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ABSTRACT 
We consider in this paper the behavior of the least squares 

problem that arises when one attempts to train a feedforward 
net with no hidden neurons. It is assumed that the net has 
monotonic non-linear output units. Under the assumption that 
a training set is sepamble, that is that there is a set of achievable 
outputs for which the error is zero, we show that there are no 
non-global minima. More precisely, we assume that the error is 
of a threshold LMS type, in that the error function is zero for 
values ‘beyond” the target value. 

Our proof gives in addition the following stronger result: the 
continuous gradient adjustment procedure is such that from any 
initial weight wnfigumtion a sepiirating set of weights is ob- 
tained in finite time. Thus we have a pre-cise analogue of the 
perceptron l+ng theorem. 

We contrast our results with the more classical pattern recog- 
nition problem of threshold LMS with linear output units. 

1 Introduction 
There has been some interest in understanding the behavior of 
backpmpagation (see ag. 131, [SI) in feedforward nets with no 
hidden neurons. Although this case can also be approached from 
the point of view of perceptrons, in the sense that backpropa- 
gation techniques do not need to be employed, it does provide a 
testing ground for hypotheses about the local minima structure 
of the cost functions that appear in the general case. 

In [lo] and [l], the authop give examples illustrating the fact 
that while a training set may be separable, a net performing 
backpropagation (gradient) search may get stuck in a solution 
which fails to separate. The first of these papers pointed out that 
if one uses instead a threshold LMS procedure, where one does 
not penalize values “beyond“ the targets, then such counterex- 
amples cease to exist, and in fact that one has a convergence 
theorem that c a e l y  parallels that for perceptrons. The con- 
vergence result in [lo] however applies only to linear response 
units, as we discuss later. In independent work in the control- 
theoretic literature, [7] had obtained related results, which we 
will also discuss. 

In this note, we prove that even for arbitrary (monotonic) 
nonlinear responses the gradient descent procedure is such that, 
for separable data, from any initial weight configurntion, a sep- 
arating set of weights is obtained in finite time. In fact, we 
provide a result about the convergence of gradient procedures 
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for a very general class of cost functions that includes this and 
other examples of interest in neural networks. 

We also show how to modify the example given in [9] to con- 
clude that there is a training set consisting of 125 binary vectors 
and a network configuration for which there are nonglobal local 
minima, even if threshold LMS is used. In this example, the 
training set is of course not separable. 

We also compare our results to threshold LMS with linear 
output units ([2], pp.148-149), and remark that a basic difference 
with that case is due to the lack of convexity in the cost function 
in the nonlinear case. 

2 Definitions and Statement of Main 
Result 

Definition 2.1 A continuously differentiable function h : IR + 
Et is a penalty function if there is some nonempty interval I C R 
so that: 

1. a E I => h(a)  = 0 

2. a 4 Z => h(a) > 0 and h’(a) # 0 . 0 

By ‘interval” we mean infinite or finite, or even just one 
point. Observe that the hypotheses imply that 

Z = { a  I h(a)  = 0) = {a I h’(a) = 0) 

and in particular that I must be closed. 
We shall use the standard inner product notation 

n 

(2,  Y) = CziYi 
k l  

and the norm 

throughout this note. 

Definition 2.2 An E : Rn + R is a cost function if it has the 
form 

na 

E ( z )  = 2 hi((vi ,  z)) 
i=l 

where hi is a penalty function and vi E IR”, for each i = 
1, . . . , m. 0 



Example 2.3 Threshold LMS problems for neural nets with 
no hidden neurons and linear or nonlinear monotone response 
characteristics give rise to cost functions in the above sense. 
Specifically, assume given a fixed function 

e : R + R  

.with the property that O(0) = 0 and O'(a) > 0 for all a. Assume 
that we are also given two sets of n-vectors 

{VI, . . . , w'} {?++I,. . . , U"} (2 )  

as well as two real numbers 

a < O < 4  

in the range of 8 (the "target values" for the first and second set 
respectively). We say that the sets (2) are (linearly) separable 
in case that there exists a vector z* E IR" so that 

(vi, I*) < 0 and ( d ,  2') > 0 (3) 

for each I = 1,. . . , I  and each j = 1 + 1,. . . , m. Such a vector 
will be called a separating vector. Equivalently, there exists in 
that case a vector z* E IR" so that 

O((wi,z')) < a and O((wJ,z*)) > p (4) 

for each i = 1,. . . , I  and each j = 1 + 1,. . . ,m. To each two 
sets (2)  and corresponding numbers a, /? we associate the error 
function E for which 

(O(a) - a)' if O(a) > a 
if O(a) 5 a 

if i = 1, . . +, I and instead 

(5) 

for i = I + 1,. . . , rn. These are penalty functions; for instance 
in the fust case we have that 

I = { a  I a 5 

and therefore 

hqa) = 2 ( q a )  - a)eJ(a) > o 
when a $ I .  Note that the sets (2 )  are separable if and only if 

0 

Often in neural net research one uses @(a) = tanh(a), and 
one picks a E (-1,O) and p E (0,l). Equivalently under a 
simple coordinate rescaling one could use the logistic function 

1 

there exists some z* for which E(z*)  = 0. 

1 + e-y 

in which case one takes a near 0 and /3 near 1. 

Example 2.4 Instead of "margins" and a threshold LMS one 
could also use a different type of penalty function, leading to 
a different kind of error function. With the same notations as 
above, this would be the case when one employs 

hi(.) = ( @ ( a )  - a)', = 1,. . . , I  
hi(.) = (qa) - p)',  i = 1 + I,.  . . , m 

instead of the previous penalty functions. Note that separability 
is not in general equivalent to the existence of an I* so that 

0 E(z ' )  = 0 ,  in this case. 

Our main result, to be proved in the next section, is as fol- 
lows. 

Theorem 1 Let E be a cost function, and assume that there 
ezists at least one I* for which E(z')  = 0.  Then, for each zo 
the solution x(.) of the gradient differential equation 

i = -VE(z) '  (7) 

with z(0) = zo is defined for all t 1 0,  

z = lim z(t) 
t-w 

exists, and E(Z)  = 0.  In particular, every local minimum of E 
is global (E = 0). 

We next discuss the consequences of this result in the case 
of example 2.3. Assume that two sets (2)  are given, and that we 
pose the problem of minimizing E ,  for any arbitrary choice of 
a, p (with a < 0 < p). In general (see last section) E may have 
false (non-global) locally minima. However, if the sets happen 
to be linearly separable then we do know from the theorem that 
such bad minima do not exist. More importantly, solving the 
differential equation (7) with a random initial state will result in 
a solution which converges to a minimizing value. In particular, 
since E 4 0 along trajectories, o is strictly negative, and p is 
strictly positive, there will be some finite time to  so that z(to) 
separates. 

Note that the convergence result applies to a continuous gra- 
dient modification. One might ask about the recursive discrete 
version 

where p > 0 is a "learning rate." The following says that, for 
the example of interest, this will also converge to a solution, 
provided that p be small enough. 

Corollary 2.5 If E is an in example 2.3 then for each initial 
vector zo there exists a real number p so that the solution of the 
iteration (8) is so that ZK separates, for some integer K 1 0. 

Prooj: Consider the solution of the differential equation (7). As 
discussed before, there will be some time to so that 

zh1 := Zk - pVE(zk) ,  20 = 2' (8) 

(v',z(to)) < 0 and ( d , z ( t o ) )  > 0 (9) 

for each i = 1 , .  . . , I  and each j = 1 + 1,. . . ,m. The equation 
(8) is nothing more than the Euler algorithm for calculating the 
solution of (7) and one knows that, if z: denotes the solution of 
the Euler iteration at time k using p := t o / k ,  then 

which goes to zero as k 4 00 ([4], chapter 8). Any point close 
enough to z(to) still separates, since the inequalities (9) still hold 
for such a point, so for p = t o / k  small it indeed holds that zi 

I separates. 

Regarding example 2.4, the same conclusions hold provided 
that the target values a, p are selected so that separability of the 
two sets is equivalent to the existence of an z* so that E(z ' )  = 0. 
This is always true (for any a, /3) in the case of the first example, 
because of the equivalence of separability and the possibility of 
solving (4), but is in general impossible in the second example. 
In fact, the paper ([l]) shows many examples of separable vectors 
and values Q, p for which bad local minima may appear. 
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3 Proof of Main Result 
The following simple lemma will be useful in the proof. 

Lemma 3.1 If h is any penalty function and if b I then 

( b  - a)h'(b) > 

for all a E I .  

Proof. We assume that I is bounded above, that is 

I = [ao, bo] or I = (-00, bo] 

and b > bo; if instead b is to the left of I the proof is entirely 
analogous. Since b - a > 0 for all a E I ,  we must show that 
h'(b) > 0. 

Since h' is known to be nonzero outside I ,  it has constant 
sign on (bo, +m). So if h'(b) < 0 then it would have to be always 
negative in that interval, from which it would follow that 

0 5 h(b) < h(b0) = 0 ,  

I a contradiction. 

To prove the theorem we first establish the following facts: 

Ivz E Rn, E ( z )  f 0 => VE(z).(z - z') > 0 1 (10) 

and 

where z* is any vector satisfying E(z ' )  = 0. Pick any fixed 
I E R", and for these z,x* introduce the scalar function 

g(r) := E(z' + r ( z  - z')) 
and observe that 

g'(1) = VE(z)(z - 2.) 

hat the desired conclusions are about g'( 
hand, because of the form (1) of E ,  this derivative is the same 

m 

C(bi - ai)h'(bi) (12) 
kl 

where 
a; = (vi,z*) 

and 
b; = (U', 5) 

for each i = 1,. . . , m. Since E(z ' )  = 0, it follows that all a; E I. 
The terms for which b; E I all vanish, because h' is zero on I ,  
while the terms with b; I are positive by lemma 3.1. Thus 
(11) holds. If E ( x )  # 0 then not all b; can be in I ,  from which 
it follows that at  least one term is positive; so (10) holds too. 

With respect to any fixed z* for which E(z')  = 0 we define 
the function 

1 
2 

to play the role of a Lyapunov function for the gradient system 
(7) .  Along its trajectories, we have that 

V ( z )  := --[[I - ZfllZ 

(13) dV0) = V ( z ( t ) )  
dt 

where we are denoting 

V ( 5 )  := -VE(z).(z -I*) 

know that 

V ( x )  = 0 => E(%) = 0 

for all x. 

the compact set 
For any initial condition z(O), the t r  

so it is defined for all t 2 0. 
The LaSalle Invariance Principle ( 

rem 6.4) guarantees then that there is 
that 

-+ E - ~ o )  n v-yP) 

theorem is proved for that trajectory. This value may not be 
zero, but we next prove that by modifying V (that is, chosing a 
V corresponding to a different z*,) it 

4 Closing Remark 

a set of m = 125 
vectors is given, 

(VI,. . . , 
all whose entries are equal to 1 or -1, for which 

m 

F($)  = C(e((d, .)) - I ) ~  
i=l 

has a local minimum which is not gl and 0 = tanh. (There 
n = 5 ,  which can be interpreted as giving 4 input neurons plus a 
bias weight, to be lear 
Let z be so that F h z but there exists 
some y so that 

We will pick some n 
values 

and 

and consider the cost function 
I = 0 and CY is irreleva 
will hold that z is a local * ' 

for the approximation E ,  
an example where E has 
examples are not require 
smaller m; see [SI.) 

and that (15) holds 
< E(z) .  Thus we have 
a1 minimum. (If binary 

o construct examples with 
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This discussion serves also to illustrate the substantial dif- 
ference that exists between the case of interest in neural nets, 
when a nonlinear function 8 is used, and the more standard case 
in pattern recognition, where one may consider a cost function 
as in example [2.3] but with 6 ( a )  = a. (The “relaxation case” in 
[2], pp.147ff.) In that case, there are no nonglobal local minima 
even i f  the data is not separable. This is proved as follows. Each 
term 

hi( (vi, x)) 
in equation (1) is a convex function of z, since along each line 
z + ry, r E [0,1] the second derivative 

is nonnegative: it equals 

2(vi, y)’ hq ( (d , z )  + r(vi, y ) )  

and the second derivative of hi is always nonnegative, because 
hi is quadratic in one interval and constant in another, as per 
equations (5) and (6). It follows that the cost function E is also 
convex, since it is the sum of convex functions, and therefore E 
has no bad local minima. 

There is yet another important difference with the case 
6=identity. In the above reference a result is proved which is 
somewhat analogous to corollary 2.5, but which establishes in- 
stead (with a different proof, for the “online” version where each 
term in the cost function is used one at  a time, and with a small 
modification if the vi’s are not unit vectors) that the discrete 
scheme (8) monotonically diminishes the distance to any fixed 
separating vector, for every fixed choice of p E (0,2). This will 
not happen in general in the nonlinear case. 

As we pointed out, the convergence result for the threshold- 
LMS problem is the one that has more interest. For the non- 
threshold case (example 2.4), the authors of the paper [7] already 
had established a related convergence result for nonlinear units. 
They dealt with discrete stochastic approximation rather than 
the gradient descent differential equation itself, which makes 
the techniques quite different. In addition certain hypotheses 
are made in that paper (binary inputs and a linear indepen- 
dence assumption on the data) that make their result somewhat 
more restricted, but a general proof based on their ideas (for the 
difference equation case) is very probably also possible. 

Finally, we compare with the results in [lo]. The authors 
here define a class of functions h called well-formed functions, 
which play the same role in the total cost as our penalty func- 
tions, and a result (not convergence of weights, but decrease of 
the error function to  zero) is proved for the gradient differen- 
tial equation. However, the definition of well-formed function 
does not include sigmoidal nonlinearities, since it requires that 
h have a derivative bounded away from zero while there are 
missclassifications. But the authors did emphasize the fact that 
threshold LMS is essential in order to avoid the examples where 
perceptrons classsify but backprop doesn’t. 
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