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On First-Order Equations for Multidimensional Filters
EDUARDO D. SONTAG

Abstract—A construction is given to obtain first-order equation
representations of a multidimensional filter, whose dimension is of the
order of the degree of the transfer function.

I. INTRODUCTION

Let k be any field, m, ¢, integers. Let k[z;, z, ] [respectively,
k(zy, z3)] denote the ring of polynomials (respectively, field
of rational functions) in two indeterminates z,, z,. Let the

Manuscript received March 16, 1977; revised July 25, 1977. This
work was supported in part by U.S. Army Grant DA-ARO-D-31-124-
72-G114 through the Center for Mathematical System Theory, Univer-
sity of Florida, Gainesville, FL 32611.

The author was with the Department of Mathematics, Center for
Mathematical System Theory, University of Florida, Gainesville, FL
32611. He is now with the Department of Mathematics, Rutgers
University, New Brunswick, NJ 08903.

481

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-26, NO. §, OCTOBER 1978

degree of a polynomial p = p(z,, z7) in z; be denoted by d;p.
The degree of p is then dp: = (d,p, d,p). A rational function
w(z,, zz) p(zl, 23) (2, 27)7" is causal iff djp < djq,i=1,2
and ¢ =2z$192519 + .- -, Denote thend;w: = dyq,dw: = (d,w,
daw). A transfer funcn’on is a matrix

W(zy,22) = (wy(zy, 22)) E Kz, 22 )X

where each wy; is causal.

A system E of d:menszon (nl, n,) is given by four matnces
(F, G, H,J) where FEK™" GEK™*™ Hek™*" Jek™*!
(n:=ny +ny).

Introduce the polynomial matrix

4 Zl[nl 0 ]
T 0 g,

where 7, is the identity matrix of dimension7. Then, for each
Z of dimension (n,, ny), let

We(z1,22): = H(4p 0, - F)'G.

It is easy to verify that Wy is a transfer function. When
m=t=1,d;Wg <n;. The realization problem that we wish
to consider is: *“given a transfer function W, find T with

¥ = W.” The motivation for this problem is the following.
A transfer function describes a recursive “northeast causal’
two-dimensional filter, and a system realization T corresponds
to a set of first-order equations realizing the corresponding
filter; specifically, denoting

F F G
3[ 1 12], G=[ 1], He=(Hy, ),
Fay Faq G,

then Z corresponds to a system of equations
xiy(h+ 1, k)=Fyyxy(h, k) + Fyaxa(h, k) + Gyu(h, k)
xa(h,k+1)=Fa1x1(h, k) + Fyax9(h, k) + Gau(h, k) (1.2)
y(h,k)=Hyx,(h, k) + Hyxq(h, k) + Julh, k)

where x;(*, ):Z X Z = k"1,

Generalizations to transfer functions in three or more vari-
ables z,, - '+, z, are straightforward and will not be discussed
here.

Models of the above type were independently suggested by
Roesser [8] and Sontag [9]; the latter reference also explains
how the same mathematical problem appears in modeling
neutral delay-differential systems.

In the present paper we expand in detail the realization
method outlined in {9, disgression (5.6)]. The results were
presented at the Amherst Workshop on Algebraic System
Theory, held at the University of Massachusetts, June 14-19,
1976.

(1.1)

II. MAIN RESULTS

Theorem (2.1): Every W(zy, z;) has a realization.

Theorem (2.2): Let m=t=1,dW=(ny,n,).

Then

a) there is a realization Z of dimension (ny, 2n2);
b) if ¢(z1, 27) = q1(21) q2(22), there is a realization Z of
dimension (n,, ny).

Analogous conclusions hold, of course, by reversing the roles
of 2y and Zq.

Note that b) deals with what are usually called ‘‘separable”
transfer functions. We shall prove both of the above theorems
as corollaries of a general construction, outlined in the rest of
this section. It is this construction, rather than the theorems
themselves, which we consider to be the main contribution of
this work. In the next section we shall present a conjecture
for the case when k is algebraically closed, and in the last
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section we indicate the connection between certain realiza-
tions of “separable’ transfer functions and the theory of “rec-
ognizable’” power series as developed by Fliess [31.

Let k[(z;)] denote the set of causal transfer funcnons in
the variable z, only, i.e., the set of all p(zz)q(zz) with deg
q = deg p. We introduce the notion of a

system R over k[(z;)] of dimension r:
this is just a 4-tuple of matrices
R =(A(z7), B(2,), C(z7), D(z2)),

where 4, B, C, and D are matrices over k[(z;)] of dimensions
r by r,r by m, t by r, and ¢ by m, respectively. (This is a par-
ticular case of a system over a commutative ring; the general
concept is studied in [10].)

A system R as above induces a transfer function

Wr(z1,22): = C(22)(21 1y - A(z3)) ' B(z,) + D(z3).

Conversely, each W(z,, z4) has an R-realization, i.e., is of the
form Wg for some R. Indeed, given W there is some 7 such
that we may write

W(zy,22) = (Pz2)2] +- -~ +Po(z2))
X (gr(z2)2] +- - +q0(z2)"
= Pp(22)q,(22) 7 + (Tyoy(22)2] 7 + 77+ + To(22))
X (2] + v,y (222 + +up(z)) !

where the P; are polynomial matrices, q; are polynomials, and
vi(z2): = qj(z2)q,(22)7"
Ti(z2): = (Pj(z2) - Pr(22)v;(22))q, (22 )7L

Then W= Wg where R =(4, B, C, D) is the rt-dimensional
system over k[(z;)] given by

0 0--0 -vol, |
I, 0---0 -u,I
t 14¢ To
0 I, 0 -vly
A= . : ), B:i= , (2.3)
.
L Iy ~vpy1pJ
C:={0---01), D:=Pgq;'.

The proof of Theorems (2.1) and (2.2) will be completed
upon finding, for each R, a suitable X with Wz = Wp. We
study then the possible passages from Wg to Wg. To study
this, we note that for any X =(F, G, H), Wy = Wg whenR is
defined by [using the notations (1.1)]

A(z9)=Fy1 + F13(220,, - F22)7'Fa

B(z2)= Gy + Fiy(z2ln, - F22)7'Gs

Clz2) = Hy + Hy(22dn | - F22) ' Fa

D(zy)=J + Hy(z21y, - F22)7'G,.
Equivalently, denoting

~ Fq, o
Wr(z2) = (220, ~ F22)" (F21,G2),
H,
we see that
[A(Zz) B(Zz)]_[Fn
C(Zz) D(Z'z) H]
Therefore, if we begin with R = (4, B, C, D), finding Z is

equivalent to obtaining a decomposition (2.4). In other words,
we must solve a “‘minimal realization problem” for the transfer

G, ~
s ] + Wr(z2). (2.4)
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matrix (in z, ) in the left-hand side of (2.4). It is well known
from linear system theory (see, for instance, (2, p. 219]) that
the minimal possible dimension n, is given by

, = M.d. Wg(z;) = McMillan degree of Wg (z2)
where

M.d. ft\’R (z,) = degree of the least common denominator of
all minors of Wg(z,).

The problem of finding Z can thus be decomposed into two
parts: first find R, for instance (but not necessarily!), via (2.3),
obtaining n, ; then construct Z with n, = M.d. Wg(z;). There
are well-known algorithms for such a construction [2, p.
235 ff. ]. It must be noted that different R can lead to differ-
ent WR(zz) so both n; and n, depend on the construction.
Moreover, one may instead first ‘“‘extract’ z, and then z,,
obtaining a different result. Although the method can be
expected to give realizations of rather low dimensions, it is
clear that much more research is needed before the situation
becomes well understood.

In any case, the bounds of Theorem (2.2) are easily proved
from the above construction via (2.3) and (2.4). Indeed,

-Vo To
ﬁ’R (z2) = |constants ’ ’ ;
“Upy Try
1 Prq;1
since -u;T; - Ti(-vj) = ,q,/q,, it follows that q, is a common

denommator for all minors, so
M.d. Wg(z;) <

And b) is clear since it means that all yy are

2degq, = 2n,,

proving a).
constant.
Example (2.5): Let

W(21.22)=ill2",
21z, -1
k = real numbers. Then an R-realization is
zix=z3'x + (1 +23%)u
y=x +z§lu
and a (1, 2)-dimensional Z-realization is
xi(h+ 1, k)=xy(h, k) +u(h k)
xo(h, k+1)=x,(h, k)+x3(h, k)
x3(h, k+ 1)=u(h, k)
y=x; tXxs3.
11I. A CONJECTURE

Conjecture (3.1): Let k be algebraically closed (for instance,
k = complex numbers). Let W(z,, z,) be a scalar (i.e., m=t=
1) transfer function of degree (ny, ny). Then there exists a
realization T of W such that dim Z = (n,, n,).

When n, (orny) =1, thxs conjecture is true, since one may
always factor T, —(Poq, ) (qoq, )asa product of causal
z -transfer functions, so R = (- 9047, Poa;', qo4; 1 Pgrt)
gives rise to a WR (z,) with McMillan degree n,.

Example (3.2): Consider again the W in (2.5), but this time
let kK = complex numbers. A direct calculation shows that a
Z of dimension (1, 1) realizes W if and only if

x,(h+1,k)=axy(h, k) +bu(h, k)
xaCh, k+1)=a " x,(h, k) + cu(h, k)
y =b"1x, +c"x2
and (abc)? +1=0.
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Remarks (3.3):

a) There can be no rational procedure for finding realiza-
tions of minimal dimensions. Indeed, such a procedure,
involving only additions and multiplications, would give the
same result independently of the field of definition. But
Examples (2.5) and (3.2) show that minimality is field-
dependent. This situation is completely at variance with the
ordinary linear system case.

b) If the conjecture is true, one may expect also, by an
algebraic-geometric argument, generically finitely many reali-
zations under the group GL(n;) X GL(n,) acting in the
obvious way.

IV. RECOGNIZABLE TRANSFER FUNCTIONS

A transfer function is recognizable iff every entry has the
form p(z,, zz)q(zl)_lq(zz)'l. We now show how some
results of [4] can be translated into the context of two-
dimensional filters by looking at another type of first-order
difference equations,

We consider in this section systems ['=(F,, F;, G, H) of
dimension n given by equations of type

x(h,k)=Fxth - 1,k)+ Fx(h, k- 1)+ Gu(h, k)
y =Hx

where x(h, k)isin k" and F| F, = F, F,.
Theorem (4.1): W(z,, z3) has a [-realization if and only if
W(zy,z,)is recognizable. Furthermore, expanding

W(zy,22)= 2 Agzi'zil,
ij>0
the dimension of a minimal [-realization is equal to the rank n
of the block Hankel matrix H(W) which has rows and columns
indexed by the pairs (i,j) and the (i, j )th block is

i+7\!
( i ) Ay

Any two realizations of this dimension n are equal except for
a change of basis in k".

Proof: Easy consequence of [4]. The proof by Fliess

provides an explicit I"-realization of dimension n = rank H(W).
Remarks (4.2):

a) Representations of “separable,” i.e., recognizable, trans-
fer functions by systems somewhat similar to our I" were given
by Attasi [1] and Fornasini and Marchesini [S], [6], adding a
term of the form -F;F,x(h - 1, k- 1) to the right side. This
minor variation of the above can be treated also via the theory
of recognizable series.

b).In general, there are Z-realizations of dimension (ny +
ny), much less than the dimensions of possible [-realizations,
For instance, a straightforward modification of an example of
(6] is W(z,, z;)=(zy +z5 +2)z7 23", which has a (1, 1)
dimensional Z-realization [by Theorem (2.2)], but rank
H(W) = 4.

V. FINAL REMARKS

The bound given in Theorem (2.2a) improves considerably
that given by {S5], [6], in which the dimension of ¥ is of the
order of ny * n, rather than n, +n,.

In an interesting recent paper, Kung et al. {7] have indepen-
dently arrived at Theorem (2.2).
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