
Capabilities and Training of
Feedforward Nets

Eduardo D. Sontag
Rutgers University

1 Introduction

This paper surveys recent work by the author on learning and rep-
resentational capabilities of feedforward nets. The learning results
show that, among two possible variants of the so-called backpropa-
gation training method for sigmoidal nets, both of which variants are
used in practice, one is a better generalization of the older percep-
tron training algorithm than the other. The representation results
show that nets consisting of sigmoidal neurons have at least twice
the representational capabilities of nets that use classical threshold
neurons, at least when this increase is quantified in terms of clas-
sification power. On the other hand, threshold nets are shown to
be more useful when approximating implicit functions, as illustrated
with an application to a typical control problem.

1.1 Classification Problems

One typical application of neural nets is in binary classification prob-
lems. During a training or supervised learning stage, examples and
counterexamples, labeled true and false respectively, are presented,
and parameters are adjusted so as to make the network’s numerical
output consistent with the desired labels. (Various conventions can
be used: for instance, a positive output may be understood as true
and a negative one as false.) Later, during actual operation, the out-
put given by the net when a new input is presented will be taken as
the network’s guess at a classification.

1

2 Eduardo D. Sontag

One set of issues to be addressed when implementing the above
ideas deals with the algorithms used for the adjustment of parame-
ters during the training stage. Typically, a cost function is proposed,
that measures the discrepancy between the desired output and the
output of a net having a given set of parameters. One then attempts
to minimize this cost, over the space of all parameters, to arrive at
a network that best matches the given training data. This last step
involves a hard nonlinear minimization problem, and several variants
of gradient descent have been proposed to solve it; in fact, the use of
sigmoidal activation functions –as opposed to simpler thresholds– is
to a great extent motivated by the requirement that the cost should
be differentiable as a function of the parameters, so that gradient
descent can be employed. There is one major exception to the use
of gradient descent and sigmoids, though, and that is the case of
networks having no (or equivalently from the viewpoint of represen-
tation, just one) hidden unit; in that case one can apply either linear
programming techniques or the classical “perceptron learning rule,”
because the problem is then essentially linear. Section 2 deals with
minimization problems; we show that among two possible variants of
the cost functions, the gradient descent approach applied to one re-
stricts perfectly to the older perceptron rule, while the other results
in serious potential problems, including convergence to inconsistent
parameters. (It would appear that in practice, both techniques are
used without regard to these dangers; in fact, the “bad” variant is
the one most often described in papers.)

A second and equally important set of issues deals with the ar-
chitecture of the network: type of activation functions, number of
units, interconnection pattern. Typically, in classification problems,
one uses either “threshold” or “sigmoidal” units and these are ar-
ranged in a feedforward manner. A good rule of thumb is that the
number of units (and hence of tunable parameters) should be small;
otherwise the network will tend to “memorize” the training data,
with no data compression or “feature extraction,” and it will not
be able to classify correctly inputs which had not been seen during
the training stage. (This informal rule can be justified in various
manners, theoretically through the use of “PAC” learning, or ex-

Capabilities and Training of Feedforward Nets 3

perimentally through the generation of random training and testing
inputs based on given probability distributions.) Thus it is of in-
terest to study the minimal number of neurons needed in order to
attain a certain classification objective; Section 3 below deals with
this problem. Some of the main conclusions quantify the difference
between the use of sigmoidal versus threshold nets. Section 4 deals
with the problem of interpolation as opposed to classification, but
for sigmoidal nets one obtains similar estimates as before. Finally,
Section 5 shows that multiple hidden layers increase approximation
capabilities, if one is interested in approximating not just continuous
functions but also inverses of such functions, as illustrated with an
example from control theory.

1.2 Basic Definitions

Let N be a positive integer. A dichotomy (S−, S+) on a finite set
S ⊆ IRN is a partition S = S−

⋃
S+ of S into two disjoint subsets.

(One often expresses this as a “coloring” of S into two colors.) A
function f : IRN → IR will be said to implement this dichotomy if it
holds that

f(u) > 0 for u ∈ S+ and f(u) < 0 for u ∈ S− .

We define a “neural net” as a function of a certain type, cor-
responding to the idea of feedforward interconnections, via additive
links, of neurons each of which has a scalar response θ. For any fixed
function θ : IR → IR, we say that f is a single hidden layer neu-
ral net with k hidden neurons of type θ and no direct input to output
connections (or just that f is a “(k, θ)-net”) if there are real numbers

w0, w1, . . . , wk, τ1, . . . , τk

and vectors
v1, . . . , vk ∈ IRN

such that, for all u ∈ IRN ,

f(u) = w0 +
k∑
i=1

wi θ(vi.u− τi) (1)

4 Eduardo D. Sontag

where the dot indicates inner product.
For fixed θ, and under mild assumptions on θ, such neural nets

can be used to approximate uniformly arbitrary continuous functions
on compacts. See for instance [6], [8]. In particular, they can be used
to implement arbitrary dichotomies on finite sets.

In neural net practice, one often takes θ to be the standard sig-
moid

θ(x) = σ(x) =
1

1 + e−x

or equivalently, up to translations and change of coordinates, the
hyperbolic tangent θ(x) = tanh(x). Another usual choice is the
hardlimiter or Heaviside or threshold function

θ(x) = H(x) =

{
0 if x ≤ 0
1 if x > 0

which can be approximated well by σ(γx) when the “gain” γ is large.
Most analysis, including studies of circuit complexity and the theory
of threshold logic, has been done for H, but as explained earlier, in
practice one often uses the standard sigmoid.

2 Gradient Descent

Assume that one wishes to find a function f that implements a given
dichotomy (S−, S+) on a set S, and f is to be chosen from a class of
functions parameterized by variables µ = (µ1, . . . , µκ) (for instance,
the class of all (k, θ)-nets, for fixed k and θ, parameterized by the
possible weights and biases vi, τi). Write for now F (u, µ) for the
function f(u) obtained when using the parameters µ. Thus, we wish
to find a set of values for the parameters µ so that F (u, µ) > 0 for
u ∈ S+ and F (u, µ) < 0 for u ∈ S−. As described in the Introduction,
one approach is to set up an error function

E(µ) :=
∑
u∈S

Eu(µ)

where Eu(µ) measures the failure of F (u, µ) to be positive, if u ∈ S+,
or the failure of F (u, µ) to be negative, if u ∈ S+. The question to

Capabilities and Training of Feedforward Nets 5

be treated next has to do with the precise choice of these measures
Eu(µ). Since the point that we are interested in discussing is already
well illustrated by the particular case of (1, θ)-nets, we shall restrict
for the remainder of this section to k = 1.

As far as recognition properties are concerned, nets with k = 1
implement linearly separable dichotomies. More precisely, assume
that θ is a nondecreasing function, and that the following property
holds:

(P) t+ := limx→+∞ θ(x) and t− := limx→−∞ θ(x) exist, t− < t+.

Fix any real number λ in the interval (t−, t+). Then, the following
properties are equivalent, for any given finite dichotomy (S−, S+):

1. There is some (1, θ)-net implementing this dichotomy.

2. There exist v ∈ IRN and τ ∈ IR such that

v.u > τ for u ∈ S+ and v.u < τ for u ∈ S− . (2)

3. There exist v ∈ IRN and τ ∈ IR such that

θ(v.u−τ) > λ for u ∈ S+ and θ(v.u−τ) < λ for u ∈ S− . (3)

The equivalence is trivial from the definitions: Property 1 means
that there are v, τ, w0, w such that

w0 + wθ(v.u− τ) (4)

has the right sign; if w > 0, this implies that θ(v.u+−τ) > θ(v.u−−τ)
whenever x+ ∈ S+ and x− ∈ S−, which in turn implies (because θ
is nondecreasing) that v.x+ > v.u− for such pairs, and therefore
Property 2 holds too. On the other hand, if Property 2 holds, then

lim
γ→+∞

γ(v.u− τ) = +∞

uniformly on the finite set S+, which implies that θ(γ(v.u− τ)) > λ
for all u ∈ S+ if γ is large enough, and for the same reason θ(γ(v.u−
τ)) < λ for all u ∈ S− for such γ, so Property 3 holds too. Finally, if

6 Eduardo D. Sontag

this latter Property holds then the net in Equation (4) implements
the dichotomy, using w = 1 and w0 = −λ.

Given a dichotomy, the problem of determining if there exist a
vector v ∈ IRN and a number τ ∈ IR such that Equation (2) holds
(that is, if the sets S+ and S− are linearly separable) is a simple
linear programming question, and there are very efficient methods
for solving it as well as for finding explicit solutions (v, τ). More
in connection with nets, the classical perceptron learning procedure
(see e.g. [7]) provides a recursive rule for finding one such solution
provided that any exist. The perceptron rule is very simple, and it
is worth recalling next, since we shall later compare it to gradient
descent. We write

û := (u,−1) (5)

for each element of S, and use the notations Ŝ, Ŝ+, and Ŝ− for the
points of the form (u,−1) with u in S, S+, and S− respectively.
Using these notations, the question becomes that of finding a vector

ν = (v, τ) (6)

such that ν.û < 0 if û ∈ Ŝ+ and this inner product is negative on
Ŝ−. We first give an arbitrary starting value for ν. Now the pos-
sible elements in Ŝ are presented one after the other in an infinite
sequence, with the only restriction that every element must appear
infinitely often. For each element of this sequence, the correspond-
ing inequality is tested. If the sign of the inequality is wrong, the
estimate for ν is updated as follows: ν := ν + û if û is in Ŝ+, and
ν := ν − û if û is in Ŝ−; if the sign was right, no change is made.
It is a very old result that this procedure converges in finitely many
steps to a solution ν, when starting at any initial guess for ν, if the
original sets are linearly separable.

Since the existence of v ∈ IRN and τ ∈ IR such that Equation (3)
holds is equivalent to the solution of the linear separability problem,
it would seem useless to study directly Property 3. However, we wish
to do so in order to exhibit in this simplified case some problems
that may arise in the general case of hidden units (k > 1), which
is not so easy to analyse. (We have observed the same problems

Capabilities and Training of Feedforward Nets 7

experimentally, but there seems to be no easy way to give a theorem
in the general case.) We deal with that Property next.

The restriction to the case k = 1 of the popular “backpropaga-
tion” technique for solving this problem –or at least of one often-used
variant of it,– is essentially as follows. First pick two numbers α and
β so that t− < α < λ < β < t+. Using again the notation in
Equations (5) and (6), now consider the cost

E(ν) := (1/2)
∑
û∈Ŝ

(δû − θ(ν.û))2 (7)

where δû equals β if û ∈ Ŝ+ and equals α otherwise. (The terminol-
ogy “target values” is standard for α and β.) One now attempts to
minimize E as a function of ν. If a small value results, it will follow
that θ(ν.û) will be approximately equal to α, and hence less than λ,
when û ∈ Ŝ−, and similarly for elements of Ŝ+, and the classification
problem is solved. Unfortunately, there are local minima problems
associated to this procedure; see for instance [17], [4], [11]. False
(i.e., non-global) local minima can occur even if the sets are sepa-
rable. Moreover, even if there is only one local (and hence global)
minimum, the resulting solution may fail to separate (hence the title
of [4]). (For a theoretical study of local minima in a more general
hidden-unit case, k > 1, see for instance [3] and references there.)

The reason for this difficulty is very simple to understand, and
is as follows: In trying to minimize E, one is trying to fit the values
α and β exactly, when it would be sufficient for classification that
θ(ν.û) be less than α for û in Ŝ−, and bigger than β for û in Ŝ+.
The precise fitting may force the parameters ν to be chosen so as to
make most terms small at the cost of leaving one term large. This
can be illustrated with an example. Assume that N = 1 and S
consists of five points ui so that u1 and u2 are very close to −1, u3

and u4 are very close to 1, and u5 = −0.9. The dichotomy is given by
S− := {u1, u2} and S+ := {u3, u4, u5}. Obviously these are linearly
separable (pick v = 1, τ = −0.95). We now pose the minimization
problem, using the standard sigmoid θ = σ, λ := 0.5, and target
values α := 0.2, β := 0.8. That is, we must minimize the error

(0.8− σ(−0.9v − τ))2 + 2 (0.8− σ(v − τ))2 + 2 (0.2− σ(−v − τ))2

8 Eduardo D. Sontag

as a function of v and τ . There is a unique local (and global) min-
imum, attained at the unique values v = 0.971 and τ = −0.516.
It turns out that these parameter values do not separate: for û =
(−0.9, 1), σ(ν.û) = 0.411 < 0.5. The classification of x5 has been
traded-off for a better perfect fit of the other points. Note that the
cutoff between classes happens approximately at û = −1/2. (Of
course, redefining λ as 0.4 one could say that this solution f sepa-
rates, but this redefinition can only be done a fortriori, once we know
the solution. In any case, it is easy to give examples in dimension
N = 2 in which the same pathology happens but where there is no
possible redefinition of λ that helps; see the references cited earlier.)
Figure 1 (function f in the plot, darker one) shows the resulting
(1, σ)-net.

0

.2

.4

.6

.8

1

-3 -2 -1 0 1 2 3
u

g(x)
f(x)

Figure 1: Non-separating minimum

The second plot in Figure 1, corresponding to the function

g(x) = σ(27.73x+ 26.34) ,

Capabilities and Training of Feedforward Nets 9

does satisfy Property 3 (the values for −1, −0.9 and 1 are at 0.2, 0.8,
and approximately 1, respectively; the cutoff with λ = 0.5 happens
at u = −0.95). The parameters (27.73, 26.34) were obtained as de-
scribed below; they are not obtained by minimizing the above error
function.

The solution to the difficulties raised by the above discussion,
namely that gradient descent may give wrong results even when the
data is separable, lies in not adding a penality if θ(ν.û) is already
less than α and û ∈ Ŝ− (and similarly for Ŝ+). In other words, the
corresponding term in Equation (7) is taken to be zero. Thus one
has to minimize the new function

E∗(ν) := (1/2)
∑
û∈Ŝ

(δû − θ(ν.û))2
ε(û) (8)

where we are using the notations

(r)2
+ :=

{
0 if r ≤ 0
r2 if r > 0

and (r)2
− := (−r)2

+ for any number r, and ε(û) = + if û ∈ Ŝ+ or
ε(û) = − if û ∈ Ŝ−.

The new error function E∗ will be called, for lack of a better
term, the “nonstrict” error measure corresponding to the problem
at hand; note that E is differentiable (if θ is), but in general is not
second-order differentiable. To motivate the use of this measure,
a comparison with the perceptron procedure is useful. A discrete
gradient descent step for minimizing E∗ takes the form of updating
each parameter νi (where νi denotes the ith coordinate of ν) by
iterating the rule:

νi := νi + ρûi

(ûi is the ith coordinate of û), where

ρ = (δû − θ(ν.û))θ′(ν.û) (9)

if the classification is incorrect and ρ = 0 otherwise. This is the
precise analogue of the perceptron rule (for which ρ is always either

10 Eduardo D. Sontag

zero or ±1). When using E instead of E∗ one would use Equation (9)
always, even if the classification was correct. The function g in Figure
1 was obtained by minimizing E∗ (we used a numerical technique,
as a test of the method, but the solution can be obtained in closed
form: just fit exactly the values at −1 and −0.9 to obtain v = 20 ln 4
and τ = −19 ln 4; the value at 1 has been relaxed to about 1, which
is greater than 0.8 but contributes zero error in the nonstrict error
measure).

The use of E∗ was first suggested in [17], who also proved a con-
vergence result under restrictive hypotheses (which do not allow for
sigmoids). In [16], we proved that there are no false local minima for
E∗ if the data is separable, and that the gradient descent differential
equation converges in finite time to a separating solution, from a ran-
dom initial state. Note that the unique minimum of E∗ is zero, for
separable data, and it is achieved at any separating solution. (Actu-
ally, the result proved there is considerably more general, as it deals
with a wider class of optimization problems. The only difficulty in
the proof has to do with the fact that ρ will tend to zero; one has to
use a dynamical-systems argument involving LaSalle invariance.)

Thus we conclude that the use of a nonstrict error function pro-
vides the correct generalization of the perceptron learning rule. This
provides strong evidence that one should use nonstrict error functions
also in the general (hidden unit) case. In [16] we also compared the
sigmoid results to known facts in pattern recognition, where nonstrict
measures had also been proposed (for linear activation functions σ).
This paper also showed why, even if using the nonstrict measure,
there may be false local minima (for nonseparable data), even for
k = 1 (no hidden units) and binary training vectors; the necessary
counterexample was based on a construction in [15].

3 Representational Capabilities

One may express the classification power of a class of functions, such
as those computable by neural nets with a fixed architecture and a
fixed number of neurons, in terms of set shattering. In this approach,
a class of functions is considered to be more powerful than another

Capabilities and Training of Feedforward Nets 11

if it can be used to implement arbitrary partitions on sets of larger
cardinality.

Let F be a class of functions from IRN to IR, assumed to be
nontrivial, in the sense that for each point u ∈ IRN there is some
f1 ∈ F so that f1(u) > 0 and some f2 ∈ F so that f2(u) < 0.
This class shatters the set S ⊆ RN if each dichotomy on S can be
implemented by some f ∈ F .

As in [12], we consider for any class of functions F as above, the
following two measures of classification power, dealing with “best”
and “worst” cases respectively: µ(F) denotes the largest integer 1 ≤ l
(possibly ∞) so that there is at least some set S of cardinality l in
IRN which can be shattered by F , while µ(F) is the largest integer
1 ≤ l (possibly ∞) so that every set of cardinality l can be shattered
by F . Note that µ(F) ≤ µ(F) for every class F . The integer µ is
the same as the Vapnik-Chervonenkis (VC) dimension of the class F
(see for instance [2] for VC dimension).

Some of the results obtained in [12] are as follows. We use the
notation µ(k, θ,N) for µ(F) if F is the class of (k, θ)-nets in IRN ,
and similarly for µ.

Theorem 1 For each k,N , µ(k,H, N) = k + 1, µ(k, σ,N) ≥ 2k.

Theorem 2 For each k, 2k + 1 ≤ µ(k,H, 2), 4k − 1 ≤ µ(k, σ, 2).

The main conclusion from the first result is that sigmoids at least
double recognition power for arbitrary sets. We conjecture that

µ(k, σ,N)
µ(k,H, N)

= 2 +O

(
1
k

)
for all N ; this is true for N = 1 and is strongly suggested by Theorem
2 (the first bound appears to be quite tight). Unfortunately the proof
of this theorem is based on a result from [1] regarding arrangements
of points in the plane, a fact which does not generalize to dimension
three or higher. Other results in [12] deal with the effect of direct
connections from inputs to outputs.

Finally, we also gave in [12] results valid specifically for sets of
binary vectors. For example, it is a trivial consequence from the given

12 Eduardo D. Sontag

results that parity on n bits can be computed with dn+1
2 e hidden

sigmoidal units (rather than the n that –apparently, though it is still

−.4

.4

−.3

−.2

−.1

0

.1

.2

.3

0 51 2 3 4

ppp p p p p p p p p ppppppppppp
ppppppppppppppp
ppppppppppppppppp
pppppppppppppp
p p p p p p p p p p ppppppppppppppppppppppppppppppppppppppp p p p p p p p p p p pppppppppp

ppppppppppppppp
ppppppppppppp
pppppppppppppp
ppppppppppppppp
p p p p p p p p p pp

x

Figure 2: 5-bit parity with 3 sigmoids

an open problem– are needed when using Heavisides). For instance,

f(x) := 10.4 + 2σ(3x− 4.5) + 2σ(3x− 10.5)− 20σ(x/5)

computes 5-bit parity with 3 sigmoidal neurons, x :=
∑
xi. (See

Figure 2.)
It is also shown in [12] that the function of 2n variables (say, with

n odd),
XOR (MAJ (x1, . . . , xn),MAJ (y1, . . . , yn))

(where MAJ (x1, . . . , xn) is the “majority” function that equals “1”
if the majority of the xi’s are one, and zero otherwise,) can be imple-
mented by nets with a fixed number (four) of sigmoidal neurons, that

Capabilities and Training of Feedforward Nets 13

is, a (4, σ)-net, independently of n, but it can be shown –personal
communication by W. Maass– that it is impossible to implement such
functions with (k,H)-nets, k independent of n.

4 Interpolation

Assume now that θ satisfies (P) with t− = −1 and t+ = 1 (this can be
always assumed after rescaling) that in addition it is continuous and
there is some point c such that θ is differentiable at c and θ′(c) 6=
0. For instance, the standard response function tanh (or σ after
rescaling) satisfies these properties. For such a θ we have:

Theorem 3 Given any 2n + 1 (distinct) points x0, . . . , x2n in RN ,
any ε > 0, and any sequence of real numbers y0, . . . , y2n, there exists
some (n+ 1, θ)-net f such that |f(xi)− yi| < ε for each i.

Before proving this theorem, we establish an easy technical result:

Lemma 4.1 Assume given real numbers p, q, α, β, ε, δ so that ε > 0,
δ > 0, and α < q < β. Then, there exists some real numbers a, b, c, d
so that, if f(x) := d+ aθ(bx+ c), then the following properties hold:

1. f(p) = q.

2. |f(x)− α| < ε for all x ≤ p− δ.

3. |f(x)− β| < ε for all x ≥ p+ δ.

Proof. Let ρ > 0 be smaller than β − q, q − α, and ε. Consider the
function

g(ξ) :=
β − α

2
θ(ξ) +

β + α

2
.

Note that g(ξ) approaches α, β at −∞,+∞, so there is some K > 0
so that |g(ξ) − α| < ρ if ξ ≤ −K and |g(ξ) − β| < ρ if ξ ≥ K. Pick
any γ > 2K/δ and define for this γ, f0(x) := g(γx). Then,

|f0(x)− α| < ρ if x ≤ −δ/2

14 Eduardo D. Sontag

and
|f0(x)− β| < ρ if x ≥ δ/2 .

As f0(δ/2) > β−ρ > q and f0(−δ/2) < α+ρ < q, by continuity of f0

(here we use that θ is continuous) there must be some u ∈ (−δ/2, δ/2)
so that f0(u) = q. Finally, we let

f(x) := f0(x+ u− p) .

Clearly this satisfies f(p) = q. For any x ≤ p − δ it holds that
z := x + u − p ≤ −δ/2, so |f(x) − α| = |f0(z) − α| < ρ < ε, as
desired. The property for x ≥ δ/2 is proved analogously.

Now we prove Theorem 3. Note first that it is sufficient to prove
it for N = 1, as one can perform the usual reduction of first find-
ing a vector v whose inner products with the xi’s are all distinct.
Now assume that we have already proved that for any two increasing
sequences of real numbers

x0 < x1 < . . . < x2n and z0 < z1 < . . . < z2n (10)

there is some (k, θ)-net so that

|f(xi)− zi| < ε/2 (11)

for each i. The result then follows from here. Indeed, given the
original data, we may assume that the xi are already in increasing
order (reorder them, if necessary). Now pick any real d so that

d >
yi − yi+1

xi+1 − xi

for all i = 0, . . . , 2n − 1. Letting zi := xid + yi, these are now in
increasing order. Let f be so that equation (11) holds for each i. By
Lemma 7.2 in [12], there are some numbers a, b, c so that

|a+ θ(bxi + c) + dxi| < ε/2

for each i. Then |f(xi) + a+ θ(bxi + c)− yi| < ε, as wanted.

Capabilities and Training of Feedforward Nets 15

Thus, we must prove the result for the particular case of increas-
ing sequences (10), which we do via an argument somewhat analo-
gous to that used in [5] for showing the (weaker) fact that one can
approximately interpolate n points using n − 1 neurons. We show
inductively:

Given data (10) and any ε > 0, there exists an (n, θ)-net f so
that

|f(xi)− zi| < ε for each i = 0, . . . , 2n (12)

and
|f(x)− z2n| < ε for all x ≥ x2n . (13)

For n = 1 this follows from Lemma 4.1, by choosing p = x1, q = z1,
α = z0, β = z2, and δ less than x1 − x0 and x2 − x1. Assume now
that an (n − 1, θ)-net f1 has been obtained for x0, . . . , x2n−2 and
z0, . . . , z2n−2, and so that

|f1(xi)− zi| < ε/2 for each i = 0, . . . , 2n− 2 (14)

and
|f1(x)− z2n−2| < ε/2 for all x ≥ x2n−2 . (15)

Note that this last inequality holds in particular for x2n−1 as well
as for all x ≥ x2n. Now let f2 be as in Lemma 4.1, with δ less
than x2n−1 − x2n−2 and x2n − x2n−1, α = 0, β = z2n − z2n−2, q =
z2n−1 − z2n−2, and p = x2n−1, and so that

|f2(x)| < ε/2 for all x < x2n−1 − δ (16)

and
|f2(x)− β| < ε/2 for all x > x2n−1 + δ . (17)

It follows that f := f1 + f2 is as desired for the inductive step. This
completes the proof of the Theorem.

Thus we can approximately interpolate any 2n − 1 points using
n sigmoidal neurons. It is not hard to prove as a corollary that,
for the standard sigmoid, this “approximate” interpolation property
holds in the following stronger sense: for an open dense set of 2n −
1 points, one can achieve an open dense set of values; the proof
involves looking first at points with rational coordinates, and using

16 Eduardo D. Sontag

that on such points one is dealing basically with rational functions
(after a diffeomorphism), plus some theory of semialgebraic sets. We
conjecture that one should be able to interpolate at 2n points. Note
that for n = 2 this is easy to achieve: just choose the slope d so that
some zi−zi+1 becomes zero and the zi are allowed to be nonincreasing
or nondecreasing. The same proof, changing the signs if necessary,
gives the wanted net.

5 Inverting Functions

Until now, we dealt only with single-hidden layer nets. As remarked
above, such nets are “universal” approximators, in the sense that
they are dense in the space of continuous functions on any compact
subset of IRn, with uniform norm, and they are also dense in Lp, on
compacts, for any finite p. These approximations hold for almost
arbitrary functions θ. However, in a certain sense, which we describe
next, such nets are less powerful than nets with two hidden layers.
We will say that a function f : IRN → IR is computable by a two-
hidden-layer net if there exist l functions f1, . . . , fl, l ≥ 0, so that
f(u) = w0 +

∑l
i=1wiθ(fi(u)) for some w1, . . . , wl ∈ IR and the fi’s

are single-hidden-layer nets.
It is proved in [14] that for each integers m, p, any continuous

function f : IRm → IRp, any compact subset C ⊆ IRp included in the
image of f , and any ε > 0, there exists some function φ : IRm → IRp,
each of whose coordinates is computable by a two-hidden-layer net,
so that ‖f(φ(u)) − u‖ < ε for all u ∈ C. That is to say, one may
always obtain approximations of (one-sided) inverses of continuous
maps. (The proof is not hard, and follows closely the ideas in [9].)
But it is also proved there that there are examples of functions f
as above whose inverses cannot be approximated by single-hidden-
layer nets. Essentially, the difficulty has to do with the fact that the
universal approximation results do not hold in L∞.

The results are applied in [14] to the following problem. Consider
nonlinear control systems

x(t+ 1) = P (x(t), u(t)) (18)

Capabilities and Training of Feedforward Nets 17

whose states evolve in IRn, having controls u(t) that take values in
IRm, and with P sufficiently smooth and satisfying P (0, 0) = 0. We
assume that the system can be locally stabilized with linear feedback,
i.e. there is some matrix F so that the closed loop system with
right-hand side P (x(t), Fx(t)) is locally asymptotically stable. (See
for instance [13], Section 4.8, for more on the topic of nonlinear
stabilizability.) The system (18) is asymptotically controllable if for
each state x0 there is some infinite control sequence u(0), u(1), . . .
such that the corresponding solution with x(0) = x0 satisfies that
x(t)→ 0 as t→∞. This condition is obviously the weakest possible
one if any type of controller is to stabilize the system. We say thatK :
IRn → IRm is a type-1 feedback if each coordinate of K has the form
Fx+ f(x), where F is linear and f is a single-hidden layer net, and
that it is a type-2 feedback if it can be written in this manner with f is
computable by a two-hidden layer net. These are feedback laws that
can be computed by nets with one or two hidden layers respectively,
and having m output neurons and possible direct connections from
inputs to outputs (these connections provide the linear term). The
following is also proved in [14]:

Theorem 4 Let θ = H. For each system as above, and each com-
pact subset C of the state space, there exists some feedback law of
type 2 that globally stabilizes (18) on C, that is, so that C is in the
domain of asymptotically stability of x+ = P (x,K(x)). On the other
hand, there exist systems as above, and compact sets C, for which no
possible feedback law of type 1 stabilizes C.

The positive result, in this case as well as for continuous time
systems under sampling, is based on ideas from [10]. The negative
result remains if θ = tanh, or if θ is one of many other functions used
in neural net practice. Basically, the proof is based on the fact that
single-layer nets cannot approximate inverses, but two hidden layers
are sufficient. Other problems of interest, such as inverse kinematics
approximation, have the same flavor.

18 Eduardo D. Sontag

6 Acknowledgements

This research was supported in part by Siemens Corporate Research,
Princeton, NJ, and in part by the CAIP Center, Rutgers University.

Bibliography

[1] T. Asano, J. Hershberger, J. Pach, E.D. Sontag, D. Souivaine,
and S. Suri, Separating Bi-Chromatic Points by Parallel Lines,
Proceedings of the Second Canadian Conference on Computa-
tional Geometry, Ottawa, Canada, 1990, p. 46-49.

[2] E.B. Baum, On the capabilities of multilayer perceptrons,
J.Complexity 4, 1988, p. 193-215.

[3] E.K. Blum Approximation of Boolean functions by sigmoidal
networks: Part I: XOR and other two-variable functions, Neural
Computation 1, 1989, p. 532-540.

[4] M. Brady, R. Raghavan and J. Slawny, Backpropagation fails
to separate where perceptrons succeed, IEEE Trans. Circuits and
Systems 36, 1989, p. 665-674.

[5] D. Chester, Why two hidden layers and better than one, Proc.
Int. Joint Conf. on Neural Networks, Washington, DC, Jan.
1990, IEEE Publications, 1990, p. I.265-268.

[6] G. Cybenko, Approximation by superpositions of a sigmoidal
function, Math. Control, Signals, and Systems 2, 1989, p. 303-
314.

[7] R.O. Duda and P.E. Hart, Pattern Classification and Scene
Analysis, Wiley, New York, 1973.

[8] K.M. Hornik, M. Stinchcombe, and H. White, Multilayer feed-
forward networks are universal approximators, Neural Networks
2, 1989, p. 359-366.

[9] E.D. Sontag, Remarks on piecewise-linear algebra, Pacific
J.Math., 98, 1982, p. 183-201.

Capabilities and Training of Feedforward Nets 19

[10] E.D. Sontag, Nonlinear regulation: The piecewise linear ap-
proach, IEEE Trans. Autom. Control AC-26, 1981, p. 346-358.

[11] E.D. Sontag, Some remarks on the backpropagation algorithm
for neural net learning, Report SYCON-88-02, Rutgers Center
for Systems and Control, June 1988.

[12] E.D. Sontag, Comparing sigmoids and Heavisides, Proc. Con-
ference Info. Sci. and Systems, Princeton, 1990, p. 654-659.

[13] E.D. Sontag, Mathematical Control Theory: Deterministic Fi-
nite Dimensional Systems, Springer, New York, 1990.

[14] E.D. Sontag, Feedback Stabilization Using Two-Hidden-Layer
Nets, Report SYCON-90-11, Rutgers Center for Systems and
Control, October 1990.

[15] E.D. Sontag and H.J. Sussmann Backpropagation can give rise
to spurious local minima even for networks without hidden lay-
ers, Complex Systems 3, 1989, p. 91-106.

[16] E.D. Sontag and H.J. Sussmann, Backpropagation separates
when perceptrons do, in Proc. IEEE Int. Conf. Neural Networks,
Washington, DC, June 1989, p. I-639/642.

[17] B.S. Wittner and J.S. Denker, Strategies for teaching layered
networks classification tasks, Proc. Conf. Neural Info. Proc. Sys-
tems, Denver, 1987, Dana Anderson (Ed.), AIP Press.

