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Analysis of a Reduced Model of
Epithelial–Mesenchymal Fate
Determination in Cancer Metastasis as a
Singularly-Perturbed Monotone System

M. Ali Al-Radhawi and Eduardo D. Sontag

Abstract Tumor metastasis is one of the main factors responsible for the high fatal-
ity rate of cancer. Metastasis can occur after malignant cells transition from the
epithelial phenotype to themesenchymal phenotype. This transformation allows cells
to migrate via the circulatory system and subsequently settle in distant organs after
undergoing the reverse transition from themesenchymal to the epithelial phenotypes.
The core gene regulatory network controlling these transitions consists of a system
made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this
work, we formulate a mathematical model of the core regulatory motif and analyze
its long-term behavior. We start by developing a detailed reaction network with 24
state variables. Assuming fast promoter and mRNA kinetics, we then show how to
reduce our model to a monotone four-dimensional system. For the reduced system,
monotone dynamical systems theory can be used to prove generic convergence to
the set of equilibria for all bounded trajectories. The theory does not apply to the full
model, which is not monotone, but we briefly discuss results for singularly-perturbed
monotone systems that provide a tool to extend convergence results from reduced to
full systems, under appropriate time separation assumptions.
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1 Introduction

Realistic dynamical models of physical systems are often very complex and high-
dimensional, and this is especially so in molecular cell biology. Effective analy-
sis often requires simplifications through model reduction techniques. A traditional
approach to model reduction in biology is to take advantage of time-scale separa-
tion. Indeed, most interesting processes in biology are made up of subsystems which
operate at different time scales, thus allowing fast subprocesses to be “averaged out”
at the observational time scale. The rigorous mathematical analysis of time scale
separation, and in particular the mathematical field of singular perturbations, owe
much to the pioneeringwork of Tikhonov [1]. Singular perturbation theory now plays
a key role in both science and engineering [2].

There aremany examples of the ubiquitousness of time-scale separation inmolec-
ular biology. An early example is the study of enzymatic reactions, where the deriva-
tion ofMichaelis-Menten kinetics in 1913 [3] is still widely used [4]. Another exam-
ple is provided by Gene Regulation Networks (GRNs) which naturally have multiple
levels of time scales: external stimuli change Transcription Factor (TF) activities in
milliseconds, promoter kinetics equilibrate in seconds, transcription and translation
take minutes, and protein kinetics are in the order of tens of minutes to hours [5].

In this paper we study a GRN that determines cell-fate in the metastasis of can-
cerous tumors. This network regulates a transition between two cell types: epithelial
cells, which line the external and internal surfaces of many organs, andmesenchymal
stem cells, which are multipotent connective tissue cells that can differentiate into
other type of cells such as muscles, bone, etc. Bidirectional transitions between these
two cell types can happen, and they are referred to as “Epithelial to Mesenchymal”
transitions (EMT) and “Mesenchymal to Epithelial” transitions (MET). During the
EMT process, a cell loses adhesion to neighbouring cells, and becomes more inva-
sive and migratory. It is worth noting that both EMTs and METs are part of normal
developmental processes such as embryogenesis and tissue healing. Nevertheless,
they are of one of main mechanisms of tumor metastasis. After undergoing EMTs,
cancerous cells travel through the blood as Circulating Tumor Cells (CTCs). These
CTCs settle in other organs by undergoing METs, and they subsequently multiply,
thus giving rise to metastatic tumors [6, 7]. Because of their key role in cancer,
the identification of the GRNs enabling EMTs/METs has been a focus of a large
research effort. Transcription factors (TFs) such as SNAIL, SLUG, TWIST, and
ZEB1 have been studied in great detail [8, 9]. Cellular signals such as p54, Notch,
EGF, Wnt, HIF-1α, and others can induce EMTs/METs [6]. These signals act on a
core four-component network that involves the upstream SNAIL/miR-34 circuit and
the downstream ZEB1/miR-200 circuit [10, 11]. The conceptual organization for
such a circuit is depicted in Fig. 1. Each pair reproduces the standard toggle switch
architecture, i.e., mutual inhibition. However, this design differs by having a mixed
inhibition mechanism: the TFs ZEB1 and SNAIL inhibit the miRNAs (μ34, μ200) at
the transcriptional level, while μ34, μ200 inhibit SNAIL and ZEB1, respectively, at
the translational level. Therefore, such circuits are known as chimeric circuits [10].
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Fig. 1 The core EMT/MET
network [10], which involves
proteins, mRNAs,
microRNAs (miRNAs) and
the underlying genes which
are not explicitly depicted.
The mRNAs of SNAIL and
ZEB1 are denoted by
ms ,mz , respectively. An
arrow of the form “→”
denotes activation, while “�”
denotes inhibition. The
detailed reaction network
model is presented in Sect. 4

One of the contributions of thiswork is to translate the conceptual diagram inFig. 1
into a precise mathematical model. Our model, while not completely novel, clarifies
and provides explicit details of several features of models found in the literature.
More importantly, we analyze the long-term behavior of a reduced model obtained
under a natural and biologically realistic time scale separation assumption. We prove
a theorem guaranteeing “almost-sure” convergence of trajectories to steady states.
This paper also serves to motivate a powerful but relatively unknown theorem on
singularly perturbed monotone systems. A central and well-known result for mono-
tone systems is Hirsch’s Generic Convergence Theorem [12–16], which guarantees
that almost every bounded solution of a strongly monotone system converges to the
set of steady states. This theory has been widely applied to biochemical systems
[17–19]. However, many biological models are not monotone. For example, mono-
tonicity with respect to orthant cones rules out negative feedback loops, which are
key components of homeostasis and adaptive systems. Indeed, the core EMT/MET
network that is the focus of this paper has a negative feedback loop between S and
mS (see Fig. 1). Nevertheless, we can take advantage of the fact that transcription
happens at a faster time-scale than translation. Moreover, despite the fact that miR-
NAs and mRNAs belong to the same class of biochemical molecules, comparison of
their half-lives reveals that mRNAs have much shorter half-lives than miRNAs and
proteins [20, 21]. Hence, the negative loop in the core EMT/MET network is a “fast”
loop. Intuitively, negative loops that act at a comparatively fast time scale should
not affect the main characteristics of monotone behavior. This has been rigorously
studied in [22] (see the Ph.D. thesis [23] formore details), using tools from geometric
singular perturbation theory.

Thepaper is organized as follows. InSect. 2wemodel the coreEMT/METnetwork
in detail, and derive a reduced model. Section3 reviews several basic definitions and
theorems about monotone systems, and in Sect. 4 we analyze the reduced model
theoretically and we review results that are can be used to extend convergence from
reduced to full systems.
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2 Modeling of the EMT/MET System

A mathematical model for the EMT/MET system has been presented in [10, 24]
based on several assumptions that include detailed balance. Here, we drop such
assumptions, and develop a more “mechanistic” model via the framework of Chem-
ical Reaction Networks (CRN). We review the notation briefly [25, 26]. A CRN is a
set of species S = {Z1, .., Zn} and a set of reactions R = {R1, ...,Rν}. A reaction
Rj can be written as:

∑n
i=1 αi j Zi → ∑n

i=1 βi j Z j .
A stoichiometry matrix � ∈ R

n×ν is defined elementwise as [�]i j = βi j − αi j .
The reactions are associated with a rate function R : Rn

≥0 → R
ν
≥0. We assume that

R takes the form of Mass-Action kinetics: R j (z) = ∏n
i=1 k j z

αi j

j , where k j is the
kinetic constant. Let z(t) ∈ R

n
≥0 be the vector of species concentrations at time t .

The associated ODE can be written as: ż = �R(z).
We model GRNs as CRNs via the central dogma of molecular biology (see [27]

for a detailed framework). Each gene is associated with promoter states, an mRNA
state, and a protein state. As mentioned in the introduction, we can assume that the
promoter kinetics and the mRNA kinetics are fast. In this section, we will derive the
dynamics of the fast and slow systems. We will show that the model can be reduced
from 24 dimensions to four dimensions. The slow states are S, Z , μ200, μ34. We will
start with promoter kinetics.

2.1 Promoter Dynamics

For each gene j , we denote the promoter states by species of the form D j
i . The

superscript denotes the gene,while the subscript denotes the occupancy of the binding
sites. Let D34, D200, DS, DZ be the unbound promoters for μ34, μ200, SNAIL, and
ZEB1, respectively. For instance, D34

s denotes S binding to the promoter of μ34,
while D34

sz denotes both S, Z binding to the promoter of μ34.
Hence, the CRN describing promoter dynamics for the EMT/MET network

(Fig. 1) can be written as:

2S + DZ
αs
2−−⇀↽−−

α−s
DZ
s , 2Z + DZ

αz
2−−⇀↽−−

α−z
DZ
z , 2S + DZ

z

αs
2−−⇀↽−−

α−s
DZ
sz, 2Z + DZ

s

αz
2−−⇀↽−−

α−z
DZ
sz,

2S + D34
αs
2−−⇀↽−−

α−s
D34
s , 2Z + D34

αz
2−−⇀↽−−

α−z
D34
z , 2S + D34

z

αs
2−−⇀↽−−

α−s
D34
sz , 2Z + D34

s

αz
2−−⇀↽−−

α−z
D34
sz ,

2S + D200 αs/2−−−⇀↽−−−
α−s

D200
s , 2Z + D200 αz/2−−−⇀↽−−−

α−z
D200
z , 2S + D200

z
αs/2−−−⇀↽−−−
α−s

D200
sz ,

2Z + D200
s

αz/2−−−⇀↽−−−
α−z

D200
sz , 2S + DS αs/2−−−⇀↽−−−

α−s
DS
s ,
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The concentration of a species Y will be denoted, if no other notation is used, by [Y ].
The reaction structure implies that we have the conservation law

∑
i [D j

i ](t) = E j

for each gene, where E j , j ∈ {S, Z , 34, 200} is the total concentration available in
the medium. Hence, E j stays constant during the course of the reaction. Note that
each TF is assumed to bind to its promoter as a dimer. The same analysis can be
repeated if the TF binds as an n-mer for some integer n ≥ 1.

Since binding/unbinding kinetics are usually fast [5], we will approximate all
the promoter states with their quasi steady state (QSS) approximations. We are inter-
ested in deriving the expression for the active promoter states. Since both S, Z repress
μ34, μ200, then the active states are the unbound promoter states D34, D200, respec-
tively. The promoter DS is the active state for SNAIL since it is a self-repressing
gene. Finally, DZ

sz is the active state for ZEB1 because it is activated by both SNAIL
and self-binding.

We will consider ZEB1 as an example. Let dz(t) := [[DZ ], [DZ
s ], [DZ

z ],
[DZ

sz]]T (t). Using the reactions above, we can write the ODE for the promoters
of Z to get:

ḋz = Pz(s, z)dz :=

⎡

⎢
⎢
⎣

−αss2 − αz z2 α−s α−z 0
αss2 −α−s − z2αz 0 α−z

αz z2 0 −α−z − s2αs α−s

0 z2αz s2αs −α−s − α−z

⎤

⎥
⎥
⎦ dz .

(1)

Note that s, z are slow variables. Setting the derivatives to zero and substituting the
conservation law we get:

[DZ
sz]qss = EZs2z2

(s2 + As)(z2 + Az)
,

where As := α−s/αs, Az := α−z/αz . Similarly, we can define the matrices Ps(s, z),
P34(s, z), P200(s, z). Hence, we get:

[D200]qss = E200As Az

(s2 + As)(z2 + Az)
, [DS]qss = ES As

(s2 + As)
, [D34]qss = E34As Az

(s2 + As)(z2 + Az)
.

2.2 RNA Dynamics

Translational inhibition bymiRNAs is achieved by an RNA-induced Silencing Com-
plex (RISC). RISC binds to the target mRNA and degrades it via the Argonaute pro-
tein [28].Here,we assume a simplemodel inwhichmiRNAbinds to the targetmRNA
to inhibit translation and activate degradation. In general, multiple miRNAs can bind
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to a single mRNA. Here we assume that each mRNA can have up to two binding
sites. For each additional miRNA binding, translation is inhibited and degradation is
accelerated.

The CRN for the transcription of SNAIL and ZEB1 can be written as follows:

DS γs−→ DS + Ms, DZ
sz

γz−→ DZ + Mz, Ms
β−s−→ ∅, Mz

β−z−→ ∅,

whereMs, Mz are the species denoting themRNAsofSNAILandZEB1, respectively.
The CRN for the miRNA-mRNA reaction (with two binding sites) can be written as
follows:

μ34 + MS
cs−⇀↽−
c−s

MSμ

βs1−→ μ34, μ34 + MSμ

cs−⇀↽−
c−s

MSμ2

βs2−→ 2μ34,

μ200 + MZ
cz−⇀↽−
c−z

MZμ

βz1−→ μ200, μ200 + MZμ

cz−⇀↽−
c−z

MZμ2

βz2−→ 2μ200,

Since miRNAs actively degrade mRNAs, we assume that:

βs < βs1 < βs2, βz < βz1 < βz2. (2)

Remembering that μ200, and z are the slow variables, we can write the ODE for
ZEB1 translational dynamics as follows (withmz(t) := [[Mz], [Mzμ], [Mzμ2 ]]T (t)):

ṁz = Qz(μ200)mz + bzD
Z
sz (3)

:=
⎡

⎣
−czμ200 − βz c−z 0

czμ200 −βz1 − czμ200 − c−z c−z

0 czμ200 −c−z − βz2

⎤

⎦mz +
⎡

⎣
γz
0
0

⎤

⎦ DZ
sz

Since (3) is a linear system in μ200, the quasi-steady state can be solved easily by
matrix inversion. Substituting the QSS for [DZ ] we get:

mz,qss = γz EZ s2z2

(s2 + As)(z2 + Az)

⎡

⎣
βz2czμ200 + ez1

ez2μ200

c2zμ
2
200

⎤

⎦ 1

βz2c2zμ
2
200 + ez3czμ200 + ez1βz

,

(4)
where ez1 := βz1βz2 + (βz1 + βz2)c−z + c2−z, ez2 := cz(βz2 + c−z), ez3 := βzβz2 +
βz1βz2 + βz1c−z . The dynamics of ms can be derived similarly and we get:

ms,qss = γs ES As

(s2 + As)

⎡

⎣
βs2csμ34 + es1

es2μ34

c2sμ
2
34

⎤

⎦ 1

βs2c2sμ
2
34 + es3csμ34 + es1βs

, (5)

where es1 := βs1βs2 + (βs1 + βs2)c−s + c2−s, es2 := cs(βs2 + c−s), es3 := βsβs2 +
βs1βs2 + βs1c−s .
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2.3 Slow Dynamics

The complete reaction model requires modeling the production of the proteins and
the miRNAs. The CRN can be written as follows:

D34 εβ34−−→ D34 + μ34, μ34
εβ−34−−→ ∅,

D200 εβ200−−→ D200 + μ200, μ200
εβ−200−−−→ ∅,

Ms
εks−→ Ms + S, Msμ

εks1−−→ Msμ + S, Msμ2

εks2−−→ Msμ2 + S, S
εk−s−−→ ∅,

Mz
εkz−→ Mz + Z , Mzμ

εkz1−−→ Mzμ + Z , Mzμ2

εkz2−−→ Mzμ2 + Z , Z
εk−z−−→ ∅.

The kinetic constants are multiplied by ε to emphasize that the corresponding
reactions are slow. Note that since miRNA inhibits translation, the mRNA-miRNA
complexes have lower translation rates than raw mRNAs. Hence, we have:

ks > ks1 > ks2, kz > kz1 > kz2. (6)

The model above assumes that Z is produced only when both Z , and S are bound
to ZEB1’s promoter. But this is not realistic, since constitutive transcription is always

present at low levels. Hence, we model this by a reaction ∅ εδz−→ Z with δz small. This
will help us also show generic convergence for the reduced system in Sect. 4.

After substituting the QSSs for the fast variables in the slow system, all the terms
corresponding to promoter and mRNA reactions vanish. Hence, the corresponding
ODE can be written as follows:

μ̇34 = β34[D34] − β−34μ34 = E34Az Asβ34

(s2 + As)(z2 + Az)
− β−34μ34

ṡ = [ks ks1 ks2]ms − k−ss = [ks ks1 ks2]ms,qss − k−ss (7)

μ̇200 = β200[D200] − β−200μ200 = E200β200Az As

(s2 + As)(z2 + Az)
− β−200μ200

ż = δz + [kz kz1 kz2]mz − k−z z = δz + [kz kz1 kz2]mz,qss − k−z z.

where mz,qss,ms,qss are given by (4), (5), respectively.

3 Monotone Systems and Singular Perturbations

3.1 Monotone Systems

In this section, we review basic definitions and results regarding monotone systems.
We base our discussion on [13, 16, 23].
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A nonempty, closed set C ⊂ R
N is said to be a cone if C + C ⊂ C , αC ⊂ C

for all α > 0, and C ∩ (−C) = {0}. For each cone C , a partial order on R
N can be

associated. For any x, y ∈ R
N , we define:

x ≥ y ⇔ x − y ∈ C

x > y ⇔ x − y ∈ C, x 
= y.

When C◦ is not empty, we can define x � y ⇔ x − y ∈ C◦.
In this paper, we only consider coneswhich are orthants ofRN . In order to identify

the various orthants, let σ ∈ {±1}N and let

Cσ = {z ∈ R
n|σi zi ≥ 0, 1 ≤ i ≤ n}

be the corresponding orthant cone. Let �σ be the corresponding partial order.
A set W ⊆ R

N is said to be p-convex, if W contains the line joining x and y
whenever x � y, x, y ∈ W . Hence, equipped with a partial ordering on a p-convex
and open set W we study the ordinary differential equation:

dz

dt
= F(z), (8)

where F : W → R
N is a C1 vector field. We assume that the system is forward

invariant with respect to W . In our application in this paper we will use W = R
N+ ,

the open positive orthant.
We are interested in a special class of equations which preserve the partial order

along all trajectories.

Definition 1 The flow φt of (8) is said to have positive derivatives on a setW ⊆ R
N ,

if
[

∂
∂zφt (z)

]
x ∈ C◦ for all x ∈ C \ {0}, z ∈ W , and t > 0.

Definition 2 The system (8) is called monotone (resp. strongly monotone) on a set
W ⊆ R

N if for all t > 0 and all z1, z2 ∈ W ,

z1 ≥ z2 ⇒ φt (z1) ≥ φt (z2) (resp. φt (z1) � φt (z2) when z1 
= z2).

Establishing that a flow has positive derivatives can be performed by verifying
the irreducibility of the Jacobian as the following theorem states:

Proposition 1 Assume that (8) is monotone with respect to an orthant cone C. If
∂F
∂z (z) is irreducible for all z ∈ W then the flow φt of (8) has positive derivatives on
the set W ⊆ R

N .

The following result can be interpreted as saying that having positive derivatives
is an “infinitesimal” version of strong monotonicity.

Proposition 2 Let W ⊂ R
N be p-convex and open. If the flowφt has positive deriva-

tives in W, then the associated ODE is strongly monotone on W.
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Hence, we have the following corollary:

Corollary 1 Let (8) and W be given as above. Assume that (8) is monotone with
respect to an orthant cone C. If ∂F

∂z (z) is irreducible for all z ∈ W, then the system
(8) is strongly monotone with respect to C on W.

This is a rephrasing of the well-known Hirsch Generic Convergence Theorem:

Theorem 1 Assume that (8) is strongly monotone on a p-convex open set W ⊆ R
N .

Let Wc ⊆ W be defined as the subset of points whose forward orbit has compact clo-
sure in W. If the set of equilibria is totally disconnected, then the forward trajectory
starting from almost every point in Wc converges to an equilibrium.

ByCorollary 1, it is sufficient to checkmonotonicity and irreducibility to establish
generic convergence.

3.2 Graphical Characterization of Monotonicity

Monotonicity with respect to orthant cones can be characterized via Kamke’s condi-
tions. We review the relevant material from [16, 18]. Let σ ∈ {±1}N and let Cσ be
the corresponding orthant as defined above. Let � = diag(σ ), i.e., a diagonal matrix
with σ as the diagonal. Then, the following holds:

Theorem 2 (Kamke’s conditions) Let (8) be given and let φt be the associate flow.
Let J = ∂F

∂z be the corresponding Jacobian. Let W ⊆ R
N be a p-convex open set.

Assume that there exists σ ∈ {±1}N such that � J� is Metzler on W (i.e., all non-
diagonal entries are non-negative). Then the corresponding flow is monotone on W
with respect to the partial order �σ .

The last proposition gives a useful characterization for monotonicity with respect
to orthant cones; however, it requires checking 2N possible sign combinations. Alter-
natively, a simple graphical criteria can be stated for a graph derived from the Jaco-
bian. Informally, it states that the system is orthant monotone if every loop has a net
positive sign. We state it more formally next.

We say that a Jacobian J is sign-stable on a set W if for each i 
= j , sgn(Ji j ) is
constant onW . Define a signed directed graph G with vertices {1, ..., n}. There is an
edge connecting vertices i to j if the partial derivative Ji j does not vanish identically.
The sign of the edge is equal to sign of Ji j . A loop is any sequence of edges (without
regard to direction) that does not traverse a vertex twice and it starts and ends with
the same vertex. The sign of a loop is the product of the signs of the constituent
edges. It is worth noting that diagonal entries, i.e., “self-loops”, have no effect on
the validity of the results.

Theorem 3 (Positive Loop Property) Let (8) be given. Let J = ∂F
∂z be the cor-

responding Jacobian. Assume J is sign-stable. Let W ⊆ R
N be a p-convex open
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set. Let G be the graph defined above. If every loop has a positive sign, then there
exists σ ∈ {±1}N such that � J� is Metzler on W (i.e., all non-diagonal entries are
non-negative).

3.3 Singular Perturbation Model Reduction

The process of mathematical modeling of physical processes involves usually reduc-
tion of the dynamics of fast variables. For instance, self-loops, i.e., terms corre-
sponding to the diagonal entries of the Jacobian J , are often approximations of fast
dynamics. Hence, it is intuitive to expect that the theorems in the previous section
hold for sufficiently fast negative self-loops.

Hence, we consider a system in the singularly perturbed form:

dx

dt
= f0(x, y, ε) (9)

ε
dy

dt
= g0(x, y, ε),

where f0 : Rn+ × R
m+ × [0, ε̄] → R

n+, g0 : Rn+ × R
m+ × [0, ε̄] → R

m+ are smooth
bounded functions and ε̄ > 0 is fixed. Furthermore, we assume that the equilib-
rium set is totally disconnected for all ε < ε̄. These assumptions are automatically
satisfied in our case since Mass-Action kinetics give rise to polynomial systems.

For 0 < ε � 1, the dynamics of x are much slower than y. If ε 
= 0, we can
change the time scale to τ = t/ε, and study the equivalent form:

dx

dτ
= ε f0(x, y, ε) (10)

dy

dτ
= g0(x, y, ε).

Model reduction via singular perturbations requires solving the fast system at a
quasi-steady state, hence we assume that there exists a smooth bounded function

m0 : R+
m → R

+
n

such that g0(x,m0(x), 0) = 0 for all x ∈ R
n+. From the previous section it can be

seen thatm0 exists and is unique aswe have derived all theQSS expressions uniquely.
For simplicity, let z = y − m0(x). Hence, the fast system (10) can be written as:

dx

dτ
= ε f1(x, z, ε) (11)

dz

dτ
= g1(x, z, ε),
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where

f1(x, z, ε) = f0(x, z + m0(x), ε),

g1(x, z, ε) = g0(x, z + m0(x), ε) − ε[ ∂
∂x m0(x)] f1(x, z, ε).

When ε = 0, the system (11) becomes

dz

dτ
= g1(x, z, 0), x(τ ) ≡ x0 ∈ Wx . (12)

Verifying the stability of the fast system is a standard and an intuitive requirement
for singular perturbation methods as in the original Tikhonov theorem [1]. Hence we
need to check that:

1. the equilibrium z = 0 of (12) is globally asymptotically stable on {z | z +
m0(x0) ∈ R

m+} for all x0 ∈ R
+
n .

2. all eigenvalues of the Jacobian ∂
∂y g0(x,m0(x), 0) have negative real parts for

every x ∈ R
+
n .

We study this in the next section.

4 Analysis of the Core EMT/MET Network

In our analysis in the Sect. 2 we have considered fast and slow reactions separately.
We will use now the notation from Sect. 3. Let x(t) = [μ34, s, μ200, z]T (t) be the
state of the slow system, and let y(t) = [dT

s , dT
z , dT

34, d
T
200,m

T
s ,mT

z ](t) be the state
of the fast system. Hence, the full system can be written in the form (9). We denote
the reduced system (7) as ẋ = G(x).

4.1 Stability of the Fast Dynamics

In this subsection, we want to study global asymptotic stability of the fast system,
and to show that its Jacobian is Hurwitz.

For a fixed slow variable x , the fast dynamics of ZEB1, SNAIL, miRNA-34 ,
miRNA-200 are decoupled from each other as can be seen from the CRNs introduced
before. Furthermore, all the systems are linear. Let us analyze ZEB1 as an example.
From (1),(3) we get [

ḋz
ṁz

]

=
[
Pz(s, z) 0

Bz Qz(s, z)

] [
dz
mz

]

,

where Bz := [O3×3, bz] and O3×3 ∈ R
3×3 is a zero matrix. The dynamics of dz

are decoupled from mz . Since Pz is an irreducible Metzler matrix with principal



456 M. Ali Al-Radhawi and E. D. Sontag

eigenvalue of 0, Perron-Frobenius Theorem [29] implies that all other eigenval-
ues are strictly negative. In fact, they can be computed as {−αss2 − α−s,−αz z2 −
α−z,−αss2 − α−s − αz z2 − α−z}. Since the total number of promoters is conserved,
we can reduce the dimension of the ODE by one. It follows that the reduced pro-
moter dynamics are globally asymptotically stable. The same argument applies to
the promoters of Z , μ34, μ200.

We turn to the dynamics ofmz . Due to the block triangular structure we only need
to study the eigenvalues of Qz(s, z). This matrix is also Metzler and the principal
eigenvalue can be shown to be negative. Hence, it is Hurwitz. This can be proven
alternatively with a linear Lyapunov function V (mz) = 1Tmz . The time-derivative
is V̇ (mz) = −[βz βz1 βz2]mz < 0 for all mz 
= 0. The same argument applies to the
translational dynamic of SNAIL. Hence, the fast system is globally asymptotically
stable and its Jacobian is Hurwitz.

4.2 Monotonicity of the Reduced System

Westudy the reduced system (7).Wewill utilizeKamke’s conditions as inTheorem2.
Hence, we compute the Jacobian J for the slow system (7):

J =

⎡

⎢
⎢
⎣

−β−34 − 2E34As Azβ34s
(s2+As )2(z2+Az)

0 − 2E34As Azβ34z
(s2+As )2(z2+Az)

J21 J22 0 0
0 − 2E200As Azβ200s

(s2+As )2(z2+Az)
−β−200 − 2E200As Azβ200z

(s2+As )2(z2+Az)

0 J42 J43 J44

⎤

⎥
⎥
⎦ ,

where

J21 = − h1(μ34)Es Asγs

(s2 + As)(βs2c2sμ
2
34 + es3csμ34 + es1βs)2

,

where h(μ34) := cs(βs2 + c−s)
2(βs1 + c−s)(βs1ks − βsks1) + 2c2sμ34(ksβs2 −

βsks2)(c−s + βs1)(c−s + βs2) + c3sμ
2
34(βs2(βs2ks − βsks2) + (βs2 + c−s)(βs2ks1 −

βs1ks2)). Note that h(μ200) > 0 for all parameters if (2), (6) are satisfied. Hence
J21 < 0. Similarly, we can also calculate J43 to show that it is negative whenever (2),
(6) are satisfied.

Finally, using (4) we compute J42 as:

J42 = 2EZγz Assz2

(s2 + As)2(z2 + Az)

kz(βz2czμ200 + ez1) + kz1(ez2μ200) + kz2c2zμ
2
200

βz2c2zμ
2
200 + ez3czμ200 + ez1βz

> 0.

Remark 1 Conditions (2), (6) are stronger than we need. In fact, it can be seen from
the expression of h above that it is sufficient to have the protein production ratio of
the raw mRNA greater than the corresponding one for the miRNA-RNA complex.
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Fig. 2 Graph of the reduced
circuit. In the terminology of
Theorem 3, “→” has a +
sign, and “�” has a − sign

The signs of J22, J44 do not play a role since they correspond to self-loops. Therefore,
we have the following sign pattern for the Jacobian under the conditions (2),(6):

⎡

⎢
⎢
⎣

∗ − 0 −
− ∗ 0 0
0 − ∗ −
0 + − ∗

⎤

⎥
⎥
⎦ ,

which can be represented via the graph depicted in Fig. 2. It can be easily seen
that every loop is positive. Hence, by Theorem3 there exists σ ∈ {±1}N such that
� J� is Metzler. Therefore, by Theorem2 we get that the reduced system (7) is
monotone onW = R

4+. Monotonicity holds with respect to the orthant cone specified
by σ = [−1, 1,−1, 1]T (see Sect. 3.2).

It can be verified that the Jacobian is irreducible on the open positive orthant Rn+.
Hence, by Corollary1 the reduced system is strongly monotone on R

n+.
Fix an initial condition x0 ∈ R

n+, and let x(t) := ϕ(t; x0) be the corresponding
solution of the slow system. In order to infer generic convergence to the set of
equilibria, we need the strong order preserving property to hold on the ω-limit set of
the solution. Hence, we need to show that ω(ϕ(t; x0)) ∩ ∂Rn+ = ∅. In other words,
we need to show that the slow system is persistent. This can be shown as follows.
Recall that the slow system (7) is given as ẋ = G(x). It can be verified from (7)
that ∀i,Gi (z) > 0 whenever zi = 0. Hence, there exists η > 0 such that ẋi (t) > 0
whenever xi (t) ∈ [0, η). This implies that the boundary has no equilibria and is
repelling (i.e., the vector field is pointing away from the boundary). We proceed by
seeking contradiction. W.l.o.g, assume that ∃x∗ ∈ ω(ϕ(t; x0)) ∩ ∂Rn+ with x∗

i = 0
(the i-coordinate). Hence, there exists a sequence {tk}∞k=1 such that xi (tk) > 0 and
xi (tk) → x∗

i = 0. Therefore, for each right neighborhood N of 0 there exists t∗
for which xi (t∗) ∈ N and ẋi (t∗) < 0, which is a contradiction. Hence, the reduced
system is persistent.

Therefore, we state the following theorem.
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Theorem 4 Consider the reduced system (7). Let Wc ⊂ R
4+ be the subset of points

whose forward orbit has a compact closure in R
4+. Then, the forward trajectory

starting from almost every point in Wc converges to an equilibrium.

4.3 Remarks on Generic Convergence for Singularly
Perturbed Monotone Systems

An interesting general question for singularly perturbed systems is as follows.
Assuming that the slow system is strongly monotone, does the full system obey
generic convergence properties? In other words, suppose that the flow ψ0

t of the
slow system (set ε = 0 in (9)):

dx

dt
= f0(x,m0(x), 0) (13)

has strongmonotonicity properties that guarantee almost-global convergence, mean-
ing convergence to equilibria for all initial states except for those states in a set of
measure zero (or, in a topological formulation, a nowhere dense set), but that the
complete system is not monotone (so that no such theorem can be applied to it). Still,
one may expect that the almost-convergence result can be lifted to the full system,
at least for small ε > 0. An obstruction to this argument is that there is no a priori
reason for the exceptional set to have a pre-image which has zero measure (or is
nowhere dense). Notheless, a positive result along these lines was developed in [22]
via the use of geometric invariant manifold theory to examine the fibration structure
and utilize an asymptotic phase property [30–32]. Figure3 illustrates the idea. The
ODE restricted to the invariant manifold Mε can be seen as a regular perturbation of
the slow (ε=0)ODE. In [13], it has been noted that aC1 regular perturbation of a flow
with positive derivatives inherits the generic convergence properties. So, solutions
in the manifold will generally be well-behaved, and asymptotic phase means that
trajectories close to Mε can be approximated by solutions in Mε, and hence they also
approach the set of equilibria if trajectories on Mε do. We refer the reader to [22] for

Fig. 3 Illustration of the
manifolds M0 and Mε . The
figure shows two key
properties of Mε . First, Mε is
close to M0. Second, the
trajectories on Mε converge
to steady-states if those on
M0 do
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a technical discussion. In principle, this approach could be applied to systems such
as ours, to conclude almost global convergence, under mild technical conditions on
domains of validity for equation. We omit the details of the application here.

5 Conclusions

We have conducted a model reduction analysis for the EMT/MET system. Bounded
trajectories of the reduced EMT/MET system generically converge to steady states,
assuming sufficiently fast promoter and mRNA kinetics. Therefore, such a model
cannot admit oscillations nor chaotic behavior. There are many further directions for
research, which are being pursued by the authors, including the generalization to the
case of miRNA binding to more than two sites on the mRNA molecule.
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