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Abstract 

This paper surveys some well-known facts as well as some recent developments on the 
topic of stabilization of nonlinear systems. 

1 Introduction 

In this paper we consider problems of local and global stabilization of control systems 

Ii: = I(z,u), 1(0,0) = ° (1) 

whose states z(t) evolve on m.n and with controls taking values on m.m, for some integers n 
and m. The interest is in finding feedback laws 

u = k(z) , k(O) = ° 
which make the closed-loop system 

Ii: = F(z) = I(z,k(z» (2) 

asymptotically stable about z = 0. Associated problems, such as those dealing with the 
response to possible input perturbations u = k( z) + v of the feedback law, will be touched 
upon briefly. 

We assume that 1 is smooth (infinitely differentiable) on (z, u), though much less, -for 
instance a Lipschitz condition,- is needed for many results. 

The discussion will emphasize intuitive aspects, but we shall state the main results as 
clearly as possible. The references cited should be consulted, however, for all technical 
details. Some comments on the contents of this paper: 

• We do not consider control objectives different from stabilization, such as decoupling 
or disturbance rejection. 

• Except for some remarks, we consider only state (rather than output) feedback. 

• The survey talk centers on questions of possible regularity (continuity, smoothness) 
of k. This focus leads to natural mathematical questions, and it may be argued that 
that regular feedback is more "robust" in various senses. But -and to some extent this 
is emphasized by those negative results that are presented- it is often the case that 
discontinuous control laws must be considered (sliding mode controllers, or piecewise 
smooth feedback, for instance). In addition, non-continuous-time feedback (sampled 
control, pulse-width modulation), is often used in practice and is also not covered. 
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• The assumption that k(O) = 0 is quite natural; it says that no energy should need 
to be pumped into the system when it is at rest. The theory that results when this 
requirement is not imposed is also of great interest, however. 

• Another related interesting set of problems ("practical" stabilization) deals with bring
ing states close to certain sets rather than to the particular state z = O. 

Space constraints force us to be selective in our coverage. Such selectivity will imply, 
as is often the case with surveys, some emphasis towards the speaker's favorite topics. 
Hopefully the inclusion of an additional bibliography -see the end of the paper- makes up 
for some of the omitted material. 

1.1 What regularity will be imposed on k ? 

The main questions that we want to address involve, as pointed out above, regularity of 
k. The requirements away from 0, whether k should be, say, Co, CI, or Coo, appear to 
be not very critical; as we see later, it is often possible to "smooth out" a feedback law 
that is merely continuous. (Of course, if k is not smooth enough, questions arise regarding 
uniqueness of trajectories for the closed-loop system (2).) Much more critical is the behavior 
of k at the origin. Because of these facts, and in order to simplify the presentation, we shall 
consider just two types of feedback; the issues arising for these are quite typical of the 
general problems. We shall say that k : m," -+ m,m, k(O) = 0, is: 

• smooth: if k E COO(m,") . 

• almost smooth: ifk E COO(m,"\{O}) and k E CO(m,"). 

The problems of finding stabilizing feedback laws of these two types are very different: 
consider for instance the system 

which can be globally stabilized by the almost smooth law 

u:=-~ 

resulting in 
i: =-z 

but cannot even be locally stabilized by a smooth u = k(z), since for any such k one would 
necessarily have k(z) = O(z) so that the closed-loop system 

i: = z + 0(z3) 

is unstable. 

It is probably fair to say that until now the most elegant local theory has been developed 
for the smooth case, while the most elegant global results are those that have been obtained 
for almost smooth stabilization. 

2 Asymptotic Stability 

As with regularity, there are also many possible notions of stabilization. These can be 
classified under two broad categories: 
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• State-Space: There is a map k such that the system 

z = f(:I:,k(:I:» 

has :I: = 0 as a locally or globally asymptotically stable point. We call this local or 
global, smooth or almost-smooth, stabilization, depending on the regularity required 
of k. 

x 
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FIGURE 1: Pure state-feedback configuration 

• Operator-Theoretic: There is a k so that the initialized system 

z = f(:I:,k(:I:)+ u), z(O) = 0 

induces a stable operator u ...... :1:. There are many possible, nonequivalent, definitions 
of stability for operators; this point will be discussed again later. This notion is of 
interest when studying stability under persistent or decaying input perturbations, and 
when trying to obtain Bewut factorizations for nonlinear systems. 

+ 
u x 

FIGURE 2: Additive state-feedback configuration 

An alternative is to allow for an additional feedforward term, say with the same 
regularity as k. Such a variation appears when studying coprime, not necessarily 
Bezout, factorizations. 

u x 

FIGURE 3: State-feedback with input weighing 

We shall concentrate on pure state-feedback problems, but will also explain how some 
operator-type results can be obtained as a consequence of these. 
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2.1 Asymptotic controllability 

An obvious necessary condition for state-space stabilizability is the corresponding open-loop 
property of (null-) asymptotic controllability: for each small Zo there must exist some 
measurable, locally essentially bounded control u(·) defined on [0, +00) such that, in terms 
of the trajectory z(·) resulting from initial Zo and input u, (a) z( t) is defined for all t and 
z(t) --+ 0 as t --+ 00, (b) this happens with no large excursions (stability), and (c) since k 
is continuous at the origin, u( t) --+ O. This property can be summarized by the statement: 
for each e: > 0 there is some 5 > 0 such that, for each Izol < 5 there is some u(·) so that 

z(t), u(t) --+ 0 

and also 
Iz(t)1 + lu(t)1 < e: 'it 

where z(.) is the trajectory starting at Zo and applying u. 

(We use bars I~I to denote any fixed norms in lRn and lRm.) 

For global stabilization, one has the additional property that for every Zo there must 
exist a control u so that z(t) --+ OJ we call this global asycontrollability. 

Observe that, for systems with n9 controls, classical asymptotic stability is the same as 
asycontrollability. 

For operator-theoretic stabilizability, one has necessary bounded-input bounded
output or "input to state stability" necessary properties. These will be mentioned later. 

The main basic questions are, for the various variants of the above concepts: 

To what extent does asycontrollability imply stabilizability? 

Such converse statements hold true for linear finite dimensional time-invariant systems, but 
are in general false, as we discuss next. 

3 Case n = m = 1 

To develop some intuition, it is useful to start with the relatively trivial case of single-input 
one-dimensional systems. Many of the remarks to follow are taken from [28). 

For the system (1), asycontrollability means that for each z, or at least for small z in 
the local case, there must exist some u so that 

zf(z,u) < 0 

(see [28) for a detailed proof). Consider the set 

<9:= {(z,u)lzf(z,u) < O} 

and let 
11" : (z, u) ..... z 

be the projection on the first coordinate. Then, global asycontrollability implies that 

while local asycontrollability says that this projection contains a neighborhood of zerOj in 
addition, a local property about (0,0) also holds, since u must be small if z is small. 

On the other hand, if k is any feedback law giving asycontrollability, it must hold that 
k provides a section over lRn\ {O} of the projection 11", i.e. 

(z,k(z))E<9 Vz#O 
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Thus the main problem is essentially that of finding regular sections of 1r. 

Using this geometric intuition, it is easy to construct examples of systems which are 
asycontrollable but for which there is no possible almost-smooth -or for that matter, not 
even just Co away from zero- feedback stabilizer. For instance 

is so that 0 consists of the two components 

0 1 = {( U - 1)2 < Z - I} 

and 
O2 = {(u+ 1)2 < 2 - z, z f= O} 

and hence admits no continuous stabilizer, even though it is clearly asycontrollable. (See 
Figure 4: darkened area is the complement of OJ note that no continuous curve is contained 
entirely in 0 and projects onto the z-axis.) On the other hand, in this example it is easy to 
construct a controller -a section of the projection with k(O) = 0- that is everywhere smooth 
except for a single discontinuity. 

-/' 
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./ 
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FIGURE 4: No continuous sections FIGURE 5: Semiglobal vs. global 

This counterexample is based on the impossibility of choosing controls; the paper [30] 
provides examples where not even a continuous choice of state trajectories is possible. 

The graphical technique allows answering other questions, such as those in [28] regarding 
the possibility of non-Lipschitz stabilizers even when there are none that are Lipschitz. 
In [31], the authors discuss "semiglobal" stabilizers in comparison with global ones: The 
question is whether it may be the case that for each compact subset of the state space 
there is a feedback stabilizer, but that there is none that works globally. They provide a 
counterexample analogous to the one illustrated graphically in Figure 5, the darkened area 
corresponding to the complement of O. Note that for each fixed interval on the z-axis there 
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are obviously smooth sections of the projection -as indicated by a curve-, but there can be 
no global sections. 

An interesting fact for one-dimensional systems is that there are always rather regular 
time-varying feedback stabilizers. For the precise definition of smooth time-varying and 
more generally dynamic stabilizers see the reference [28]; essentially one obtains a smooth 
stabilizer for the system obtained by adding a parallel integrator. The idea of the proof in 
[28] is easier to understand with an example. In Figure 6a, again with the darkened area 
corresponding to the complement of 0, we consider two possible feedback laws, illustrated 
by their graphs. There is no way to obtain a continuous stabilizing feedback law, i.e. one 
whose graph stays entirely in O. But the idea is to oscillate very fast between the two 
indicated (non-stabilizing) laws. Let B = B t denote the set of z's where at any given time 
t the feedback law satisfies zJ(z, k(t, z)) < 0 (Figure 6b). This set oscillates, and we design 
the time variation so that it moves to the left slowly but it moves to the right fast (for 
z > 0, and the converse for z < 0). A state z > 0 to the right of B will continue moving 
to the left, towards the origin, until it hits the set B. At that point, it will move in an 
undesired direction, but will do so only for a very small time duration, with a net effect of 
a leftward move. The above reference provides a complete proof. 

-

r1 
I ....... 

J--J 
~ 

FIGURE 6(a): Time-varying continuous example 

o A 
FIGURE 6(b): Bad set for example in 6(a) 

A different result on dynamic feedback stabilization of one-dimensional systems holds 
for analytic J, and is given in the work [8]. It is shown there that asycontrollability is 
equivalent to almost-smooth stabilization of the enlarged system 

z=J(z,y), y=u. 

Later we shall see examples of systems (in higher dimensions) for which not even dynamic 
stabilization can be done continuously. 

4 General n, m - Main Techniques 

The one-dimensional case illustrated that smooth or almost-smooth stabilizers may fail to 
exist even if the system is asycontrollable. We now survey the more general case, concen
trating on the following techniques: 
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1. First order methods (linearization) 

2. Topological techniques 

3. Lyapunov functions 

4. Relation to operator-theoretic stability 

5. Decomposition approaches 

We will not cover, due to time and space limitations, the very interesting work being 
done on special cases such as two-dimensional systems ([5], [4]) and in particular the use of 
center manifold techniques and perturbation analysis (see e.g. [1],[2]). 

5 First-Order Techniques 

We review here some facts that apply to the problem of local, smooth stabilizability. 
[The example i: = z + (_·V2z)3, discussed earlier, shows that these techniques do not say 
anything interesting regarding almost smooth feedback.] Write 

z = Az + Bu+o(z,u) 

and call I: first-order (or "hyperbolically") stabilizable if the linearized system z = Az + Bu 
is asycontrollable, or equivalently, if there exists a matrix F so that 

A+BF 

is a Hurwitz matrix. This property is also equivalent to the requirement that 

rank lsI - A, B] = n whenever Re s ~ 0 

(PBH condition). 

For each stabilizing feedback matrix F for the linear part, the linear law u = Fz is also 
a local stabilizer for the nonlinear system, and the following classical result is obtained: 

Theorem 1. I: first-order stabilizable =} I: locally smoothly stabilizable. 

Recall that this is proved by showing that a quadratic Lyapunov function for z 
(A + BF)z is also a local Lyapunov function for the closed loop system 

z = (A+BF)z +o(z) 

-see e.g. [36]. 

The converse of Theorem 1 is obviously false; for instance the system 

has a non-asycontrollable first-order part z = 0 but the smooth (even linear) feedback law 
u = -z results in z = _z3 which is asymptotically stable. However, this example illustrates 
what can be said about the converse. Note that even though the linearized system is not 
asymptotically stabilizable, its only uncontrollable eigenvalue has zero real part. In addition, 
the stability that can be achieved is not ezponential, but is "slower" than exponential. 

One says that the origin is exponentially stable for z = f( z) if there exist positive 
constants ~ and M so that 
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for all small enough initial states and all t 2: O. By smooth exponential stabilizability we 
mean that there is a smooth k so that the closed loop system (2) is locally exponentially 
stable. The next two results then hold: 

Theorem 2. ~ is locally smoothly stabilizable '* rank lsi - A, B] = n 'iRe s > O. 

Theorem 3. ~ first-order stabilizable {=} ~ exponentially stabilizable. I 
The first of these is proved by appealing to the standard controllability decomposition: 

If the rank condition fails, under the variables in this decomposition the closed-loop system 
corresponding to any smooth feedback law must result in block equations 

:i:t (Al + BlF)xl + A 2z 2 + o(z) 

Z2 A3Z2 + o(x) 

where A3 has some eigenvalue with strictly positive real part. But then Lyapunov's Second 
Theorem on Stability, or one of its variants such as Cheataev's Theorem, -applied to the 
z2-equation,- implies that the closed-loop system is unstable, contradicting the assumption. 

The second result is "folk" knowledge, and an analogous result for arbitrary-rate stabi
lization was given in [12]. A sketch of its proof is as follows. Sufficiency is proved as with 
Theorem 1. Conversely, assume that k is a smooth feedback stabilizer, and look at the 
closed-loop system. Again via the controllability decomposition, the problem reduces to 
showing that the eigenvalues of the linearization of an exponentially stable equation must 
have negative real part. Let A be as in the definition of exponential stability, and consider 
the change of variables z( t) := e ~tz( t) which results in an equation 

z(t) = (~I + A)z + g(z, t) 

where g(z,t) is o(z) uniformly on t. Since z(t) decays at rate A, it follows that z decays 
at rate A/2, and hence the z equation is asymptotically stable. From Cheataev's Theorem, 
one concludes that ~I + A has all eigenvalues with real part S 0, from which it follows that 
all eigenvalues of A have strictly negative real part, as wanted. 

The gap in the characterization of local smooth stabilizability is due to the possible 
modes corresponding to Re s = 0, i.e. the "critical" cases where rank lsi - A, B] < n for 
some purely imaginary s. This is precisely the point at which Center Manifold Techniques 
become important. 

6 Topological Techniques 

In this section we review some topological considerations that establish lilnitations on what 
almost smooth feedback can achieve. (In fact, the lilnitations will apply also to even weaker 
types offeedback.) 

To motivate, let's start with an example due to Brockett. Consider the 3-dimensional 
2-control system 

Zl Ul 

Z2 U2 

Z3 U2Zl - UlZ2 

for which 

( s 0 0 1~ O~) 
[sI - A, B] = ~ ~ ~ 
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looses rank at IJ = o. First-order tests for smooth stabilization are thus inconclusive, except 
for the fact that ezponential stability can't be achieved. On the other hand, this system is 
completely controllable, since it is a system of the type 

Z = ulgl(Z) + u2g2(Z) 

("symmetric" system with "no drift term") and 

det (gb g2, [gl, g2]) = 2 i- 0 

everywhere, where [gb g2] denotes the Lie bracket. The system is in particular asycontrol
lable, since controllability is preserved using arbitrarily small Ul, U2. This suggests that the 
system might be smoothly stabilizable. But in fact it isn't. Consider the mapping 

(z,U) >--> f(z,u) (3) 

which here is 

IR5 -+ IR3: (Zb Z2, Z3, Ub U2)' >--> (Ub U2, U2Z1 - UIZ2)' . 

No points of the form 

are in its image, so the system can't be smoothly stabilizable, by Brockett's necessary 
condition: 
Theorem 4. IT ~ is almost smoothly stabilizable then the image of (3) contains some 
neighborhood of zero. 

For linear systems, Brockett's condition is that 

rank [A,B] = n 

which is the case IJ = 0 of the PBR criterion. 

Theorem 4 was given in [6]. It reduces to the purely differential-equation result that the 
image of F(z) = f(z,k(z)) must contain a neighborhood of zero if the closed-loop vector 
field F is asymptotically stable. The following elementary proof was suggested to us by 
Roger Nussbaum (ca. 1982), and is analogous to those proofs given in [37] and [15]. 

Consider the closed-loop system :i: = F(z(t)) and let t} denote the flow associated to 
this. Then 

H(z,t):=Ht}(I~t'Z)-Z] ,tE[O,I] 

is a homotopy between F(z) and -z. (As t -+ 1-, the flow converges uniformly to zero by 
asymptotic stability, while as t -+ 0+ this is F(z) by the definition of flow.) From this and 
the fact that F can have no zeroes -equilibria of the ode- outside z = 0, one concludes that 
F must have topological degree (_I)n with respect to all points p near 0, and so F(z) = P 
is solvable for all such p. 

The above proof can be extended to show that not even "practical stability" can be 
achieved, in the sense that one looks for stabilizers defined away from 0 and with the 
property that closed-loop trajectories converge to a neighborhood of the origin. Moreover, 
even arbitrary continuous feedbacks (satisfying conditions of existence and uniqueness of 
trajectories) are ruled out by the theorem. In [37], it is shown that global attractivity is 
also ruled out, even if local asymptotic stability is not required to hold. 

Note that when a system fails Brockett's test, it cannot be stabilized by almost smooth 
dynamic feedback either, in the sense that any extended system 

Z f(z,u) 
z v 

where v is a new control, and z is a new state of state variables, will still fail the test. 
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6.1 Other Topological Techniques 

Consider now the following two-dimensional, single-control system ([3)) 

where 

e= (:) , g(e):= (Z22~t) 
(This system represents the real and imaginary parts of the one-dimensional complex system 
Z = uz2 .) For each control, one can move at different velocities along the integral curves of 
e = g(e)· These curves are the circles centered on the y-axis and passing through zero, plus 
the positive and negative z-axis; see Figure 7. Thus the system is asycontrollable, and in 
fact every state can be controlled in finite time to the origin. As opposed to the previous 
example, however, this one does pass Brockett's test, and linear tests are also inconclusive. 
We now show that this system is not almost-smoothly stabilizable, even locally, and use 
this to illustrate another technique. 

FIGURE 7: Orbits of g FIGURE 8: Clf level sets 

Assume that there is a feedback law stabilizing this system on some open set U con
taining the origin. Consider the closed-loop system 

that results; by assumption the left-hand side is at least Lipschitz away from the origin, so 
this is a well-posed differential equation. 

Choose any circular orbit of g which is entirely contained in U. Then the restriction 
of the closed-loop equation to this circle provides a differential equation which is globally 
asymptotically stable on the circle. But this is impossible, because of the following fact: 

Theorem 5. !fa differential equation on a manifold M,:i: = F(z),F(zo) = 0, has:co as 
a globally asymptotically stable state, then M must be contractible. 



71 

The only property needed for this result is that solutions exist and be unique, plus 
continuous dependence. The proofis ahnost trivial; see below. A somewhat stronger state
ment, often refered to as "Milnor's Theorem" , asserts that M must in fact be diffeomorphic 
to an Euclidean space, but the above version seems to be enough for most applications. 

To prove the Theorem, just note that the map 

H(z,t):=C}(I~t'Z) , tE[O,I] 

provides a homotopy between the identity and the constant map H (z, 1-) == Zo; here C} is 
the flow induced by F as before. 

For the particular example that we had above, this is all very intuitive: for y > 0 and 
z > 0 near the origin, we must move to the left -stability part of "asymptotic stability"-, 
and for z < 0 to the right. Continuing back along any fixed circle, we reach a point where 
we must move both to the left and right, which would create a discontinuity of the feedback 
law, unless we passed first through zero which would create a nonzero equilibrium. 

In this example, in fact, not even attractivity (all trajectories converging to zero) can 
hold with continuous feedback. This is because such a feedback law must satisfy 

(since on the z-axis the equation is z = z2u, iI = 0). Thus any curve between (-1,0)' and 
(1,0)' will be so that lc has some zero somewhere on it, giving a new equilibrium point of 
the closed-loop system. 

Theorem 5 implies that mechanical models with a noncontractible phase space -rigid 
body orientations, for example- give rise to systems that cannot be smoothly, or in any 
reasonable sense continuously, globally stabilizable. 

7 Lyapunov Functions 

Assume that E is globally ahnost-smoothly stabilizable. The closed-loop system (2) being 
globally asymptotically stable, standard inverse Lyapunov theorems (see for instance Theo
rem 14 in [18],) can be used to conclude that there exists a proper (V(z) ..... 00 as z ..... 00), 
positive definite (V(z) > 0 for z > 0, V(O) = 0) function V so that 

LFV(Z) = VV(z)F(z) < 0 Vz f. 0 

which implies in open-loop terms that 

(Vz f. 0)(3u) VV(z)/(z, u) < 0 

and in addition, by continuity of lc at 0, the property 

(Ve > 0)(35 > 0) [0 < Izl < 5 => min VV(z)/(z,u) < 0] . 
lul:5e 

We call such a function Va control-Lyapunov function ("elf"). (In the terminology of 
[26], this would be a clf which satisfies the small control property.) The above-mentioned 
theorems show that there always exists a smooth clf if E is ahnost-smoothly stabilizable. 

Intuitively, a clf is an "energy" function which at each nonzero z can be decreased by 
applying a suitable open-loop control, and this control can be picked small if z is small. 
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It is not hard to show that the existence of a clf implies asycontrollability. In fact, this 
implication holds even if we ask only that V be continuous. In that case the gradient may 
be meaningless, so we replace the defining condition by 

("Ie> 0)(35 > 0) [0 < Izl < 5 => min n+v.,(z) < 0] 
11.,115' 

where n+ indicates, as usual in the literature on nonsmooth Lyapunov functions, the Dini 
derivative 

n+v; ( ).- lim V(z(t» - V(zo) ., zo.- sup 
t_o+ t 

and z(t) is the trajectory corresponding to the measurable control w (the norm is the sup 
norm). 

To state the next two results, we assume for simplicity that the system (1) is affine 
in controls, a class that includes most examples of interest and which allows us to avoid 
"relaxed" controls. For 

z = lo(z) + G(z)u, 10(0) = 0, G(z) E lRnxm Vz 

we have: 

Theorem 6. E is asycontrollable <=> it admits a CO clf. 

I Theorem 7. E is almost smoothly stabilizable <=> it admits a Coo clf. 

Thus we know that there is no possible smooth clf for the example seen before whose 
orbits are circles (Figure 7), since there are no almost-smooth stabilizers. But this system 
is asycontrollable, so we know that there do exist continuous clf's. Figure 8 illustrates 
what a typical level set for one such clf may look like; note the singularity due to lack of 
smoothness. 

Theorem 6 was proved in [24], and is based on the solution of an appropriate optimal 
control problem. "Relaxed" controls are used there, because the more general case of 
systems not affine in controls is treated, but the proof here is exactly the same. Also, the 
"small-control" property didn't playa role in that reference, but as remarked there -top of 
page 464-, the proof can be easily adapted. 

Theorem 7, which we will refer to as Artstein's Theorem, was originally given in [3], 
which also discussed the example in Figure 7. It has since been rediscovered by others, 
most notably in [32] and other work by that same author. In every case, the prooHs based 
on some sort of partition of unity argument, but we sketch below a simple and direct proof. 
This result is very powerful; for instance, it implies: 

Corollary. If there is a continuous function k : 1Rn ..... 1Rm with k(O) = 0 and such that 

z = lo(z) + G(z)k(z) 

has the origin as a globally asymptotically stable point then there is also an almost-smooth 
global stabilizer. 

Since solutions may not be unique, the assumption is that for every trajectory the 
asymptotic stability definition holds. By Kurzweil's Theorem, -flee the discussion in [3]
there is a smooth clf, and hence by Theorem 7 there is an almost smooth feedback as 
desired. This explains our earlier remarks to the effect that the precise degree of regularity 
away from zero seems to be not very critical, so long as at least continuity holds. 

A proof of Artstein's Theorem is as follows. For simplicity, we consider just the case 
m = 1 and a system z = lo(z) + ug(z), but for m > 1 the proof is entirely analogous. 
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As explained earlier, one implication is immediate from the converse LyapwlOv theorems. 
Assume then that V is a smooth clf, and let 

a(z):= VV(z)./o(z) , b(z):= VV(z).g(z) 

Then 
the pair (a(z),b(z)) is stabilizable Vz =f 0 

(for each fixed z as an n = m = 1 LTI system). On the other hand, an almost-smooth 
feedback law that stabilizes and so that the same V is a Lyapunov function for the closed
loop system is a k(.) so that 

a(z) + k(z)b(z) < 0 Vz =f 0 

and is smooth for z '=f 0 and satisfies k(z) --+ 0 as z --+ O. This is basically a problem on 
"Families of Systems", if we think of (a(z), b(z)) as a parameterized set of one-dimensional 
LTI systems. We use a technique due to Delchamps ([9)) in order to construct k. Consider 
the LQ Problem 

min roo u2( t) + b2y2( t) dt 
u Jo 

for each fixed z, where the "y" appearing in the integral is a state variable for the system 

if = ay + bu . 

This results in a feedback law u = ky parameterized by z. Moreover, note that when z 
is near zero also b = b( z) is small, by continuity and the fact that, because V has a local 
minimum at the origin, VV(O) = o. Therefore one may expect that when z is near zero 
the b2 term gives more relative weighting to the u2 term, forcing small controls and thus 
continuity of the feedback at the origin. 

Explicitely solving the corresponding algebraic Riccati equation results in the feedback 
law 

a+ va2 + b4 
k := - b 

which is analytic in a, bj the apparent singularity at b = 0 is "removable", and the feedback 
is 0 at those points with b(z) = o. Further, as proved in [26], this is CO at the origin, as 
desired. 

The same formula shows how to obtain a feedback law analytic on z =f 0 provided that 
10, g, V be analytic. A different construction can be used to prove that there is a rational 
feedback stabilizer if 10, g, V are given by rational functions, but it is not yet clear if this 
rational stabilizer can be made continuous at the origin. 

The above formula for a stabilizing feedback law can be compared to the alternative 
proposed in [32], which is 

a 
k(z)=-X-;;-b 

where X : ntn --+ [0,1] is any function such that X == 1 where a ~ 0 and X == 0 about b = O. 
(Such functions exist, but are hard to construct explicitely.) 

Note that when it is known that a ::; 0 for all z, one may try the feedback law k(z) := 
-b. If there is sufficient "transversality" between 10 and 9 a LaSalle invariance argwnent 
establishes stability. The assumption that for some V there holds a ::; 0 everywhere is valid 
for instance if one knows that a == 0 for such a V, which in turn happens with conservative 
systems. This idea, apparently first studied in [11], gave rise to a large literature on feedback 
stabilizationj see for instance [21], [10], [16], and references there. For example, consider 
the system ([11)) 
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for which V := (1/2)(z~ + z~) satisfies a == O. The feedback law k(z) := -b(z) = -ZlZ2 

leads to a LiEmards-type closed-loop equation, which can be proved asymptotically stable 
using the invariance principle. This function V is not a clf in our (strict) sense, since one 
can not guarantee 

('v'z ;/; O)(3u) VV(z)J(z, u) < 0 

but just the corresponding weak inequality. However, one can still try to apply the above 
control law, and the formula gives in this case precisely the same feedback, -ZlZ2 (we thank 
Andrea Bacciotti for pointing this out to us). 

8 Input-to-State Stability 

The paper [25] studied relations between state-space and operator notions of stabilization. 
One such notion is that of input to state stabilization, which deals with finding a feedback 
law k so that, for the system 

i: = J(z,k(z)+ u) (4) 

in Figure 2, a strong type of bounded-input bounded-output behavior is achieved. We do 
not give here the precise definition of input-to-state stable system (ISS), save to point out 
that such stability implies asymptotic stability when u == 0 as well as bounded trajectories 
for bounded controls; see also [27] for related properties. The main Theorem from [25] is: 

Theorem 8(a). If the system i: = Jo(z) + G(z)u is globally smoothly (respectively, 
almost smoothly) stabilizable then there exists a smooth (respectively almost smooth) k 
so that (4) is ISS. 

Note that, in general, a different k is needed than the one that stabilizes; for instance 

i: = -z + (z2 + l)u 

is already asymptotically stable, i.e. k == 0 can be used, but the constant input u == 1 
produces an unbounded trajectory -and a finite escape time from every initial state. On 
the other hand, k(z) = -z gives an ISS closed-loop system. 

The result holds also locally, of course. Further, there is a generalization to systems 
which are not necessarily linear in controls: 

Theorem 8(b). If the system i: = J(z, u) is smoothly (respectively, almost smoothly) 
stabilizable then there exists a smooth (respectively almost smooth) k and an everywhere 
nonzero smooth scalar function ,B so that the system 

i: = J(z, k(z) + ,B(z)u) 

in Figure 3 is ISS. 

9 Decomposition Methods 

Consider a cascade of systems as in Figure 9, 

z J(z,z) 

i: = g(z, u) 
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FIGURE 9: Cascade of systems 

Many authors have studied the following question: IT the system i = I(z, z) is stabiliz
able (with z thought of as a control) and the same is true for i: = g(z,u), what can one 
conclude about the cascade? More particularly, what if the "zero-input" system i = l(z,O) 
is already known to be asymptotically stable? 

There are many reasons for studying these problems ([34], [17], [7]): 

• They are mathematically natural; 

• In "large scale" systems one can often easily stabilize subsystems; 

• Many systems, e.g. "minimum phase" ones, are naturally decomposable in this form; 

• In "partial linearization" work, one has canonical forms like this; 

• Sometimes two-time scale design results in such systems. 

The first result along these lines is local, and it states that a cascade of locally asymp
totically stable systems is again asystable. One can also say this in terms of stabilizability 
of the z-system, since any stabilizing feedback law u = 1:(z) can be also thought of as a 
feedback u= 1:(z,z): 

Theorem 9. IT i = l(z,O) has 0 as an asymptotically stable state and if i: = g(z, u) is 
locally smoothly stabilizable then the cascade is also locally smoothly stabilizable. 

This follows from classical "total stability" theorems, and was proved for instance in [34] 
and in a somewhat different manner in [27] using Lyapunov techniques. The same result 
holds for almost-smooth stabilizability. 

There is also a global version of the above: 

Theorem 10. IT i = l(z,O) has 0 as a globally asymptotically stable state and if 
i: = g(z,u) is globally smoothly stabilizable then the cascade is also smoothly globally 
stabilizable, provided that the system i = I(z, z) be ISS. 

The last condition can be weakened considerably, to the statement: IT z(t) ..... 0 as an 
input to the z-subsystem, then for every initial condition z(O), the trajectory z(·) is defined 
globally and it remains bounded. (The theorem shows that in fact it must then also go to 
zero.) 

For a proof, see [27]. Under extra hypotheses on the system, such as that 1 be globally 
Liptschitz, the ISS (or the BIBS) conditions can be relaxed -the paper [31] provides a 
detailed discussion of this issue, which was previously considered in [37] and [19]. 

Consider now the more general case in which the ISS condition fails. The last statement 
in Theorem 10 suggests first making the z-system ISS, using Theorem 8(b), and thus proving 
stabilizability of the composition. The problem with this idea is that the feedback law cannot 
always be implemented through the first system. One case when this idea works is what is 
called the "relative degree one" situation in zero-dynamics studies. Given is a system 

i I(z,z) 

i: u 
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where z and u now have the same dimensions. Assume that k and (3 have been found 
making the system 

i = f(z, k(z) + (3(z)z) 

ISS with z as input. Then, with the change of variables 

z = k(z) + (3(z)y 

(recall that (3(z) is always nonzero), there results a system of the form 

f(z, k(z) + (3(z)y) 
1 

(3(z) [h(z, y) + u] 

with h a smooth function. Then u := - (3( z)y + h( z, y) stabilizes the y-subsystem, and 
hence also the cascade by Theorem 10. 

Other, previous, proofs ofthis "relative degree one" result were due to [14], in the context 
of "PD control" of mechanical systems, as well as [32] and [7]. In [29], an application to 
rigid body control is given, in which the equations naturally decompose as above. Another 
such example is the following one. Assume that we wish to stabilize 

and note that u:= K(z) = -z stabilizes the first system. Since 

is ISS -because z( u - z)3 < 0 for large z and bounded U,- one can chose (3 = 1 in the above 
construction. There results the smooth feedback law 

stabilizing the system. 

10 Why Continuous Feedback? 

Since smooth or even continuous feedback may be unachievable, one should also study 
various techniques of discontinuous stabilization, and this is in our view the most important 
direction for further work. Here we limit ourselves to a few references: 

• Techniques from optimal control theory typically result in such stabilizing feedbacks; 

• There are many classical techniques for discontinuous control, such as sliding mode 
systems (see e.g. [33]); 

• A piecewise-analytic synthesis of controllers was shown to be possible under control
lability and analyticity assumptions on the original system ([30]); 

• If constant-rate sampling is allowed, piecewise-linear feedback can often be imple
mented ([22]); 

• Pulse Width Modulated control is related to sampling and becoming popular (see e.g. 
[20]). 
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11 Output Feedback 

Typically only partial measurements are available for control. Some authors have looked 
at output stabilization problems, and in particular the separation principle for ob
server/controlleI' configurations; see e.g. [35]. 

For linear systems, one knows that output (dynamic) stabilizability is equivalent to sta
bilizability and detect ability. A generalization of this theorem, when discontinuous control 
is allowed, was obtained in [23], based on the stability of the subsystem that produces zero 
output when the zero input is applied, a notion of detectability for nonlinear systems. Very 
little is still known in this area, however. 
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