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Edge Selections in Bilinear Dynamic Networks
Arthur Castello B. de Oliveira1, Milad Siami1, and Eduardo D. Sontag 1,2

Abstract—We develop some basic principles for the design and robust-
ness analysis of a continuous-time bilinear dynamical network, where
an attacker can manipulate the strength of the interconnections/edges
between some of the agents/nodes. We formulate the edge protection
optimization problem of picking a limited number of attack-free edges
and minimizing the impact of the attack over the bilinear dynamical
network. In particular, the H2-norm of bilinear systems is known to
capture robustness and performance properties analogous to its linear
counterpart and provides valuable insights for identifying which edges are
most sensitive to attacks. The exact optimization problem is combinatorial
in the number of edges, and brute-force approaches show poor scalability.
However, we show that the H2-norm as a cost function is supermodular
and, therefore, allows for efficient greedy approximations of the optimal
solution. We illustrate and compare the effectiveness of our theoretical
findings via numerical simulations.

I. INTRODUCTION

The robust design of control systems against adversarial attacks is
crucial for sustainability, from engineering infrastructures to living
cells. One way to think of this problem is to consider a set of
interacting dynamic agents, whose behaviors are influenced by the
flows between them. These flows can involve either information or
physical objects, such as electrical currents in power grids, social
mobility in networks of interconnected populations, and transmission
of infections, among others [1]–[6]. In this context, we consider a
scenario where each agent has a state or quantity that evolves over
time based on its own previous values and on the flow of information
from other nearby agents. These interactions are represented by a
graph, where the agents are depicted as nodes and the flow of
information is represented by edges, as shown in Fig. 1. To ensure the
robust synthesis of systems, the design may need to be strengthened
to mitigate the effects of interference by adversaries or unexpected
failures that could disrupt progress towards the desired goal state.
In this context, a relevant question is how to optimize the design to
reduce the network’s vulnerability and make the system safer.

In the classical linear dynamic network literature, the actions
available to an adversary are restricted to directly affecting the
dynamics of specific agents, in the hopes (of the adversary) that these
disruptions will propagate to the rest of the network. This formulation
is still very rich and versatile, even with such a limited assumption.
Many works can be found in the literature, [7]–[18], where the
authors investigate how disturbances on specific agents propagate
and how to evaluate the weak spots of a network. Despite the
extensive literature on this subject, the assumption that interference
only impacts node dynamics restricts the analysis to local conclusions
in situations where the adversary holds a greater level of power over
the network. On the other hand, analyzing the network while allowing
for arbitrary levels of control by the adversary is a difficult problem,
so in this paper, we take a middle-ground approach. We examine
the scenario where the adversary has the ability to not only interfere
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Fig. 1: This illustration shows a bilinear network with 6 nodes and 7

edges. The nodes represent “agents” and the edges show the “flow”
between the agents. The presented network has an edge protection budget
of 5. The designer has chosen to protect the 5 edges depicted in green,
leaving the ones in red vulnerable to attacks.

with individual nodes but also disturb the capacity of the connections
between them in an “affine” manner, which means our network has
bilinear terms in its dynamics.

While the tools and insights from the study of linear systems do
not directly apply to bilinear systems, they are still a fascinating
class of nonlinear systems that have been studied extensively in the
literature (e.g. see references [1], [2], [19]–[22]). Bilinear systems
have the ability to approximate a wide range of functions, and have
been used to model problems in a diverse range of fields, including
electrical and transportation networks, surface vehicles, and immunol-
ogy. Moreover, bilinear systems have been applied in various ways
in Artificial intelligence (AI), including in the modeling and analysis
of neural networks, optimization and control of complex systems,
natural language processing tasks, and image recognition [2], [4]–
[6], [23]. These systems can improve the robustness and efficiency
of machine learning algorithms, leading to enhanced performance in
tasks such as pattern recognition, decision making, and control.

In this paper, we describe an optimization problem for safeguarding
a network with vulnerable nodes and edges. To reduce the impact
of attacks on the network, the system designer tries to determine
the best combination of edges to safeguard, based on the nodes
being targeted and the available resources for protecting a certain
number of edges. We show that, when it is well-defined, our proposed
H2-based performance metric is supermodular on the power set
of vulnerable edges, enabling the use of approximation algorithms
with guaranteed performance. The first contribution of this paper is
to clearly formulate the optimization problem. We then proceed to
examine the problem using algorithmic approaches.

II. PRELIMINARY DEFINITIONS

A. Notations and Assumptions

Throughout this paper, the set of real numbers and non-negative
real numbers are represented by R and R+, respectively. Similarly,
the set of the strictly positive integers is denoted by N and the set
of strictly positive integers up to m by N≤m. For any finite set of
elements V , let |V| ∈ N ∪ {0} be the number of elements in the
set, with |V| = 0 ⇐⇒ V = ∅, and let 2V be the power set of V .
Furthermore, for any function f with domain in V , for each subset
V̄ ⊂ V define f(V̄) = {f(v) | v ∈ V̄}. The elementary vector of
index i is denoted ei and is a vector of all elements zero except
for the i-th element, which is 1. Similarly, an elementary matrix
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Eij = eie
>
j has all its elements zero except for the one in position

(i, j), which is one. In some of the derivations in this paper, we use
matrix algebra techniques involving vectorization and the Kronecker
product (denoted by ⊗), which can be found in [24].

B. Bilinear Dynamical Networks

Consider a linear (di)graph given by the triplet G = (V, E , w),
where V ⊂ N, E ⊆ V×V , and w : E → R, together with sets Ea ⊆ E
and Va ⊂ V defined as the set of edges and nodes (respectively) under
the effect of external disturbances. The set V is composed of agents
with linear dynamics given by

Σi : ẋi(t) = −dixi(t)+
∑

(i,j)∈E

w(j, i)xj(t)+
∑

(i,j)∈Ea

ηij(t)xj+δivi(t),

(1)
where, for every i ∈ V , di ∈ R+ and δi = 1 if i ∈ Va and zero
otherwise.

Let n=|V|, mv=|Va|, and me=|Ea| be the number of nodes, nodes
under attack, and edges under attack in the network respectively. Then
we can write the dynamics of the entire network Σ as follows

Σ : ẋ(t) =

(
N0 +

me∑
k=1

ηk(t)Nk

)
x(t) +Bv(t) (2)

where x ∈ Rn is the state vector, N0 = −D + A is assumed to be
Hurwitz, D = diag([d1, . . . , dn]) and A is the adjacency matrix of
G. For every i ∈ Va, vector v is the concatenation of the additive
(node) disturbances vi, and B ∈ Rn×mv is the column composition
of elementary vectors ei ∈ Rn, both in the same order. If the graph is
directed Nk=Ejkik=ejke

>
ik

, and ηk=ηjkik is called a multiplicative
(edge) disturbance, with (ik, jk) being the k-th edge in Ea, according
to some arbitrary ordering. If the graph is undirected then all the
above holds except that Nk = Ejkik + Eikjk = ejke

>
ik

+ eike
>
jk

.
The set Gb = {V, E , w,Va, Ea} and its associated dynamics (2) are
called a bilinear (di)graph or network.

Notice that the dynamics of a bilinear dynamical network is a
particular case of the generic bilinear system given byẋ(t) =

(
N0 +

m∑
k=1

uk(t)N̄k

)
x(t) + B̄u(t)

y(t) = Cx(t)

(3)

where m = mv + me, u = [η>, v>]>, N̄k = Nk for 1 ≤ k ≤ me

and N̄k = 0n×n for k > me, B̄ = [0n×me , B], and C = In×n. As
a particular case, any results from the bilinear systems literature are
immediately applicable to bilinear dynamical networks.

III. H2-BASED PERFORMANCE MEASURE AND ITS PROPERTIES

A. H2-norm of bilinear systems

The Volterra series is routinely used to obtain solutions for bilinear
systems, with many results associating N0 being Hurwitz with the
convergence of the series and the stability of the system [3], [25]–
[28]. The i-th order Volterra kernel of a bilinear system is given by

hi(t, τ1, . . . τi) =

m∑
k2,...,ki=1

eN0(t−τi)NkieN0(τi−τi−1)

×Nki−1eN0(τi−1−τi−2) · · ·Nk2eN0(τ2−τ1)B

(4)

and theH2-norm is defined as a function of the multivariable Laplace
transform of the volterra kernels as below.

Definition 1. Assuming zero initial condition, that N0 is Hurwitz,
and letting the i-th order transfer function Hi(s1, s2, . . . , si) be

the multivariable Laplace transform of the i-th Volterra kernel
hi(t1, t2, . . . , ti), the H2-norm of a bilinear system Σ is defined as

‖Σ‖H2 =

(
∞∑
i=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

trace(H>i (jw1, . . . , jwi)

×Hi(jw1, . . . , jwi))dw1 . . . dwi

)1/2

.

(5)

With this definition, the H2-norm of bilinear systems is known
to satisfy some of the same properties as its linear counterpart. For
example, from [29] we can write the value of the H2-norm of (3) as
a function of the reachability Gramian as follows:

‖Σ‖2 =
√

trace(CPC>), (6)

where P is the reachability Gramian of the bilinear system defined
as

P =

∞∑
q=1

∫ ∞
0

· · ·
∫ ∞

0

PqP
>
q dt1 · · · dtq, (7)

where
PqP

>
q = eN0tq

∑
k∈Ea

NkPq−1P
>
q−1N

>
k eN

>
0 tq , (8)

for q > 1, and
P1P

>
1 = eN0t1BB>eN

>
0 t1 . (9)

Furthermore, if (7) converges then P is the solution of the
generalized Lyapunov equation

N0P + PN>0 +
∑
k∈Ea

NkPN
>
k +BB> = 0, (10)

and is positive semi-definite.
The expression of (6) with (10) allows a more efficient computation

of the H2-norm than its definition in (5), enabling its use in
optimization problems. These, however, assume the convergence of
the infinite sums in (5) and (7). In [29] the authors state the following
assumption as sufficient for that:

Assumption 1. The matrix N0 is stable and for two numbers α and
β, which satisfy the inequality ‖eN0t‖ ≤ βe−αt for all t > 0, we
have

√∑
k∈Ea ‖NkN

>
k ‖ <

√
2α/β.

This assumption requires that the linear dynamics dominates over
the worst-case bilinear dynamics. For bilinear networks, it sets a
limit on the number of multiplicative disturbances or, alternatively,
the maximum “energy” of each disturbance. As we have noted in
previous works ( [30], [31]), this assumption can be overly restrictive,
as we will demonstrate in Section V.

To find a less conservative assumption, we can consider a bilinear
system written as in equation (3) and assume that all inputs ū are
independently sampled white noise signals ū = η = dW/dt, with
unitary covariance. This leads to a stochastic differential equation,
which has been studied extensively in the literature [32]–[34]. Based
on this literature, we can make the following assumption.

Assumption 2. For a bilinear system as (3) with independently
sampled, unitary covariance Gaussians as its inputs, N0 is Hurwitz
and the following holds:

λmax

(
I ⊗N0 +N0 ⊗ I +

m∑
k=1

Nk ⊗Nk

)
< 0 (11)

Under Assumption 2, the solution to the bilinear SDE satisfies
limt→∞ E(x(t)) = 0 and limt→∞ Cov(x(t)) = P , where P is the
solution to the generalized Lyapunov equation (10).

The link between Assumption 2 and deterministic bilinear systems
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is shown in [20] where the author shows that Assumption 2 also
guarantees the convergence of the reachability Gramian. In the same
paper, we are shown the L2 to Linf relation of the H2 norm of
bilinear systems through the following equation:

sup
t≥0
‖y(t)‖2 ≤

(
trace(CPC>)

) 1
2

exp
{

0.5‖u0‖2L2

}
‖u‖L2 , (12)

where P , the reachability Gramian, is the unique solution to

N0P + PN>0 +

m∑
k=1

N̄kPN̄
>
k = −B̄B̄>. (13)

The vector u0 is defined in [20] as u0
k(t) = uk(t) if Nk 6= 0 and

u0
k(t) = 0 otherwise, that is u0 is nonzero only for the inputs that

affect the system in a bilinear way.
The first thing to notice from the result above is that it recovers

the linear definition of the H2-norm. In general, for a bilinear system
(12), it still establishes an L2 to L∞ relationship between input and
output, although not as directly as an induced norm. In fact, a remark
in [20] shows that as long as N0 is Hurwitz, one can restrict the inputs
to a small enough ball around 0 such that (2) holds, which is exactly
the same condition proven in [35] as necessary and sufficient for a
bilinear system to be iISS, a established condition for L2 to L∞
stability of nonlinear systems.

When comparing the two assumptions, we can show that Assump-
tion 1 implies Assumption 2, but not the converse. To see that, take
the L2-norm as follows

‖Ṗ‖ = ‖N0P + PN>0 +
∑
k

NkPN
>
k +BB>‖

≤ 2‖N0P‖+ ‖
∑
k

NkPN
>
k ‖+ ‖BB>‖

≤ 2σmax(N0)‖P‖+ ‖
∑
k

NkN
>
k ‖‖P‖+ ‖BB>‖,

(14)

which is a monovariable deterministic ODE with stable solution if
and only if ‖

∑
NkN

>
k ‖ ≤ 2‖σmax(N0)‖. Therefore, if that upper

bound on the norm of P is stable, then P converges.
The literature on stochastic bilinear systems establishes a direct

relationship between the H2-norm and the covariance of the output
under white noise inputs. Furthermore, results from the literature on
deterministic bilinear systems have also shown that the bilinear H2-
norm reflects the relationship between the L2-norm of the inputs
and the L∞-norm of the output. This emphasizes the usefulness of
the H2-norm as a performance metric for bilinear systems. In the
following section, we examine how the H2-norm can be used to
solve the edge selection problem efficiently.

B. Supermodularity of the H2-norm

For the main theoretical result of this paper, consider the following
definition

Definition 2. Define a family of bilinear digraphs F generated by
the ground set of mv vulnerable edges Ev ⊆ V × V as follows:

F(Ev) :=
{
G = (V, E , w, Ea,Va)

∣∣ Ea ∈ 2Ev
}
,

for given node set V , edge set E , weight function w, and attacked
node set Va. We assume Σ(Ea) is the bilinear system (2) induced
by the corresponding bilinear digraph (V, E , w, Ea,Va) ∈ F(Ev).
We can, then, define the square of the H2 norm as a set function
ρΣ(.) : 2Ev → R+ as

ρΣ(Ea) := ‖Σ(Ea)‖2H2
, ∀Ea ∈ 2Ev . (15)

In the following theorem, we characterize some functional proper-
ties of set function ρΣ(.) : 2Ev → R+.

Fig. 2: This figure shows how changing the value of the bilinear term k
in the single-input single-output (SISO) bilinear system (16) affects the
evolution of state x over time. The system is subjected to Gaussian white
noise disturbances η and v, with constants a = 1 and b = 1. The subplots
from left to right correspond to k values of 0.1,

√
2, and 10.

Theorem 1. Suppose that for a family of bilinear digraphs F the
H2-norm is properly defined for everyone of its elements, then the
square of the H2 norm defined as a set function ρΣ(Ea) : 2Ev → R+

is monotone and supermodular.

Notice that the assumption made on the theorem (proper definition
of the H2-norm) is satisfied if all elements of F satisfy either
Assumption 1 or 2. To investigate the tightness and relationship
between the two assumptions, and the behaviour of the system when
they are broken, consider the following system:

ẋ = −ax+ kxη + bv (16)

where η and v are independently sampled white noise inputs and a,
b and k are positive nonzero constants.

The generalized Lyapunov equation given by (10) can be solved
for this system by P = b2

2a−k2 . Assumption 1 can be writ-
ten as a > 0 and |k| <

√
2a, or 2a − k2 > 0, and As-

sumption 2 becomes −2a + k2 < 0. Looking at the formu-
lation for the Gramian from equation (7), we can write P̄1 =∫∞

0
e−aτ bbe−aτdτ = b2

2a
, P̄2 =

∫∞
0
e−aτkP̄1ke

−aτdτ = b2

2a
k2

2a
,

and P̄i =
∫∞

0
e−aτkP̄i−1ke

−aτdτ = b2

2a

(
k2

2a

)i−1

, with P =∑∞
i=1 P̄i =

∑∞
i=1

b2

2a

(
k2

2a

)i−1

.
This defines the infinite sum of a geometric progression with

quotient q = k2/2a and initial value a0 = b2/2a. The necessary
and sufficient convergence condition for the sum is k2/2a < 1 ⇐⇒
2a−k2 > 0 which coincides with Assumptions 1 and 2. This means
that for this SISO bilinear system, both assumptions coincide and
are necessary and sufficient for any positive values of k, a and b.
Simulating this system with a = 1, b = 1 and different values of k
allows us to observe how breaking the convergence condition affects
the behaviour of the system.

The first simulation, shown in the left plot of Fig. 2 with k = 0.1,
appears to satisfy both assumptions for this system. The simulation
was done ten times and the averaged covariance is 0.5051, very
closely lower bounded by the Gramian P = 0.5025. We actually
observed some of the samples with a covariance bellow 0.5025,
indicating the tightness of the bound for this system.

The second simulation, shown in the center plot of Fig. 2 with
k =
√

2, is at the boundary of the assumptions made for the system.
The estimated covariance of the state diverges, and we can see that
the system exhibits high amplitude peaks, indicating a change in
behavior. The covariance of the system also varied between different
runs of the simulation, but it consistently resulted in high, sporadic
peaks. This is accentuated in the third simulation, shown in the right
plot of Fig. 2 with k = 10, where the peaks are more evident.

It is important to note that this system is iISS (with a quadratic
integrand gain function), which means that its deterministic response
to L2 inputs can never be unstable, regardless of the value of k. The
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instability in the covariance of the state appears in the form of high
peaks, which become more pronounced as k increases in relation to
a and b.

IV. APPROXIMATION ALGORITHMS

We now focus on the network synthesis problem. Our goal is to
improve the performance of a bilinear network (2) by removing ` ≥ 1
edges from the vulnerable edge set Ev . Specifically, we aim to find
a subset of ` vulnerable edges Ep ⊂ Ev , with |Ep| ≤ ` that when
protected minimizes the H2-norm of the system.

A. Edge Protection Problem Formulation

As we have assumed that an attacker will always attempt to
compromise as many edges as possible, we must protect enough
edges to ensure that either Assumption 1 or 2 holds. This leads to the
following combinatorial optimization problem for edge protection:

E∗ = arg min
Ea⊂Ev

ρΣ(Ea)

s.t. |Ea| ≥ |Ev| − `,
(17)

where Ev is the set of vulnerable edges, and ` is the maximum number
of edges that can be protected. The optimal protected edge set can
be obtained by Ep = Ev\E∗ from (17).

In our optimization problem (17), we aim to find the member of the
family of bilinear networks with the highest H2-norm, as measured
by the function ρΣ, while also satisfying the constraints. According
to Definition 2, ρΣ is used to evaluate the H2-norm of different
members of the family of bilinear networks. Solving combinatorial
optimization problems can be challenging, but we should note that
for ` = 1, the exact solution can be found by calculating the value of
ρΣ(Ea) for all n sets of attack edges with n− 1 elements. However,
for larger values of `, the number of sets with n− ` elements grows
almost exponentially, especially when ` is close to n/2. This can
be seen by the expression

(
n
dn/2e

)
∼ 2n
√
n

. As a result, using a
straightforward approach to solve the optimization problem may not
be computationally efficient.

B. Linearized Edge Selection

One intuitive approach is to linearize the cost function ρΣ(.) at
some operating point. To do this, we can consider a relaxed cost
function ρΣ defined as follows:

ρΣ(ck) = trace(P (ck)) =

n∑
i=1

e>i P (ck)ei =

n∑
i=1

e>i ⊗ e>i vec(P (ck))

=

n∑
i=1

e>i ⊗ e>i (A⊗ I + I ⊗A+

me∑
k=1

c2kNk ⊗Nk)−1

× vec(BB>),
(18)

where c ∈ Rn, c = [c1, c2, . . . , cme ]
>, with 0 ≤ ck ≤ 1, for k =

1, 2, . . . ,me. It is easy to verify that such relaxed function is the
extention of the set function ρΣ to the polyhedron with vertices at
the original domain set. Defining W (c) as

W (c) = A⊗ I + I ⊗A+

me∑
k=1

c2kNk ⊗Nk, (19)

Algorithm 1: A linearized-based algorithm to select protected
edges.

Input : Σ, Ev , and `

Output: E∗

1 Ea ← {}
2 for k = 1 to me do
3 rho(k) ← compute ∂ρΣ

∂ck
for c̄ = [1, 1, . . . , 1]>

4 end
5 i← indexes of ` highest elements of rho
6 E∗ ← Ev(i)

7 return E∗

Algorithm 2: A greedy heuristic to sequentially pick protected
edges.

Input : Σ, Ev , and `

Output: E∗

1 Ea ← {}
2 for k = 1 to ` do
3 {e} ← find an edge in Ev that returns the minimum value for

ρΣ (Ea ∪ {e})− ρΣ(Ea)

4 Ea ← Ea ∪ {e}
5 Ev ← Ev\{e}
6 end
7 E∗ ← Ea
8 return E∗

we take the partial derivative with respect to ck at some operation
point c̄ as

∂ρΣ

∂ck
(c̄) =

n∑
i=1

(e>i ⊗ e>i )
∂(W (c̄))−1

∂ck
vec(BB>)

=

n∑
i=1

(e>i ⊗ e>i )W (c̄)−1 ∂W

∂ck
(c̄)W (c̄)−1vec(BB>),

(20)

where
∂W

∂ck
(c̄) = 2ckNk ⊗Nk. (21)

To select the ` edges to protect, we evaluate (20) at c̄ =
[1, 1, . . . , 1]> for all k ∈ N≤me , and choose the ` highest
values. The algorithm 1 is used to implement this approach in the
simulations.

C. Greedy Edge Selection

A second approach is to use a greedy algorithm hat takes advantage
of our ability to solve the problem for ` = 1 and the existence
of theoretical bounds for the greedy minimization of supermodular
functions subject to cardinality constraints. The greedy algorithm 2
is used in the simulations.

It is known that for the maximization of submodular functions is
NP-hard and the greedy algorithm does not deliver the optimal solu-
tion in general. However optimality gaps are given in the literature
allowing the leverage of efficient algorithms to find a good suboptimal
solution. In [36], the authors present a greedy-based algorithm with
complexity O(n`) and that guarantees that the resulting solution is at
least 35.6% of the maximum value of the function. However, while
it is reassuring to know the optimality gap is bounded, 35.6% is
a large margin for suboptimality. To evaluate a better margin, in the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3269323

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



5

next section we relax the combinatorial optimization to obtain a closer
lower bound for the optimal solution of this problem.

D. A Lower Bound for the Optimal Cost

Next we compute a lower bound for the optimal solution of our
problem. With this we can evaluate an upper bound for the optimality
gap and check if the greedy solution is good.

To do this, we first relax the integer problem of selecting a subset
Ea of a set of vulnerable edges Ev , as in (17), to find a vector c ∈ Rm,
where m = |Ev|, c = [c1, c2, . . . , cm]>, as below.

min
P,c

trace(P )

s.t. N0P + PN>0 +

m∑
k=1

c2kNkPNk +BB> = 0,∑
k

ck ≥ mv − `,

0 ≤ ck ≤ 1, ∀k = 1, . . . ,m.

(22)

Notice that the first constraint is quadratic and bilinear in the
parameters. To solve the first problem, we can redefine c̄ =
[c21, c

2
2, . . . , c

2
m]>. To solve the second problem, first notice that

we can solve the generalized Lyapunov equation for P by using the
Kronecker product as

vec(P ) = −W (c̄)−1vec(BB>), (23)

where

W (c̄) = N0 ⊗ I + I ⊗N0 +
∑
k

c̄kNk ⊗Nk. (24)

Next, we point that for N0 ∈ Rn×n,

trace(N0) =

n∑
k=1

e>i N0ei =

n∑
k=1

(e>i ⊗ e>i )vec(N0), (25)

where ei is the i-th vector in the canonical base of the vector space.
Using (23) and (25), we can rewrite the relaxed problem (22) as

min
c̄

−
n∑
k=1

(e>k ⊗ e>k )W (c̄)−1vec(BB>)

s.t.
∑
k

c̄k ≥ mv − `, 0 ≤ c̄k ≤ 1, ∀k = 0, . . . ,m

(26)

The conversion of the constraint
∑
k ck ≥ mv − ` to

∑
k c

2
k ≥

mv − ` does not result in the same feasibility set, but it is easy to
verify that

∑
k c

2
k ≥ mv − ` →

∑
k ck ≥ mv − ` if 0 ≤ ck ≤ 1.

As such a solution to (26) is a lower bound to the solution of (22),
which is a lower bound to the solution of the original combinatorial
optimization problem.

The final step for being able to efficiently solve our lower bound
problem is to show that its cost function is convex. Consider the
functions f : Rn → R, g : S+

n2 → R+ and h : Rn → S+
n2 defined

as below

h(c̄) = −W (c̄) = −(N0 ⊗ I + I ⊗N0 +
∑
k

c̄kNk ⊗Nk), (27)

g(W ) =

n∑
k=1

(e>k ⊗ e>k )W−1vec(BB>) (28)

f(c̄) = g(h(c̄)). (29)

One can easily verify that f defined as above is the cost function
of our relaxed problem, and that h is affine on its arguments. One can
also conclude that any c̄ in the domain of definition of the H2 norm
results in a positive definite value for h(c̄) (since W (c̄) needs to be

negative definite for Assumption 1 to hold). For showing convexity
of g consider the following lemma:

Lemma 2. Function g(.) : S+
n → R+ given by (28) is convex.

Proof. Function g is convex if and only if for any λ ∈ [0, 1]

g(λW1 + (1− λ)W2) ≤ λg(W1) + (1− λ)g(W2). (30)

Defining ḡ(W ) = W−1 we rewrite the inequality above as
n∑
k=1

(e>k ⊗ e>k )ḡ(λW1 + (1− λ)W2)vec(BB>)

≤
n∑
k=1

(e>k ⊗ e>k )(λḡ(W1) + (1− λ)ḡ(W2))vec(BB>)

(31)

which allow us to conclude that g is convex if ḡ is convex in the
positive definite sense. To show convexity of ḡ we need to show that
for two positive definite matrices W1 and W2,

λW−1
1 + (1− λ)W−1

2 < (λW1 + (1− λ)W2)−1, (32)

which is equivalent to saying that for any v ∈ Rn

λv>W−1
1 v+(1−λ)v>W−1

2 v ≥ v>(λW1 +(1−λ)W2)−1v, (33)

Defining g̃(λ) = u>(λW1 +(1−λ)W2)u for any positive definite
matrices W1 and W2 and nonzero vector u allows us to rewrite the
inequality above as.

λg̃(0) + (1− λ)g̃(1) ≥ g̃(λ). (34)

Define Z(λ) = λW1 + (1 − λ)W2 and compute the second
derivative of g̃ with respect to λ gives

d2g

dλ2
= 2(ZZ−1u)>Z−1ZZ−1u = v>Z−1v ≥ 0 (35)

since the inverse of the convex combination of positive definite
matrices is positive definite. Therefore, g̃(λ) is convex for any u
and any positive definite W1 and W2 for λ ∈ [0, 1] which implies ḡ
is convex and, therefore, g is convex.

With this we can conclude that f = g ◦ h is convex since it is the
composition of a convex function with an affine one. Since our cost
function is convex and our constraints affine, we solve this relaxed
problem for a given number ` of attacked edges using a gradient
descent algorithm to get a lower bound on the optimal point as well
as an argument vector c. By picking the ` largest directions of c we
can obtain a rounded solution as the third method for solving (17).

V. SIMULATIONS

In this section, we demonstrate the effectiveness of our proposed
algorithms on two different graphs: a simple one that we can solve
using brute force and a more complex one. For each network,
we consider a range of budgets from protecting a single edge to
protecting all edges. We compare the solutions obtained using each
method with the lower bound derived in Subsection IV-D and with the
expected gain from randomly selecting the edges to protect. We also
assume that every edge of the network is vulnerable, that is Ev=E ,
and that a fixed set of nodes (indicated in the diagrams in red) is also
under attack. Note that, although we focus only on attacked edges,
the interaction between multiplicative and additive disturbances has
a great effect over the behavior of the network, as we pointed out in
a previous publication [31].

Along this section, the drift matrix N0 in the bilinear dynamics
(2) will be given by

N0 = −L− 1

n
1n×n, (36)
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Fig. 3: The directed 10-node ring graph used in Example 1. Node 1,
highlighted in red, is the one under the effect of an additive disturbance
and all edges are vulnerable.

where L is the Laplacian matrix of the corresponding graph at each
section (c.f. Figs. 3, and 5) and 1 is the matrix of all ones. For each
graph the nodes indicated in red (as node 1 in Fig. 3) are disturbed by
an additive attack (i.e., B is the column composition of elementary
vectors ei for all i ∈ Va). Finally, in (2), each Nk corresponds to an
unprotected vulnerable edge (i, j) where (i, j) ∈ Ev\Ep and defined
by Nk:=Eij+Eji if the graph is undirected and Nk:=Eji otherwise,
where Eij is an elementary matrix as defined in Subsection II-A.

Along our simulations, unless specified otherwise, we weight all
the Nks by λ̄2/m to make sure Assumption 1 is satisfied, where
m = |Ev| is the number of vulnerable edges, and λ̄2 = min(1, λ2)
is the smallest between the smallest nonzero eigenvalue of L and 1.

Example 1. The Ring Graph: In the first simulation we use a 10-
node ring digraph labeled as in Fig. 3. Due to its simplicity, we can
compute the value of ρΣ defined in (15) for any subset of attacked
edges and find the actual optimum through brute force. Notice that,
despite the symmetry of the ring graph, some edges have a greater
effect on the cost function than others. This happens because of
the additive disturbance acting on node one, which introduces an
important imbalance in the system. We can see from Fig. 4 that
for this system, all proposed algorithms obtained the brute force
minimum every time.

Fig. 4: This figure presents results for bilinear dynamics (2) with topology
given by the 10-node ring digraph (Fig. 3). We compare the three
proposed methods (linearized cost, greedy algorithm and rounding of
lower bound solution) for solving the optimization problem (17) with the
actual global minimum obtained through brute force.

We can also see that protecting the four most vulnerable edges
results in the greatest reduction in the value of the H2-norm. This
provides valuable information when planning cost-effective protection
strategies for a system with the 10-node ring digraph.

Example 2. The Barábasi-Albert Random Graph: For a more com-
plex randomly generated network, we simulate the 20-node Barabási-

Albert graph shown in Fig. 5. Similarly to the previous simulations,
our dynamics are given by (2) and the drift matrix by (36), where
L is the Laplacian for this graph, and the Nk’s are given for each
unprotected vulnerable edge.

Fig. 5: This figure shows the Barabasi-Albert graph used in Example
2, where nodes 2 and 10 (highlighted in red) are subjected to additive
disturbances and all edges are vulnerable.

Due to the larger dimension and increasse complexity of the net-
work when compared to the previous simulations (5 and 10 nodes ring
graphs), computing the brute force solution becomes prohibitively
time-consuming, therefore the lower bound becomes our reference
when analysing suboptimality of our results. We also assume, as with
the previous simulations, that every edge is independently disturbed
in an undirected manner, unless protected.

Fig. 6: This figure presents results for bilinear dynamics (2) with topology
given by Fig. 5. We compare the three proposed methods (linearized cost,
greedy algorithm and rounding of lower bound solution) for solving the
optimization problem (17) with the proposed lower bound and the random
edge selection. In this case, the bilinear matrices Nk’s are weighted to
satisfy Assumption 1 and all methods perform similarly.

We can see from Fig. 6 that, as it was with the ring graph
simulations, the three proposed algorithms have exactly the same
results. This is likely due to the fact that Assumption 1 is too
restrictive. By asking that the linear dynamics be dominant in the
worst case (all vulnerable edges attacked), we make it so that all three
algorithms have the same results, as they would if the dynamics were
perfectly linear to begin with. To observe the effects of the bilinear
dynamics, we run a second simulation where we do not weight the
Nk’s to respect Assumption 1, but we verify that it still respects
Assumption 2. The results are presented in Fig. 7.

Notice from the second set of simulations that the solutions from
our three approximation algorithms differ for a different number of
attacked edges, with the greedy edge selection being consistently the
best performing algorithm.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a way to evaluate the influence of multi-
plicative disturbances to the overall stability of the system by making
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Fig. 7: This figure presents results for bilinear dynamics (2) with topology
given by Fig. 5. We compare the three proposed methods (linearized
cost, greedy algorithm and rounding of lower bound solution) for solving
the optimization problem (17) with the proposed lower bound and the
random edge selection. In this simulation, the bilinear matrices Nk’s are
unweighted but the dynamics still respect Assumption 2.

use of the H2-norm defined for bilinear systems. We discussed the
meanings of the H2-norm and why it is an interesthing metric, and
showed that in the context of edge selection, it is supermodular,
which allows us to use efficient selection algorithms with guaranteed
known optimality gaps. Important to our H2-based edge selection
method, we discussed how Assumption 1 might be too restrictive by,
in practice, requiring the dominance of the linear dynamics over the
bilinear one. Furthermore, we discuss a possible relaxation of that
assumption, originally derived for Gaussian disturbances, where the
H2-norm still maintains its relationship to the steady-state covariance
matrix of the states.

On a more practical note, we proved that the problem of edge
selection for maximizing the H2-norm is supermodular, which gives
approximation guarantees for greedy approximations. We also pro-
posed a general lower bound for the optimal solution through the
continuous relaxation of the combinatorial optimization. We then
simulated two network topologies: one of a simple ring digraph,
chosen so that we could compare our greedy solution and the lower
bound to the actual minimum; and one of a more complex 20 node
Barabási-Albert graph. While all algorithms performed similarly, the
greedy solution was the lowest one for all the simulated cases.

We believe that our edge-perturbation results will be of interest in
other areas besides classical optimization ones such as transportation
networks. In fact, we were largely motivated to pursue this work by
the analysis of the impact of edge knock-outs in biological networks
carried out in [37], which used CRISPR technology to target mi-
croRNA pathways that control processes ranging from cell growth to
stress responses. That paper emphasized how edge perturbations play
a critical role in cell function, analogously to how node perturbations
lead to global behavioral changes through network effects [38].
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APPENDIX

To prove Theorem 1, we first prove the following three Lemmas.

Lemma 3. Let us define P̃q(Ea, t̄q) = Pq(Ea, t̄q)P>q (Ea, t̄q), where
t̄q = [t1, . . . , tq] and PqP

>
q is given by (8). Then for q ≥ 2, A,

B ⊂ Ev , A ∩ B = ∅, we have

P̃q(A ∪ B, t̄q) = P̃q(A, t̄q) + P̃q(B, t̄q) + R̃q(A,B, t̄q), (37)

where R̃q(A,B, t̄q) < 0

Proof. We prove the Lemma by induction. First notice that for q = 1,
P̃1(A∪B, t̄1) = eN0t1BB>eN

>
0 t1 , is constant and independent from

the set of attacked edges, so the relationship from the lemma does
not hold, since P̃1(A ∪ B, t̄1) = P̃1(A, t̄1) = P̃1(B, t̄1) = P̃1(t̄1).
For q ≥ 2 we can write

P̃2(A ∪ B, t̄2) = eN0t2
∑

k∈A∪B
NkP̃1(t̄1)N>k e

N>0 t2

= eN0t2
∑
k∈A

NkP̃1(t̄1)N>k e
N>0 t2 + eN0t2

∑
k∈B

NkP̃1(t̄1)N>k e
N>0 t2

= P̃2(A, t̄2) + P̃2(B, t̄2)
(38)

which proves the base case, since R̃2 = 0 is positive semidefinite.
Furthermore, if we assume the following

P̃q−1(A ∪ B, t̄q−1) = P̃q−1(A, t̄q−1) + P̃q−1(B, t̄q−1)

+ R̃q−1(A,B, t̄q−1)
(39)

with R̃q−1 < 0, then

P̃q(A ∪ B, t̄q) = eN0tq

(∑
k∈A

NkP̃q−1(A ∪ B, t̄q−1)N>k

+
∑
k∈B

NkP̃q−1(A ∪ B, t̄q−1)N>k

)
eN
>
0 tq

= P̃q(A, t̄q) + P̃q(B, t̄q) + eN0tq

(∑
k∈A

NkP̃q−1(B, t̄q−1)N>k

+
∑
k∈B

NkP̃q−1(A, t̄q−1)N>k +
∑

k∈A∪B
NkR̃q−1(A,B, t̄q−1)N>k

)
eN
>
0 tq

= P̃q(A, t̄q) + P̃q(B, t̄q) +Rq(A,B, t̄q)
(40)

To finish the induction step we can verify that Rq is positive semi-
definite since it is assumed Rq−1 < 0, and positive semi-definiteness
is invariant under congruence transformations and matrix addition,
and since P̃q < 0, then Rq < 0. This completes the proof.

Lemma 4. Given A, B ⊂ Ev , A∩B = ∅, and P defined by (7), the
associated Gramian P (A ∪ B) can be rewritten as follows

P (A ∪ B) = P (A) + P (B) +R(A,B)− C (41)

where R(A,B) < 0, and C =
∫∞

0
eN0tBB>eN

>
0 tdt < 0 is a

constant matrix that is independent of the set of attacked edges.

Proof. Applying Lemma 3 to (7), we get

P (A ∪ B) =
∞∑
q=1

∫ ∞
0
· · ·
∫ ∞

0
P̃q(A ∪ B, t̄q)dt1 . . . dtq

=

∞∑
q=2

∫ ∞
0
· · ·
∫ ∞

0

(
P̃q(A, t̄q) + P̃q(B, t̄q) + R̃q(A,B, t̄q)

)
dt1 . . . dtq

+ 2

∫ ∞
0

P̃1(t̄1)dt1 −
∫ ∞

0
P̃1(t̄1)dt1 (42)

= P (A) + P (B) +

∞∑
q=2

∫ ∞
0
· · ·
∫ ∞

0
R̃q(A,B, t̄q)dt1 . . . dtq︸ ︷︷ ︸
R(A,B)

−

−
∫ ∞

0
P̃1(t̄1)dt1.

The positive semi-definiteness of R is immediate from the fact that
such property is invariant under matrix addition and integration.

From this point forward, the dependency of P̃q on t̄q and similar
functions is suppressed for better readability of the equations.

Lemma 5. The function R given by Lemma 4 is monotonic. That is,
given A, B, C ⊂ Ev , all disjoint sets, then R(A∪C,B) < R(A,B).

Proof. The Lemma is true if the following holds:

R(A ∪ C,B) = R(A,B) + U(A,B, C) (43)

with U < 0. The inequality for monotonicity then becomes:

R(A,B) + U(A,B, C)−R(A,B) = U(A,B, C) < 0. (44)

To show that (43) holds it is enough to show that

R̃q(A ∪ C,B) = R̃q(A,B) + Ũq(A,B, C) (45)

with Ũq < 0 holds for all R̃qs that compose R in (42). For q = 2,
R̃2 = 0, which holds the inequality trivially, proving the base case
of induction. For an arbitrary q, assuming it holds for q−1, we have

R̃q(A ∪ C,B) =

= eN0tq

( ∑
k∈A∪C

NkP̃q−1(B)N>k +

+
∑
k∈B

NkP̃q−1(A ∪ C)N>k +

+
∑

k∈A∪C∪B
NkR̃q−1(A ∪ C,B)N>k

)
eN
>
0 tq

= eN0tq

(∑
k∈A

NkP̃q−1(B)N>k +
∑
k∈C

NkP̃q−1(B)N>k

+
∑
k∈B

Nk

(
P̃q−1(A) + P̃q−1(C) + R̃q−1(A, C)

)
N>k

+
∑

k∈A∪B
Nk

(
R̃q−1(A,B) + Ũq−1(A,B, C)

)
N>k

+
∑
k∈C

NkR̃q−1(A ∪ C,B)N>k

)
eN
>
0 tq (46)

= R̃q(A,B) + eN0tq

(∑
k∈C

NkP̃q−1(B)N>k

+
∑
k∈B

Nk

(
P̃q−1(C) + R̃q−1(A, C)

)
N>k

+
∑

k∈A∪B
Nk

(
Ũq−1(A,B, C)

)
N>k

+
∑
k∈C

NkR̃q−1(A ∪ C,B, t̄q−1)N>k

)
eN
>
0 tq

= R̃q(A,B) + Ũq(A,B, C),

completing the induction step of the proof (positive semidefiniteness
of Ũq is proved in exactly the same way as for R̃q in Lemma 4).

Using Lemmas 3, 4, and 5, we prove Theorem 1 as follows.

Proof. A set function ρΣ : 2Ev → R+ is supermodular if and only if
it satisfies ρΣ(B∪{e})−ρΣ(B) ≥ ρΣ(A∪{e})−ρΣ(A). for every
A, B ⊂ Ev with A ⊂ B and every e ∈ Ev/B. From Lemma 4, we
can rewrite the left hand side of inequality above as ρΣ(B ∪ {e})−
ρΣ(B) = ρΣ(e) + trace(R(B∪ e)), and the right hand side similarly.
The supermodularity definition can be simplified to trace(R(B∪e)) ≥
trace(R(A∪ e)),where R is defined as in Lemma 5. This inequality
always holds for our function because A ⊂ B satisfies the conditions
for Lemma 5.
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