
integrals, depending on filter parameters.)

If an operator F satisfies an integral i/o equation,
then it satisfies a generalized rational i/o equation. Thus
we conclude, in particular:

Corollary 2.1 If an operator F satisfies an integral i/o
equation, then F is locally realizable. 2

In contrast to the case of differential i/o equations (in
which existence of an algebraic differential i/o equation
is equivalent to realizability by a “rational” system), it is
generally not true that every operator which is realizable
by a polynomial system satisfies an algebraic integral i/o
equation. As an illustration, consider the operator

y(t) = F [u](t) = exp
(∫ t

0

u(s) ds
)

which is realized by the system:

x′ = xu, y = x, x0 = 1. (2)

It can be seen that F satisfies no integral equation (see
[17]). Note that even though F does not admit any in-
tegral equation, F does satisfy the differential equation
y′ = yu. This illustrates that the existence of differen-
tial equations and the existence of integral equations are
not equivalent, unless much stronger conditions (such as
linearity of the equations, as for linear systems) are as-
sumed.

3. A Necessary and Sufficient Condition for Lo-
cal Realizability

It has been shown that an i/o operator is locally re-
alizable by an analytic system if it satisfies an analytic
differential i/o equation (cf [19]). However, the con-
verse fact, that any operator realizable by an analytic
sytem satisfies some analytic differential i/o equation, is
in general false. In this section, we provide an necessary
and sufficient condition for realizability. The techniques
used in this section are based on the subanalytic set the-
ory developed in [15] and [4]. Throughout this section,
by “analytic submanifold” we mean analytic embedded
submanifold.

Definition 3.2 Assume that M is an analytic mani-
fold. A subset S of M is said to be a stratified union
of a family (whose members are called strata) T of con-
nected analytic submanifolds if the following properties
hold:

1. if T ∈ T is a stratum, then the closure T̄ of T
contains any strata that intersect T̄ ,

2. for any stratum T1, if a stratum T2 6= T1 is a subset
of T̄1, then codim T2 > codim T1.

We shall say that a subset S of an analytic manifold
M is an analytically thin subset if S is a locally finite
stratified union of analytic connected submanifolds of
codimension at least 1.

Definition 3.3 An operator F is said to satisfy an an-
alytic constraint if there exist an integer k, an analytic
thin subset S of IR2k+1, and some δ > 0, such that for
each i/o pair (u, y) with ‖u‖∞ < 1 and each t < δ,(
u(t), u′(t), . . . , u(k−1)(t), y(t), y′(t), . . . , y(k)(t)

)
∈ S

provided u(k−1)(t) exists. 2

The following is the main result of this Section.

Theorem 2 An i/o operator F is locally realizable if
and only if F satisfies an analytic constraint.



Sketch of the Proof. Necessity: Assume that F is
realizable by a system Σ = (M, (g0, . . . , gm), x0, h) of
dimension n. Take a compact neighborhood U of x0

which is subanalytic. (For instance, one may assume
x0 ∈ IRn and choose U to be a ball {x : ‖x− x0‖ ≤ r}
for some small r.) Define a map φ : M× IRmn →
IRn+mn+1 by

φ : (x, µ0, µ1, . . . , µn−1) 7→
(µ0, µ1, . . . , µn−1, h(x), y1(x), . . . , yn(x))

where each µi ∈ IRm, yi(x) =
di

dti

∣∣∣∣
t=0

h(x(t)), x(t)

is the solution of the equations x′ = g0(x) +∑m
i=1 gi(x)ui(t), x(0) = x , and u is any control with

the initial values u(i)(0) = µi.
Clearly, φ is an analytic map defined on a subana-

lytic set. Also, it is not hard to see that φ is proper
on U × IRmn. It then follows that the image W of φ is
a subanalytic set, since U × IRn is a subanalytic subset
of M× IRmn (cf [15] and [4]). Again by Theorem 3 in
[15], one knows that there is an analytic stratification of
M so that W is a union of some strata of the stratifica-
tion. Notice that the preimage of W is 2n-dimensional.
By Sard’s Theorem (cf [1]), one knows that none of the
strata contained in W can have codimension 0. Thus
we conclude that that W is an analytically thin set.

Now we consider the initialized system Σ =
(M, (g0, . . . , gm), x0, h). For each input u with
‖u‖∞ < 1, there exist some δ > 0 such that x(t) ∈ U for
t < δ. It can easily be proved that for each fixed τ < δ,

(u(τ), u′(τ), . . . , u(n−1)(τ), y(τ), . . . , y(n)(τ))

= φ(x(τ), u(τ), u′(τ), . . . , u(n−1)(τ)).

It then follows that

(u(τ), u′(τ), . . . , u(n−1)(τ), y(τ), . . . , y(n)(τ)) ∈ W,

for any τ < δ, that is, F satisfies an analytic constraint.
Sufficiency: Assume F satisfies an analytic constraint,

i.e., there exist some k and an analytic thin set S ∈
IR2k+1 such that for every i/o pair (u, y) of F

ξ(t) :=
(
u(t), . . . , u(k−1)(t), y(t), . . . , y(k)(t)

)
∈ S

for t small. Let T denote the family of the strata that
compose S and ρ = min{codim T : T ∈ T }. Then one
can show that for any T ∈ T with codim T = ρ, T is
open relative to S.

Assume now that there exists some u so that ξ(0) ∈ T
for some T such that codim T = r ≥ 1. Then there
exists some neighborhood U of ξ(0) in IR2k+1 and at
least one analytic function φ such that T ∩ U = {q :
φ(q) = 0} . Since T is open relative to S, the operator F
“locally” satisfies the analytic differential i/o equation

φ(u(t), u′(t), . . . , u(k−1)(t), y(t), . . . , y(k)(t)) = 0.

By using methods similar to those used in [19], one con-
cludes that F is realizable.

We are still left with the case in which for any u
bounded by 1, ξ(0) ∈ T for some T with codim T > ρ.
In this case, one can always find sequences {uj} and
τj → 0 such that, for each j, ξ(τj) ∈ T for some stra-
tum T with codim T = ρ. Define Fj by Fj [u](t) :=
F [uj#τju](τj + t) for each j, where v#τu denotes the
function obtained by concatenating u to v at time τ .
Then Fj approaches F in a suitable sense. By the above
argument, Fj is realizable for each j. It then can be
shown, using the fact that the Lie rank of Fj depends
on j lower semi-continuously (cf [19]), that F is realiz-
able.

4. Observation Spaces and Observation Fields

In this section, we study relationships between alter-
native definitions of observation space and observation
field, and we draw conclusions about the degree of i/o
equations.

Again, we are only dealing with single input systems
to make the notations simpler. Consider an analytic
system:

Σ :
{
x′ = g0(x) + g1(x)u ,
y = h(x) , (3)

where x ∈M, an analytic manifold of dimension n, h is
an analytic function defined onM, and f, g are analytic
vector fields defined on M. If M = IRn, and the entries
of g0, g1, and h are rational functions with no poles,
then we call (3) a rational system.

Let F be the space of functions M −→ IR spanned
by the Lie derivatives of h in the directions of g0 and g1,
i.e.,

F := span IR

{
Lgi1

Lgi2
· · ·Lgir

h : r ≥ 0, ij = 0, 1
}
.

This is the observation space associated to (3); see
e.g. [12], Remark 5.4.2. Associated to this, let O be
the subspace of the cotangent space defined by O :=
span IRx

{dφ : φ ∈ F} , where IRx is the field of mero-
morphic functions from M to IR.

An alternative characterization is as follows. In gen-
eral, let φ(t, x, ω) denote the state trajectory of (3)
corresponding to a control ω and initial state x, de-
fined for small t. Now for any integer k and any
µ = (µ

0
, . . . , µ

k−1
) ∈ IRk, we define

ψi(x, µ) =
di

dti

∣∣∣∣
t=0

h(φ(t, x, u)) (4)

for 0 ≤ i ≤ k, where u is any control with initial values
u(i)(0) = µi. The functions ψi(x, µ) can be expressed,
-applying repeatedly the chain rule,- as polynomials in
(µ

0
, . . . , µk−1) whose coefficients are analytic functions

(rational functions if the system is rational) of x. For
each fixed (µ

0
, . . . , µk−1) ∈ IRk, ψi(x, µ) is analytic in



x. Let F̂ = span IR{ψk(x, µ) : µ ∈ IRk, k ≥ 0} . The
main result in [20] is that F = F̂ . This equality is
fundamental in establishing results linking realizability
to the existence of i/o equations, in [18] and [19].

A different object is obtained if one instead views
the elements ψi(x, µ) as formal polynomials on the
µ

0
, . . . , µ

k−1
’s whose coefficients are functions. That is,

let K = IR(U0, U1, . . .) be the field obtained by adjoin-
ing indeterminates U0, U1, . . . to IR, and let FK be de-
fined as the subspace of Kx spanned by the functions ψk

over the field K, i.e., FK := span K {ψi : i ≥ 0} . Here
Kx = IRx(U0, U1, . . .) is the field obtained by adjoining
the indeterminates U0, U1, . . . to IRx, the field of mero-
morphic functions on M, seen as a vector space over K.
One can see the differentials of elements of Kx as ratio-
nal functions in U0, U1, . . . , whose coefficients are cov-
ector fields. Then we letOK := span Kx

{dφ : φ ∈ FK} .
The following is the main result in this Section:

Theorem 3 For the analytic system (3), dimIRx O =
dimKx OK .

Remark 4.4 For each q ∈ M, let O(q) be the space
obtained by evaluating the elements of O at q, i.e.,
O(q) := span IR{v(q) : v ∈ O} . Then Theorem 3 says
that the generic rank of O(q) is the same as the rank of
OK , that is, maxq∈M rank IRO(q) = rank KxOK 2

There are several immediate consequences of Theorem 3:

Corollary 4.5 For a bilinear system, dimIR F =
dimK FK .

Proof. Assume that in system (3), g0(x) = A0x, g1(x) =
A1x, h(x) = Cx , where A0, A1 and C are matrices of
suitable sizes. Then for each multiindex i1i2 · · · ir,

Lgi1
Lgi2

· · ·Lgir
h(x) = CAir

Air−1 · · ·Ai1x ,

and the ψ’s are also linear in x; for instance

ψ2(x, µ0
, µ

1
) = C(A0 + µ

0
A1)2x+ µ

1
CA1x .

It follows that, in this case, dimIR F = dimIRx O and
dimK FK = dimKx OK . By Theorem 3, dimIR F =
dimK FK .

Assume now that (3) is a rational system. Let A
(respectively AK) be the IR-algebra (respectively K-
algebra ) generated by the elements of F (respectively
FK). Define the observation field Q (respectively QK )
as the quotient field of A (respectively AK ). Then we
have the following:

Corollary 4.6 If system (3) is rational, then

trdeg IRQ = trdeg KQK , (5)

where trdeg denotes transcendence degree.

Proof. Applying Theorem III.7-III of [5], one knows that

trdeg IRQ = dimIRx O, trdeg KQK = dimKx OK .

By Theorem 3, one immediately obtains (5).

Consider an analytic system (3). Fix any two states
p, q ∈ M and take an input u. We say p and q are
distinguished by u, denoted by p 6∼u q, if h(φ(·, p, u)) 6=
h(φ(·, q, u)) (considered as functions defined on the
common domain of φ(·, p, u) and φ(·, q, u)); otherwise
we say p and q cannot be distinguished by u, denoted by
p ∼u q. If p and q cannot be distinguished by any input
u, then we say p and q are indistinguishable, denoted by
p ∼ q. If for any two states, p ∼ q implies p = q, then
we that say system (3) is observable. (See [12], Chapter
5; note however that indistinguishability by a control is
being defined here in a slightly different way.)

Take an open set U and any two points p, q ∈ U . If
for every input u, h(φ(t, p, u)) = h(φ(t, q, u)) for each
t for which φ(T, p, u) and φ(T, q, u) are both defined
and in U for all 0 ≤ t ≤ T , then we say that p and q are
U -indistinguishable (see e.g. [11]).

Fix a point p. If for every neighborhood Up there is
a neighborhood Vp ⊂ Up so that for any q ∈ Vp, the
condition that q and p are Up-indistinguishable implies
p = q, then we say the system (3) is locally observable at
p. If (3) is locally observable at every point p, then we
say (3) is locally observable. If there is an open dense set
U ⊂M such that (3) is locally observable at every point
p of U , then we say (3) is generically locally observable.
See [11] for details on local observability and related
concepts such as the slightly different definition in [7].

Proposition 4.7 The analytic system (3) is generically
locally observable if and only if dimKx OK = n.

Proof. By Lemma 2.10 and facts (2.4) and (2.8) in [11],
one knows that (3) is generically locally observable if
and only if that the generic rank of O(q) is n. Thus
Proposition 4.7 follows immediately from Theorem 1.

Corollary 4.8 A polynomial system (3) is observable
in the sense of [2] if and only if the system is generically
locally observable.

Proof. It is shown in [2] that a polynomial system
(3) is “observable” in the sense of [2] if and only if
dimKx O = n. The Corollary then immediately follow
from Proposition 4.7.

Assume now that an operator F satisfies a differential
i/o equation

E(u′(t), . . . , u(k−1)(t), y(t), y′(t), . . . , y(k)(t)) = 0 .
(6)

Then the order of the equation (6) is defined to be the
highest r ≤ k such that

∂

∂νr
E(µ0, . . . , µk−1, ν0, ν1, . . . , νk)



is not a zero function.
For a given operator F , we define δ(F ) to be the lowest

possible order of an i/o equation for F . In case that
there is no i/o equation for F , δ(F ) is defined to be ∞.

Let λ(F ) be the Lie rank of F . It has been known
that if F is realizable, then the dimension of a canoni-
cal realization for F is λ(F ), cf [3] and [13]. Here, by a
canonical realization we mean a realization by an acces-
sible and generically local observable system.

Theorem 4 Assume F is an i/o operator. Then:

(a) λ(F ) ≤ δ(F );

(b) if there exists a rational canonical realization for F ,
then λ(F ) = δ(F ).

Proof. It was shown in [19] that if δ(F ) < ∞, then
λ(F ) < ∞. Thus we may assume that λ(F ) < ∞.
Then F is realizable by some canonical system Σ =
(M, x0, g0, g1, h), whose dimension must be n = λ(F ).

Now assume F admits some equation (6) of order k.
Assume k < n. Let Rx0 be the reachable set of Σ from
x0. It can be seen that for any x ∈ Rx0 ,

E(µ
0
, . . . , µ

(r−1)
, ψ0(x), . . . ,

ψr(x, µ0
, . . . , µ

r−1
)) = 0, (7)

where the functions ψi are defined as in (4). Notice
here that E depends on x analytically, and Rx0 has a
nonempty interior. We conclude that (7) holds for all
x ∈ M. By the definition of k, one concludes imme-
diately that dψk ∈ span Kx

{dψ0, dψ1, . . . , dψk−1} =
OK

k . By differentiating (6) and using the same argument
repeatedly, one can show that

dψr ∈ span Kx
{dψ0, dψ1, . . . , dψk−1} = OK

k ,

for each k ≥ r. Thus one knows that

dimKx
OK = dimKx OK

r ≤ k < n . (8)

On the other hand, from the observability of the sys-
tem, we know that dimIRx

O = n, which, by Theorem 3,
implies that dimKx OK = n . The contradiction between
(8) and this shows that it is impossible for F to admit
any i/o equation of order lower than n. Part (a) of the
Theorem is proved.

Part (b) of the Theorem follows from the fact that if
F is realizable by a rational system of dimension n, then
it admits an algebraic i/o equation of order n, cf [18].

Remark 4.9 The result in Theorem 3 is false in general
for discrete-time systems, as discussed in [10]. As a
consequence of this, also the Corollaries and Theorem
4 are false in that case. To illustrate this, consider the
system of dimension 3

x1(t+ 1) = u(t) , x2(t+ 1) = x3(t) ,
x3(t+ 1) = x3(t)x1(t) + x1(t) + x2(t)u(t) ,
y(t) = x3(t),

with initial state x1(0) = x2(0) = x3(0) = 0, and the
operator F it defines. This system is generically ob-
servable and is also accessible. However, F satisfies an
equation of order 2:

y(t) = y(t− 1)u(t− 2) + y(t− 2)u(t− 1) + u(t− 1).

Now we return to the proof of Theorem 3. To prove
the Theorem, we need the following result. It is a result
that was basically given in [9], with essentially the same
proof (a stronger statement, that generic inputs satisfy
the property, was later obtained in [14]).

Lemma 4.10 Consider an analytic system (3). For any
fixed compact set Ω ⊂ M, there exists some analytic
input w so that for any p, q ∈ K, if p ∼w q, then p ∼ q.

Sketch of Proof: Fix k. For each µ = (µ
0
, . . . , µ

k−1
) ∈

IRk, consider the set

∆µ := {(p, q) ∈M×M : ψi(p, µ) = ψi(q, µ), 0 ≤ i ≤ k}.

Then ∆µ is an analytic set for each µ. By the argument
used in the proof of Theorem 4.8 of [9], one can prove
that there exists a minimal set in the family of sets {∆µ∩
Ω × Ω : µ ∈ IRk, k ≥ 0} . Let µ̄ be such that the set
∆µ̄ is minimal.
Claim: Any input u with the initial values u(i)(0) =
µ̄

i
, 0 ≤ i ≤ r (where r is the length of µ̄) has the desired

property. Assume not. Then there exists some p, q ∈ Ω
such that ψi(p, µ̄) = ψi(q, µ̄) for 0 ≤ i ≤ r, but p 6∼u q
for some u. Without loss of generality, one may assume
that u is analytic and is defined on some finite interval
[0, τ ]. Using analogous techniques to those employed
in the proof of Lemma 4.1 in [19], one shows that there
exists a sequence of analytic functions {vj}j≥0 such that
‖vj − u‖1 → 0 as j →∞ , and v(i)

j (0) = µ̄
i

for 0 ≤ i ≤
r − 1 . It then follows that p 6∼vj q for j large enough.
Let v be one of the vj ’s that distinguishes p and q. Then
there exists some s such that ψs(p, ν) 6= ψs(q, ν) , where
ν = (v(0), v′(0), . . . , v(s−1)(0)).

Since v(i)(0) = µ̄i for 0 ≤ i ≤ r − 1, it follows that
∆ν ⊂ ∆µ̄ . However, since (p, q) ∈ ∆µ̄ but (p, q) 6∈ ∆ν ,
one obtains the conclusion that ∆ν ∩ Ω× Ω is a proper
subset of ∆µ̄ ∩Ω×Ω, which contradicts the minimality
of ∆µ̄ ∩Ω×Ω. Thus for any control u with u(i)(0) = µ̄

i
and any p, q ∈ Ω, the relation p ∼u q implies p ∼ q.
Sketch of Proof of Theorem 3: It is true that
dimKx OK ≤ dimIRx O , since FK ⊆ span K{φ : f ∈
F}. Thus it is enough to show that

dimKx OK ≥ dimIRx O . (9)

Assume now dimIRx O = r . Choose a point p0 so that
dimIRO(p0) = r. Then there exists a neighborhood U
of p0 contained in some compact set Ω such that for
some suitable choice of coordinates x = (x1, x2) with
x1 ∈ IRr, x2 ∈ IRn−r, the system (3) takes the form

x′1 = g01(x1) + g11(x1)u, y = h1(x1) ,
x′2 = g02(x1, x2) + g12(x1, x2) ,



with the property that the rank IRO1 = r, where O1 =
span IR{h1, Lg01h1, Lg11h1, Lg01Lg01h1, . . .}. It then fol-
lows that any two points p, q in U is distinguishable if
and only if xp

1 6= xq
1. By Lemma 4.10, there exists some

analytic w so that p 6∼w q if and only if xp
1 6= xq

1.

Let µi = w(i)(0). By the techniques used in the proof
of Lemma 4.10, one can show that there exists some in-
teger k such that the condition ψi(x, , µ) = ψi(z, µ) for
0 ≤ i ≤ k implies that x ∼w z. Define Let Ψ(x1, x2) :=
(ψ0(x1, x2, µ), ψ1(x1, x2 µ) . . . , ψk(x1, x2, µ)). Then
Ψ(x1, x2) 6= Ψ(z1, z2) if and only if x1 6= z1. It follows
immediately that generically rank JΨ = r , where JΨ de-
notes the Jacobian of Ψ, which implies that dimIRx Oµ ≥
r , where Oµ is the subspace of IRx obtained by evaluat-
ing Ui at µi for the elements of OK . Equation (9) is then
proved by noticing that dimKx OK ≥ dimIRx Ow ≥ r .
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Appendix
In this appendix, we provide basic definitions and proper-

ties of i/o operators defined by convergent generating series.

A generating series c =
∑

ι∈I∗〈c, ηι〉ηι, is a formal power
series in the noncommutative variables η0, η1, . . . , ηm for
some fixed number m, where we use the notation ηι =
ηi1ηi2 · · · ηil for each multiindex ι = i1i2 · · · il. The coeffi-
cients 〈c, ηι〉 are assumed to be real.

We shall say that a power series c is convergent if there
exist K, M ≥ 0 such that

|〈c, ηι〉| ≤ KMkk! for each ι ∈ Ik, and each k ≥ 0. (10)

For any fixed real number T > 0, let UT be the set of all
essentially bounded measurable functions u : [0, T ] → IRm

endowed with the L1 norm. We write ‖u‖1 for max{‖ui‖1 :
, 1 ≤ i ≤ m} and ‖u‖∞ for max{‖ui‖∞ :, 1 ≤ i ≤ m} where
ui is the i-th component of u, and ‖ui‖1 is the L1 norm of ui,
‖ui‖∞ is the L∞ norm of ui. For each u ∈ UT and each ι ∈ Il,
we define inductively the functions Vι = Vι[u] ∈ C[0, T ]

by Vi1···il+1 [u](t) =
∫ t

0
ui1(s)Vi2···il+1(s) ds, where Vφ = 1

and ui is the i-th coordinate of u(t) for i = 1, 2, . . . , m and
u0(t) ≡ 1.

For each formal power series c in η0 , η1 , . . . , ηm , we define
a formal operator on UT in the following way:

Fc[u](t) =
∑

〈c, ηι〉Vι[u](t). (11)

It is known that for any T < (Mm+M)−1, the series (11)
converges uniformly and absolutely for all t ∈ [0, T ] and all
those u ∈ UT such that ‖u‖∞ ≤ 1 (cf [6]). In fact, for any
L1 input u, there exists some δ > 0 such that (11) converges
uniformly and absolutely on [0, δ).

For each T > 0, we define VT = {u ∈ UT : ‖u‖∞ < 1},
and we shall say that T is admissible for c if T < (M(m +
1))−1 for some M such that (10) holds. Then Fc is always
well defined on VT if T is admissible for c. We shall call Fc

an input/output operator defined on VT if T is admissible
for c. Hence, every convergent power series defines an i/o
map, or more precisely, one such map on each VT for which
T is admissible. (We often identify any two such operators,
when there is no danger of confusion, dealing in effect with
“germs” of such operators.) The following two properties of
the i/o operators are used in this work. We refer the readers
to [19] for the proof of the lemmas:

Lemma 5.11 Assume that c is a convergent power series
and T is admissible for c. Then the operator Fc : VT →
C[0, T ] is continuous with respect to the L1 norm in VT and
the C0 norm in C[0, T ]. 2

Lemma 5.12 Suppose c is a convergent series and T is ad-
missible to c. Then Fc[u] is analytic if u ∈ VT is analytic.


