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Derivation of stationary distributions of
biochemical reaction networks via structure
transformation
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Jae Kyoung Kim 1,2✉

Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states

in deterministic models and stationary distributions in stochastic models. Unlike deterministic

steady states, stationary distributions capturing inherent fluctuations of reactions are

extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop

a method to derive analytic stationary distributions from deterministic steady states by

transforming BRNs to have a special dynamic property, called complex balancing. Specifically,

we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us

to derive the stationary distributions of a large class of BRNs, including autophosphorylation

networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the

unique properties of their stochastic dynamics such as robustness, sensitivity, and multi-

modality. Importantly, we provide a user-friendly computational package, CASTANET, that

automatically derives symbolic expressions of the stationary distributions of BRNs to

understand their long-term stochasticity.
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A standard approach to mathematical modeling of bio-
chemical reaction networks (BRNs) is to use ordinary
differential equations (ODEs), whose variables represent

concentrations of molecules1. However, this deterministic
description, while convenient for computation, by its nature
cannot capture the inherent randomness of BRNs. In particular,
the long-term behavior of ODE systems is characterized by steady
states or other attractors, rather than by the stationary distribu-
tions statistically observed in real biological systems. As cell
biology moves away from bulk averages to single-cell measure-
ments, a focus has shifted to the study of such stationary
distributions2,3. They can be described by various stochastic
approaches1,4. In particular, stationary distributions can be
described as steady-state solutions of the chemical master equa-
tion (CME), which has been widely used to describe the time
evolution of the probabilities for the numbers of chemical species
in BRNs such as gene regulatory networks and signaling
pathways5.

Since the CME is a differential equation with infinitely many
variables, its steady-state solution (i.e., the stationary distribution)
can be found analytically only for simple cases, such as linear
reaction networks6 or birth-death processes7. Unlike the CME, its
deterministic counterpart is a finite dimensional ODE, whose
steady-state solutions are relatively easier to calculate. An inter-
esting question, therefore, is whether there is a systematic way of
using these deterministic steady states for characterizing the
stationary distribution of the stochastic counterpart. There is a
positive answer to this question for special networks, called
complex balanced networks.

A result from queuing theory8, reinterpreted in the context of
BRNs9 through the connection between Petri nets and BRNs10,
shows that for complex balanced networks whose kinetics are
described by mass action reactions, stationary distributions can be
characterized in terms of jointly distributed Poisson random
variables with parameters corresponding to deterministic steady
states. An independent proof of this result, together with deep
applications to CMEs, was developed by Anderson, Craciun, and
Kurtz11. Complex balancing is difficult to check and depends on
rate constant values. However, beautiful work by Horn, Jackson,
and Feinberg12–14 has shown that all networks that have the
special structural properties of weak reversibility and zero defi-
ciency are complex balanced, independently of rate constants.
Weak reversibility of a network means that the network is a union
of closed reaction cycles, and the deficiency of a network is the
number of dependent closed reaction cycles, which can be easily
checked. Satisfying these two structural properties is a simple
condition to derive the stationary distribution of network under
mass action reactions with the method in ref.11.

As various BRNs such as networks of several reversible reac-
tions (e.g., A+ B↔ C↔ 0) or cyclic reactions (e.g., A→ B→
C→ A) are weakly reversible and deficiency zero, their stationary
distributions can be analytically derived15–20. These have been
used to characterize the stochasticity of various systems, including
a genetic oscillator21 and a competitive inhibition enzyme kinetics
model22. Unfortunately, the majority of BRNs do not have the
special network structure. For instance, only ~0.36% of the Erdös-
Rényi random networks of two species with up to bimolecular
reactions have a deficiency of zero when the edge probability is
0.5, and the fraction decreases to zero as the number of species
increases23. Moreover, from a biological standpoint, even simple
networks are unlikely to be weakly reversible if they include a
bimolecular reaction whose reverse reaction is unimolecular (e.g.,
autophosphorylation and dephosphorylation).

Here, we develop a framework to derive stationary distribu-
tions for a class of networks which do not have the special
structure (i.e., weakly reversibility and zero deficiency) by

modifying their structures via network translation24,25. Specifi-
cally, by simply merging reactions with a common stoichiometric
vector and shifting reactions in the networks, we are able to
change their structure to be weakly reversible and deficiency zero
while preserving their stochastic dynamics. This allows us to
derive the stationary distributions of a large class of BRNs
including autophosphorylation networks of EGFR, PAK1, and
Aurora B kinase. This derivation reveals key reactions deter-
mining the autophosphorylation status, which can seldom be
done with a purely numerical approach. Furthermore, we
describe how the stochastic dynamics of more complex BRNs can
be tracked when our method is applicable for only their sub-
networks. Importantly, we provide a user-friendly computational
package CASTANET (Computational package for deriving
Analytical STAtionary distributions of biochemical reaction net-
works with NEtwork Translation) that automatically derives the
stationary distributions of submitted BRNs via our method. This
will provide an effective tool to analyze the stochasticity of BRNs.

Results
Obtaining the desired network structure via network transla-
tion. As mentioned in the introduction, the stationary distribu-
tions of the stochastic mass action models for BRNs can be
derived with any choice of rate constants using the
previous method11 if and only if the networks have two structural
properties: weak reversibility and zero deficiency. However, even
very simple networks such as the one shown in Fig. 1a-left fail to
satisfy the two properties. Weak reversibility means that if there
exists a path from a complex (i.e., a node in the reaction graph) to
another complex, then there is a reverse path from the second one
back to the first one. Because there is no path from A+ A to A
while there is a path from A to A+A, the network in Fig. 1a-left
is not weakly reversible. The deficiency of a network is a non-
negative integer index calculated by subtracting both the number
of linkage classes (i.e., connected components in the reaction
graph) and the dimension of the subspace spanned by the
stoichiometric vectors from the number of complexes. The defi-
ciency of the network in Fig. 1a-left is one. Therefore, the
previous method11 cannot be used to derive its stationary
distribution.

Two different reactions, 0→ A and A→ A+A, have the same
stoichiometric vector (1, 0) because both reactions produce one
molecule of A (Fig. 1a-left). Thus, these two reactions can be
merged by unifying the source complexes 0 and A into 0 and
summing the propensities of both reactions (Fig. 1a). This
procedure is known as network translation24,25, which was
proposed to investigate deterministic systems. This procedure is
also applicable to stochastic systems as it preserves the stochastic
dynamics (see Supplementary Note 1 for details). For instance,
the propensities of the production of A are α1+ α4nA in both the
original (Fig. 1a-left) and the translated network (Fig. 1a-right).
Although the network translation is simple, it can effectively
change the structure of the network to be a weakly reversible
deficiency zero network.

Propensity factorization is required. Even though the translated
network is weakly reversible and of zero deficiency, the new
model no longer follows mass action kinetics since the propensity
of the reaction 0→A is not constant (Fig. 1a-right). In this case,
previously, it was known that the method in refs.11,26 is still
applicable if the non-mass action propensity functions can be
factorized as a certain form. However, the propensity functions of
this translated network do not have the certain form. Thus, we
generalize the previous factorization form so that stationary dis-
tributions can be derived for a larger class of BRNs. Specifically,
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we show that all the propensities of the translated network ~λkðnÞ
need to be factorized as

~λkðnÞ ¼ κkθðnÞωðn� νkÞ1fn≥ νkg ð1Þ
for some constants κk > 0 and functions θ(n) > 0 and ω(n) ≥ 0 on
a set Γ= {n∣n ≥ b} where the νk is the source complex vector of
the kth reaction, the inequality is coordinate-wise, and the b
needs to be chosen so that ~λkðnÞ> 0 if and only if there are
sufficient reactants (i.e., n ≥ νk + b) in Γ. For the translated net-
work (Fig. 1a-right), ~λkðnÞ> 0 if and only if n ≥ νk like mass
action kinetics, and thus b= (0, 0) and Γ ¼ Z2

≥ 0.
Propensity functions satisfying the factorization condition

(Eq. (8)) include a generalized mass action kinetics (Eq. (7)). For
instance, if a source complex is 0,A,A+ A, or A+ B, propensity
functions following the generalized mass action kinetics are
proportional to 1, fA(nA), fA(nA)fA(nA− 1), or fA(nA)fB(nB),
respectively. Note that if the fi’s are identity functions
then the propensities follow standard mass action
kinetics (Eq. (6))11,27. The propensity functions following the

generalized mass action kinetics can be easily factorized with
θðnÞ ¼ ωðnÞ�1 ¼ Qd

i¼1

Qni
j¼biþ1 f iðjÞ, where d is the number of the

constitutive chemical species (see Eq. (9) for details). However,
the translated network (Fig. 1a-right) does not follow the
generalized mass action kinetics (Eq. (7)) because the propensity
function of the reaction 0→ A, α1+ α4nA, is not proportional to
1 (i.e., it is not constant). Thus, we need to solve recurrence
relations as described in Supplementary Note 2 to identify the
propensity factorization (Fig. 1b):

κk ¼ αk;

θðnÞ ¼ α1 þ α4nA
α1

YnA
j¼1

α1j
α1 þ α4j

� �YnB
j¼1

j;

andωðnÞ ¼ α1 þ α4nA
α1

1
θðnÞ

ð2Þ

Derivation of stationary distribution. After identifying κk, θ(n),
and ω(n) via the propensity factorization, we need to find a

CBE, 

Stationary distributionCBE calculation

Network translation
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Fig. 1 Derivation of a stationary distribution with network translation. a The non-weakly reversible and deficiency (δ) one network is translated to the
weakly reversible deficiency zero network by merging two reactions, which have the same stoichiometric vectors (green dotted lines). ~λk denotes the
propensities of the translated network. b Factorize ~λk with constants κk and functions θ(n) and ω(n) as ~λkðnÞ ¼ κkθðnÞωðn� νkÞ1fn�νkg on Γ= {n∣n≥ b} at
which ~λkðnÞ>0 if n≥ νk + b, and ~λkðnÞ ¼ 0 otherwise. νk is the source complex vector of the kth reaction. c Compute a complex balanced equilibrium
(CBE) of the deterministic mass action model for the translated network with rate constants {κk}. d Using the θ(n) and the CBE, the stationary distribution
can be derived analytically. Here, M is a normalizing constant.
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complex balanced equilibrium (CBE) of the deterministic mass
action model with rate constants {κk} for the translated network
(Fig. 1c). The CBE is a steady state at which for each complex ν,
the in-flow rate to ν is equal to the out-flow rate from ν12. For
instance, based on the deterministic model in Fig. 1c, the complex
balance conditions for the complexes 0, A, and A+ B are κ3cAcB
= κ1, κ1= κ2cA, and κ2cA= κ3cAcB, respectively. By solving these
equations, we can obtain the CBE, (cA, cB)= (κ1/κ2, κ2/κ3). Note
that the existence of a CBE is guaranteed because we translate a
network to be weakly reversible and deficiency zero13.

Finally, using the function θ(n) (Fig. 1b) and the CBE (cA, cB)
(Fig. 1c), we can derive the stationary distribution of the
stochastic model for the translated network, which is the same
as that of the original network, as follows:

πðnA; nBÞ ¼ M
cnAA cnBB

θðnA; nBÞ
ð3Þ

for nA ≥ 0, nB ≥ 0 where M is the normalizing constant so that the
sum of the stationary distribution is one (see Methods for details).
In this example, the distribution π(n) is obtained on Γ ¼ Z2

≥ 0.
This state space is closed as proved in Supplementary

information, and it is irreducible (i.e., every state is reachable
from every other state; see Supplementary Note 3 for details). On
the other hand, if an irreducible state space is a proper subset of Γ,
possibly due to a conservation law, then the normalizing constant
M is chosen so that the sum of π(n) over the subset is one.

Computational package, CASTANET. Applying our theoretical
framework (Fig. 1) has two practical difficulties. Translating a
given network to a weakly reversible deficiency zero network
(Fig. 1a) is not straightforward as prohibitively many candidates
of translated networks often exist. Furthermore, it is challenging
to check whether the factorization condition holds (Fig. 1b) as it
requires to solve associated recurrence relations. Thus, we have
developed a user-friendly, open-source, and publicly available
computational package, “CASTANET (https://github.com/
Mathbiomed/CASTANET),” that automatically performs net-
work translation and propensity factorization and derives sta-
tionary distributions (Fig. 2a). With this package, we were able to
easily identify hundreds of BRNs and derive analytic forms of
their stationary distributions. We have provided some of them in
Fig. 2b and Supplementary Figs. 3 and 4. To use this package,

Fig. 2 CASTANET (Computational package for deriving Analytical STAtionary distributions of biochemical reaction networks with NEtwork
Translation). a A schematic diagram for the computational package. If users simply enter the source complexes, product complexes, and propensity
functions of reactions (lambda_k), then the package identifies a weakly reversible deficiency zero translated BRN (sources_trans and
products_trans) and then derives its stationary distribution (pi). See Supplementary Note 4 and Supplementary Fig. 2 for a step-by-step manual.
b BRNs with two species (top) and three species (bottom) whose stationary distributions were calculated by our computational package. The tail and head
of each arrow represent the source and product complexes of reactions, respectively. They are assumed to follow the stochastic mass-action kinetics, and
the rate constants can take any positive values. See Supplementary Figs. 3 and 4 for more examples. Here, each network is embedded in euclidean space
where we present A+A and B+B as 2A and 2B, respectively.
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users only need to enter the source complexes, product com-
plexes, and propensity functions of reactions.

Stationary distributions of autophosphorylation networks. Our
theoretical framework and especially CASTANET extend the
class of BRNs whose stationary distributions can be analytically
derived using CBEs (Figs. 1 and 2). This class includes var-
ious autophosphorylations networks (Fig. 3) that are not weak-
ly reversible due to autophosphorylation reactions, which
occur in intermolecular (trans), intramolecular (cis), or mixed
manners28,29.

Asymmetric trans-autophosphorylation occurs if two mono-
mers form a homodimer and one of them acts as an ‘enzyme’ and
phosphorylates the other. This type of autophosphorylation
occurs in the epidermal growth factor receptor (EGFR), which
triggers signal transduction for cell proliferation30. The key
regulatory reactions for EGFR include its synthesis, trans-
autophosphorylation, dephosphorylation, and degradation
(Fig. 3a-left). The asymmetric trans-autophosphorylation is a
reaction that transforms the complex A+ A to A+AP. The
dephosphorylation reaction is not the reverse of the previous
reaction; instead, it occurs from the complex AP to the complex A.
Thus, the network is not weakly reversible. However, CASTA-
NET automatically identifies a weakly reversible deficiency zero
translated network and its propensity factorization (Fig. 3a-right)
and then derives the analytic form of stationary distribution
(Fig. 3b) that matches what is calculated with stochastic
simulations (Fig. 3c).

In addition, having the formula (Fig. 3b) allows us to easily
understand the long-term behavior of the system, something that
is not possible with a purely computational approach. For
instance, πðnAP

Þ in Fig. 3c is the Poisson distribution with rate
α1/α3. This indicates that the synthesis (α1) and degradation rates

(α3) of A are the determinants of the long-term status of nAP
,

which is surprisingly robust to the changes of phosphorylation
(α2) and dephosphorylation rates (α4). Furthermore, π(nA) is
solely determined by α1

α2
ð1þ α4

α3
Þ, and its moments can be calculated

with the modified Bessel functions (see Supplementary Note 3 for
details). This allows us to identify that the stationary distribution
of nA is sub-Poissonian, and its coefficient of variation attains the
maximum at α1

α2
ð1þ α4

α3
Þ � 1:8 (Supplementary Fig. 1).

Trans- and cis-autophosphorylation can occur sequentially.
For example, p21-activated kinase 1 (PAK1), which regulates cell
motility and morphology, phosphorylates a threonine residue
in the kinase domain in a trans manner asymmetrically (A+
A→ A+ AP)28,31 and then phosphorylates a serine residue in the
regulatory domain of itself in a cis manner (AP→ APP)32,33

(Fig. 3d-left). While the original network of PAK1 is not weakly
reversible (Fig. 3d-left), CASTANET identifies a weakly reversible
deficiency zero translated network (Fig. 3d-right) and derives
the analytic form of stationary distribution (Fig. 3e) that matches
the simulation result (Fig. 3f).

Both trans- and cis-autophosphorylation can occur simulta-
neously as in Aurora B kinase, which controls mitotic progression34.
In an Aurora B kinase network, cis-autophosphorylation (A→AP)
promotes rapid trans-autophosphorylation (A+AP→AP+AP),
which forms a positive feedback in the system34. For this network,
CASTANET successfully applies our method to derive the analytic
form of stationary distribution (Fig. 3g–i).

While mass action kinetics are commonly used to describe
autophosphorylations34,35 as in our examples, the Michaelis–
Menten function and Hill function are also often used36,37.
Moreover, they are also used to describe the effects of
phosphatases on dephosphorylation and proteasomes on
degradation38,39, which EGFR, PAK1, and Aurora B kinase
undergo40–45. Even when the mass action propensities in the
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Fig. 3 Stationary distributions of diverse autophosphorylation networks. a, d, gWhile the autophosphorylation networks have deficiencies of one and are
not weakly reversible, they can be translated to weakly reversible deficiency zero networks. b, e, h Thus, stationary joint distributions can be derived using
the method illustrated in Fig. 1. T0 in e and h represent the total numbers of proteins, which are conserved. c, f, i The marginal probabilities of the numbers
of species derived from the formula (solid lines) and stochastic simulations (dots) are consistent. Here, parameter values are set as follows: a α1= 10, α2=
0.03, α3= 0.3, α4= 2, d α1= 0.3, α2= 0.1, β1= 2, β2= 1, T0= 80, g α1= 0.001, α2= 1, β= 5, T0= 60. For each example, 105 simulations were performed
using the Gillespie algorithm60.
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networks (Fig. 3a, d, and g-left) are replaced with the Michaelis-
Menten or Hill functions, their stationary distributions can still be
derived with the same approach (Supplementary Fig. 5).

When the presented networks are extended by adding
reactions, our methods might not be applicable. For instance, if
an additional trans-autophosphorylation (A+ AP→AP+ AP) is
added to the example in Fig. 3a, although it can be translated to a
weakly reversible deficiency zero network, their propensities
cannot be factorized as in Eq. (1). Thus, the stationary
distribution of the extended network cannot be derived by our
method. However, it can be approximated by the stationary
distribution of the original network if the rate constant of the
added reaction is small enough (see Supplementary Fig. 6 for
details). Such approximation works for the extended networks of
the other networks (Fig. 3d, g) as well. This indicates that if the
stationary distributions of core subnetworks, which consist of
dominant reactions, can be derived by our method, then it could
be used to approximate the stationary distributions of their more
complex parent networks.

Translation of fast subnetworks reveals both the fast and slow
dynamics of a multi-timescale system. As the number of nodes
(i.e., complexes) of networks increases, the networks are less likely

to be a weakly reversible deficiency zero network even after
network translation, and thus our method is less likely to be
applicable. However, such large networks commonly consist of
reactions occurring at different time scales46. In this case, if we
can derive the conditional stationary distributions of only fast
subnetworks with our method, both the fast and slow dynamics of
the full network can be accurately captured.

For gene regulatory networks, if the promoter kinetics (i.e.,
binding and unbinding of transcription factors to promoters) are
fast, the fast subnetwork is a simple reversible binding network
(i.e., weakly reversible and of zero deficiency), and thus its
stationary distribution can be easily calculated21. On the other
hand, when the promoter kinetics are slow, the fast subnetwork
includes a complex protein reaction network whose stationary
distribution is challenging to derive. This can occur for a variety
of reasons, e.g., the presence of nucleosomes in eukaryotic cells
usually slows down the binding and unbinding of transcription
factors20.

A genetic toggle switch with the slow promoter kinetics, which
consists of a pair of genes GA and GB, is an example of such
multi-timescale system (Fig. 4a). The genes GA and GB express
proteins A and B, respectively. Subsequently, these proteins
undergo asymmetric trans-autophosphorylation, and they
mutually repress gene expression by binding to the promoter
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Fig. 4 Fast and slow dynamics of a multi-timescale system are identified via network translation. a Schematic diagram of a toggle switch system.
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reversible and have deficiencies of three. c Translated fast subnetworks, obtained by merging reactions having the same stoichiometric vectors (colored
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the current state of the slow variables nGB
act
and nGB

rep
, the reduced model can be derived, which can capture the slow dynamics of the genes. For instance, the

reduced model (dots) accurately captures the residence time distributions of the repressor BP to its target gene GA of the full model (solid line). The
execution times for performing 104 simulations with the full and the reduced models are 275110 and 62 seconds, respectively. Parameter values are set as:
ϵ= 10−5, αact= 10, αrep= 1.5, αP= 0.2, αdP= 1, αdeg= 0.2, βact= 10, βrep= 1, βP= 0.3, βdP= 2, βdeg= 0.1, kb= 1, ku= 30, lb= 1.3, and lu= 20.
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region of each other’s gene. The binding and unbinding of the
phosphorylated proteins occur at a slower time scale. Therefore,
the entire network can be divided into the fast subnetwork
consisting of gene expression, phosphorylation, dephosphoryla-
tion, and degradation and the slow subnetwork consisting of
binding and unbinding (Fig. 4b). While the fast subnetworks for
A and B are neither weakly reversible nor deficiency zero, they
can be translated to weakly reversible deficiency zero networks
(Fig. 4c-top). The propensity functions of these translated
networks can be factorized as in Eq. (8), so their stationary
distributions conditioned on the slow variables can be derived
with CASTANET (Fig. 4c). Depending on the slowly changing
gene states, the distributions of the proteins A, AP, B, and BP can
dramatically change.

When the gene states slowly change, the fast variables rapidly
equilibrate to the conditional stationary distributions determined
by the current gene states (Fig. 4c). Thus, the weighted average of
the conditional stationary distributions with the probabilities of
the corresponding gene states accurately approximates the full
(i.e., unconditional) stationary distribution under timescale
separation (i.e., ε≪ 1)20. For instance, the full stationary
distribution of AP can be approximated as

πðnAP
Þ � ρactπðnAP

jnGA
act
¼ 1Þ þ ρrepπðnAP

jnGA
rep

¼ 1Þ ð4Þ

where ρact and ρrep are the probabilities that the gene GA is active
and repressed, respectively. The ρact becomes larger as the
dissociation constant between GA and its repressor BP is larger,
and the number of repressor BP is smaller. The ρact can be
calculated by identifying the eigenvector of the matrix consisting
of the dissociation constant, and the conditional stationary
moments of the repressors obtained from Fig. 4c20, and ρrep= 1
− ρact (see Supplementary Note 5 for details). Thus, using Eq. (4),
we can accurately capture the bimodal stationary distribution of
the protein AP (Fig. 4d), leading to phenotypic heterogeneity in
isogenic populations. Similarly, the full bimodal stationary
distributions of the other fast variables A, B, and BP can also be
accurately captured (Supplementary Fig. 7). Note that these
bimodalities cannot be captured by the corresponding determi-
nistic model, which predicted monostability. Such mismatches
between the stochastic and deterministic model have been
frequently observed in the presence of timescale separation1,20,47.

The conditional stationary distributions of the fast variables,
obtained by using our approach (Fig. 4c), allow us to capture the
slow dynamics of the full system as well. On the slow time scale,
the slow variables are unlikely to be changed, but the fast
variables rapidly equilibrate to their conditional stationary
distributions for the given slow variables. Thus, by replacing
the fast variables in the propensity functions of the slow reactions
with their quasi-steady states (QSSs): conditional stationary
moments, we can obtain the reduced model21,48. For the toggle
switch system, the QSSs of the fast variables AP and BP can be
computed from their conditional stationary distributions (Fig. 4c).
Then by replacing the fast variables AP and BP with their QSSs, we
can obtain the reduced model with only the slow variables, the
active and repressed genes (Fig. 4e). This reduced model
accurately captures the slow dynamics of the full model: the
binding and unbinding of the repressors to the genes. Both the
full and the reduced models yield nearly identical distributions of
the residence time of the repressor BP, which quantifies how long
the repressor maintains its binding to the gene GA (Fig. 4e).
Because the reduced model does not simulate the fast reactions,
which incur a large computational cost in the full model
simulation, computation time decreases by 99.9998%.

Discussion
In this study, we have developed a framework and its computa-
tional package that analytically derive stationary distributions of a
large class of BRNs. Specifically, we showed that the stationary
distribution of a BRN can be derived if two conditions are
satisfied: the network can be transformed to a weakly reversible
deficiency zero network via network translation (Fig. 1a) and
the propensity functions of the translated network satisfies the
generalized factorization property of mass action kinetics, iden-
tified in this study (Fig. 1b). We found that these conditions are
satisfied in numerous BRNs including various autopho-
sphoryaltion networks by using CASTANET (Fig. 2, Supple-
mentary Figs. 3 and 4). Furthermore, even when only a
subnetwork of more complex BRNs satisfies the conditions, the
stochastic dynamics can often be captured. That is, the stationary
distribution of the subnetwork consisting of dominant reactions,
derived with our method, can accurately approximate the sta-
tionary distribution of its parent network (Supplementary Fig. 6).
Furthermore, the derivation of the stationary distribution of a fast
subnetwork is enough to capture both the slow and fast stochastic
dynamics of its multi-timescale parent network (Fig. 4). With
these analytically derived stationary distributions of BRNs, their
long-term stochastic behaviors such as their dependence on rate
constants can be effectively investigated, and the likelihood
function of parameters for Bayesian inference can also be
derived2.

Our work focused on the derivation of steady-state solutions of
the CME using the underlying network structure following pre-
vious studies11,26. However, the CME is not usually used to
capture cell division, which should be taken into account to
describe single cell behavior in general. Thus, it would be inter-
esting in future work to extend our method to the population
balance equation49,50, which describes stochastic cell population
dynamics (e.g., cell division) as well as intracellular dynamics.
This extension could be accomplished by averaging stationary
distributions from cell populations after a stationary distribution
of each cell is derived by our method.

We have translated a network to have the desired structural
properties (i.e., weak reversibility and zero deficiency) by merging
reactions with a common stoichiometric vector (Figs. 1a and 3g)
and shifting a reaction preserving its stoichiometric vector
(Fig. 3a, d). While the idea underlying this procedure is simple, it
greatly extends the class of networks whose structure can be
changed to the desired one. For instance, when the edge prob-
ability is 1

2, the fraction of deficiency zero networks among Erdös-
Rényi random networks with two species and at most bimolecular
reactions increases more than six times after network translation.
The identification of such translation, which is not simple, can be
done automatically by the provided computational package,
CASTANET. In particular, to efficiently search translated net-
works, in CASTANET, we use the necessary conditions for net-
work translation toward weakly reversible and deficiency zero
networks, derived in this study (see Supplementary Note 4 for
details).

Furthermore, CASTNET performs the propensity factorization
of translated networks, which is required to derive the stationary
distributions of networks with non-mass action kinetics. In this
study, by extending the previous factorization condition11,26 to
ours (Eq. (8)), we have been able to derive stationary distributions
of various BRNs (Figs. 1, 2, and 3, Supplementary Figs. 3 and 4).
Although the factorization condition with non-mass action
kinetics have been rarely investigated11,26 due to its complexity
and lack of motivation, our work motivates studies on it as
translated networks typically follow non-mass action kinetics. To
cover more weakly reversible deficiency zero translated networks,
we aim to further generalize our factorization conditions, and
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accordingly, we will update our computational package
CASTANET.

By changing the network structure while preserving the sto-
chastic dynamics via network translation, we have been able to
use the theory, applicable to weakly reversible deficiency zero
networks11, to understand the stochastic dynamics of a larger
class of networks with non-zero deficiencies. Similarly, by
translating a network to have a deficiency of one, it would be
possible to show that the networks have the properties of a net-
work with a deficiency of one, such as absolute concentration
robustness: the steady state value of a species is invariant to the
overall input of the system51–53. Furthermore, network transla-
tion of stochastic BRNs can also be used to identify stochastic
properties of networks based on their structures, such as positive
recurrence54 and extinction52,55,56.

Methods
Biochemical reaction network. BRN is a graphical representation of a given
biochemical system12,14,57,58. It consists of the triple fS; C;Rg where S ¼
fS1; ¼ ; Sdg is the set of interacting species, C ¼ fC1; ¼ ;Cmg is the set of com-
plexes, and R ¼ fν1 ! ν01; ¼ ; νr ! ν0rg is the set of reactions. A complex is a
non-negative linear combination of species (i.e., Ci= ai1S1+⋯+ aidSd), which is
also represented as a d-dimensional non-negative integer-valued vector (ai1,…,
aid). A reaction is an ordered pair of complexes. This allows the BRN to be
represented as a directed graph (C;R), where complexes are nodes and reactions
are directed edges. Hence, a reaction Rj :¼ νj ! ν0j , where νj and ν0j are the source
and product complexes of the jth reaction, respectively. The vector ν0j � νj is called
a stoichiometric vector of the jth reaction, which describes the relative change in the
number of molecules of reactants and products between the sides of each reaction.
A linkage class is a connected component of the network when all reactions are
regarded as undirected edges. Weak reversibility means that if there is a sequence
of reactions from a complex Ci to another complex Cj then there must be a
sequence of reactions from Cj to Ci. The deficiency δ is the integer index defined as
jCj � l � s, where jCj is the number of complexes, l is the number of linkage classes,
and s is the dimension of the subspace spanned by all stoichiometric vectors
(Fig. 1a).

Complex balanced equilibrium. CBE of the deterministic mass action model for a
BRN with rate constants {κk} is the steady state c 2 Rd

> 0 which satisfies the fol-
lowing equality for each complex z 2 C (Fig. 1c):

∑
k: ν0k¼z

κkc
νk ¼ ∑

k: νk¼z
κkc

νk ð5Þ

where the κkc
νk ¼ κkc

νk1
1 cνk22 � � � � � cνkdd is the rate function of the kth reaction fol-

lowing the deterministic mass action kinetics, and νki is the ith entry of νk
12. The

LHS is the sum of rate functions over reactions whose product complex is z (i.e.,
ν0k ¼ z), and the RHS is the sum of rate functions over reactions whose source
complex is z (i.e., νk = z). In other words, at CBE, the in-and out-flows create a
balance for each complex. The deterministic mass action model for a BRN pos-
sesses a CBE regardless of rate constants if and only if the BRN is weakly reversible
and deficiency zero13. Furthermore, even when a BRN has non-zero deficiency and
is weakly reversible, the deterministic mass action model for the BRN possesses a
CBE with specific choice of rate constants13.

Stochastic model of biochemical reaction networks. We model a BRN as a
continuous-time Markov chain (CTMC) for an isothermal well-stirred system
with a constant volume. The state of the CTMC at time t,
nðtÞ ¼ ðn1; ¼ ; ndÞ 2 Zd

≥ 0, represents the copy number of each species. Each
reaction is associated with a propensity function:

λk : Z
d
≥ 0 ! R ≥ 0; k ¼ 1; ¼ ; r:

Specifically, λk(n) is the probability that the kth reaction occurs in a short interval
of length dt if the state at the beginning of the interval was n. Using the propensity
functions, we can derive the CME, which describes the time evolution of the
probability of the model:

dpn
dt

¼ ∑
r

k¼1
λkðn� ðν0k � νkÞÞpn�ðν0k�νkÞ � ∑

r

k¼1
λkðnÞpn

for n 2 Zd
≥ 0, where pn(t) denotes the probability that the state of the system equals

n 2 Zd
≥ 0 at time t. A stationary distribution π(n) of a given CTMC is the steady-

state solution of the CME that satisfies the following infinite equation:

∑
k
λkðn� ðν0k � νkÞÞπðn� ðν0k � νkÞÞ ¼ ∑

k
λkðnÞπðnÞ:

It means that if the CTMC is initialized with its stationary distribution, the vector
of probabilities p(t) will stay constant for all time t > 0.

The stochastic mass action propensity functions are assumed to be proportional
to the number of ways in which species can combine to form the source complex.
Hence, the kth propensity function with the rate constant αk can be written as:

λkðn1; ¼ ; ndÞ ¼ αk
Yd
i¼1

ni!
ðni � νkiÞ!

1fni ≥ νkig: ð6Þ

Additionally, the propensity functions can have a more generalized form as follows:

λkðn1; ¼ ; ndÞ ¼ αk
Yd
i¼1

f iðniÞf iðni � 1Þ � � � f iðni � ðνki � 1ÞÞ1fni ≥ νkig ð7Þ

where functions f i : Z ≥ 0 ! R ≥ 0. For instance, the translated network in Fig. 3a-
right follows this form as f AðnAÞ ¼ nAðnA � 1Þ and f AP

ðnAP
Þ ¼ nAP

. This is called
‛generalized’ stochastic mass action kinetics since if fi’s are identity functions then
it is equivalent to the stochastic mass action kinetics (Eq. (6)).

Network translation. Network translation is a procedure to transform a BRN
fS; C;Rg to another one fS; ~C; ~Rg that satisfies the condition: the sum of pro-
pensities of a set of reactions sharing the same stoichiometric vector remains
identical (Fig. 1a). That is, for each vector γ 2 Zd , the propensity functions of the
original and the translated networks, λk(n) and ~λ~kðnÞ, satisfy the following:

∑
k: ν0k�νk¼γ

λkðnÞ ¼ ∑
~k: ~ν0~k�~ν~k¼γ

~λ~kðnÞ

for all n 2 Zd
≥ 0, where ν0k � νk and ~ν0~k � ~ν~k are the stoichiometric vectors of the

kth and ~kth reactions of the first and second models, respectively. For example,
merging several reactions sharing a common stoichiometric vector into one reac-
tion is network translation. Similarly, shifting reactions preserving their stoichio-
metric vectors is also an instance of network translation (e.g., A+ B→ 2B to A→
B). Network translation can change the structural properties of BRNs, such as weak
reversibility and the deficiency, but it preserves the associated CME, i.e., stochastic
dynamics (see Supplementary Note 1 for details).

Propensity factorization. To derive the stationary distribution with our approach
(Fig. 1), all the propensities ~λkðnÞ should be factorized as

~λkðnÞ ¼ κkθðnÞωðn� νkÞ1fn ≥ νkg ð8Þ

for some constants κk > 0 and functions θ(n) > 0 and ω(n) ≥ 0 on a set Γ ¼
fn jn≥ bg � Zd

≥ 0 at which
~λkðnÞ> 0 if n ≥ νk + b and ~λkðnÞ ¼ 0 otherwise. For the

stochastic mass action kinetics (Eq. (6)), b= 0 as ~λkðnÞ> 0 if and only if n ≥ νk .
For the translated network in Fig. 3a, b= (1, 0) because each propensity is positive
if and only if n ≥ νk + (1, 0) in Γ ¼ fnjðnA; nAP

Þ ≥ ð1; 0Þg.
While the propensity factorization can be calculated by solving recurrence

relations (see Supplementary Note 2 for details), it can be obtained without solving
recurrence relations if all the propensities of a given network follow the generalized
mass action kinetics (Eq. (7)). In this case, the factorization can be easily obtained
as

κk :¼ αk; θðnÞ :¼
Yd
i¼1

Yni
j¼biþ1

f iðjÞ; and ωðnÞ :¼ 1
θðnÞ 1fn≥ bg; ð9Þ

where
Q�1

j¼0 aj ¼ 1 for any {aj} (see Supplementary Note 2 for details).

Derivation of stationary distribution. If a network is weakly reversible and
deficiency zero so that it has a CBE c 2 Rd

> 0
13 and propensity function λk(n) can

be factorized as in Eq. (8) on Γ, a stationary measure of the network can be derived
as

πðnÞ ¼
cn
θðnÞ if n 2 Γ;

0 if n 2 Γc:

(

Supplementary Note 3 provides the proof and detailed illustration. By scaling this
stationary measure with the normalizing constant, which is the reciprocal of the
summation of π(n) over the irreducible state space, the stationary distribution on
the irreducible state space can be obtained. For instance, the normalizing constant
for the stationary distribution (Fig. 3e) is calculated by summing π(n) over the
irreducible state space fðnA; nAP

; nAPP
Þ j nA ≥ 1; nA þ nAP

þ nAPP
¼ T0g. While

computing the normalizing constants is sometimes challenging, a symbolic com-
putation approach using Wilf-Zeilberger theory can be used for the stochastic mass
action model59.

Computational package, CASTANET. We have developed a user-friendly, open-
source, and publicly available computational package, CASTANET, that performs
the network translation and propensity factorization automatically (Fig. 2a). The
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package checks two conditions: whether a given BRN can be made weakly rever-
sible and of zero deficiency after network translation, and whether the propensities
of the translated network can be factorized as in Eq. (8). If these two conditions are
satisfied, CASTANET then calculates the analytic formula for a stationary
distribution.

To efficiently search weakly reversible deficiency zero translated networks, we
derived their necessary conditions (see Supplementary Note 4 for details) and
incorporated them in the package. Furthermore, CASTANET constructs a
candidate for the factorization function θ(n) in symbolic expression, which allows
us to check propensity factorization condition without checking infinite
combinations (see Supplementary Note 4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in the current research are available upon request to the corresponding
authors. Simulation data underlying plots shown in Figs. 3 and 4 are provided in
Supplementary Data 1.

Code availability
The MATLAB (version R2020b) code performing network translation, propensity
factorization, and CBE calculation to derive stationary distribution (schematically shown
in Figs. 1 and 2) can be found at https://github.com/Mathbiomed/CASTANET. The
detailed description and step-by-step manual are provided in Supplementary
information.
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SUPPLEMENTARY NOTE 1:
NETWORK TRANSLATION PRESERVES THE STOCHASTIC DYNAMICS

Let {S, C,R} and {S, C̃, R̃} be an original network and a translated network, respectively. Then, from the definition
of network translation, ∑

k:ν′k−νk=γ

λk(n) =
∑

k̃:ν̃′
k̃
−ν̃k̃=γ

λ̃k̃(n) for each vector γ ∈ Zd, (S1)

where λk and λ̃k̃ are the propensities of stochastic models (i.e., continuous-time Markov chains) for {S, C,R} and
{S, C̃, R̃}, respectively. Let pn(t) and p̃n(t) be the probabilities of the continuous-time Markov chains associated with
{S, C,R} and {S, C̃, R̃} being at state n, respectively. Then, pn(t) is the solution of CME given by:

dpn
dt

=

r∑
k=1

λk(n− (ν′k − νk))pn−(ν′k−νk) −
r∑

k=1

λk(n)pn

=
∑
γ∈Zd

∑
k:ν′k−νk=γ

λk(n− (ν′k − νk))pn−(ν′k−νk) −
∑
γ∈Zd

∑
k:ν′k−νk=γ

λk(n)pn

=
∑
γ∈Zd

∑
k̃:ν̃′

k̃
−ν̃k̃=γ

λ̃k̃(n− (ν̃′
k̃
− ν̃k̃))pn−(ν̃′

k̃
−ν̃k̃) −

∑
γ∈Zd

∑
k̃:ν̃′

k̃
−ν̃k̃=γ

λ̃k̃(n)pn

=

r̃∑
k̃=1

λ̃k̃(n− (ν̃′
k̃
− ν̃k̃))pn−(ν̃′

k̃
−ν̃k̃) −

r̃∑
k̃=1

λ̃k̃(n)pn,

where r and r̃ are the total numbers of reactions in the original and the translated reaction networks, respectively,
and the third equality follows from Eq. (S1). Thus, pn(t) and p̃n(t) are the solution of the same CME because the

∗ These authors contributed equally
† jaekkim@kaist.ac.kr

mailto:jaekkim@kaist.ac.kr


2

CME associated with the translated network is given by

dp̃n
dt

=

r̃∑
k̃=1

λ̃k̃(n− (ν̃′
k̃
− ν̃k̃))p̃n−(ν̃′

k̃
−ν̃k̃) −

r̃∑
k̃=1

λ̃k̃(n)p̃n.

Therefore, pn(t) ≡ p̃n(t) for all n ∈ Zd≥0 as long as they have the same initial condition.

SUPPLEMENTARY NOTE 2: PROPENSITY FACTORIZATION

As we discussed in the main text, to derive a stationary distribution, all the propensities λk(n) should be factorized
as

λk(n) = κkθ(n)ω(n− νk)1{n≥νk} (S2)

for some constants κk > 0 and functions θ(n) > 0 and ω(n) ≥ 0 on a set Γ = {n | n ≥ b}, where λk(n) > 0 if and
only if n ≥ νk + b in Γ meaning that νk + b represents the minimal copy numbers for the reaction to occur. This
factorization form generalizes the previous result, Eq. (32) in [2], which requires the following factorization:

λk(n) = κk
ζ(n)

ζ(n− νk)
1{n≥νk} (S3)

for ζ : Zd≥0 → R>0 on Zd≥0. Note that if ω(n) = 1
θ(n) and Γ = Zd≥0 (i.e., b = 0), Eq. (S2) is equivalent to Eq. (S3).

Propensity factorization by solving recurrence relations

To obtain the desired factorization for given propensity functions, we need to solve recurrence relations. Here, we
illustrate how to solve the following factorization equations of Fig. 1b.

λ1(nA, nB) = α1 + α4nA = κ1θ(nA, nB)ω(nA, nB), (S4)

λ2(nA, nB) = α2nA = κ2θ(nA, nB)ω(nA − 1, nB)1{nA≥1}, and (S5)

λ3(nA, nB) = α3nAnB = κ3θ(nA, nB)ω(nA − 1, nB − 1)1{nA≥1,nB≥1}. (S6)

After setting κk = αk, we divide Eq. (S4) and Eq. (S5) by Eq. (S5) and Eq. (S6), respectively. Then we have
ω(nA, nB) = (α4nA+α1

α1nA
)ω(nA − 1, nB) and ω(nA − 1, nB) = 1

nB
ω(nA − 1, nB − 1). Solving these recurrence relations,

we get ω(nA, nB) =
∏nA

j=1

(
α4j+α1

α1j

)
1
nB !ω(0, 0). Then θ(nA, nB) is determined as (α4nA+α1)

α1ω(0,0)

∏nA

j=1

(
α1j

α4j+α1

)
nB ! from

the second equality in Eq. (S4). Note that this factorization cannot be accomplished by the previously identified
form (Eq. (S3), λk = κkθ(n)θ(n − νk)−11{n≥νk}), which requires ω(nA, nB) = θ(nA, nB)−1, because Eq. (S4)
implies ω(nA, nB) 6= θ(nA, nB)−1. Here, ω(0, 0) can be determined by requiring the sum of the stationary distribution∑

n π(n) to be 1.

Propensities following generalized mass action kinetics can be factorized without solving recurrence relations

If the propensities follow a sort of generalized stochastic mass action kinetics, then their factorization can be easily
obtained. In what follows, we use the convention that

∏−1
j=0 aj = 1 for any {aj}.

Theorem 1. Let a biochemical reaction network {S, C,R} be given, and let λk(n) be the propensity functions of the
associated continuous-time Markov chain. Suppose that there exists a vector b such that for n ∈ Γ = {n | n ≥ b}, we
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have λk(n) > 0 if n ≥ νk + b and λk(n) = 0 otherwise for each k = 1, 2, . . . , r. We further assume that there exist
constants αk > 0 and functions fi : Z≥0 → R≥0, i = 1, . . . , d such that λk(n) = αk

∏d
i=1

∏νki−1
j=0 fi(ni − j) for k =

1, . . . , r and all n ∈ Γ, where νki is the ith entry of the source complex vector νk. Then λk(n) = κkθ(n)ω(n−νk)1{n≥νk}

on the Γ with

κk := αk, θ(n) :=

d∏
i=1

ni∏
j=bi+1

fi(j), and ω(n) :=
1

θ(n)
1{n≥b}. (S7)

Proof. For n ∈ Γ,

κkθ(n)ω(n− νk)1{n≥νk} = αk

∏d
i=1

∏ni

j=bi+1 fi(j)∏d
i=1

∏ni−νki

j=bi+1 fi(j)
1{n−νk≥b}1{n≥νk}

= αk

d∏
i=1

ni∏
j=ni−νki+1

fi(j)1{ni−νki≥bi}

= αk

d∏
i=1

νki−1∏
j=0

fi(ni − j)1{ni−νki≥bi}

=

{
αk
∏d
i=1

∏νki−1
j=0 fi(ni − j) if n ≥ νk + b

0 otherwise

= λk(n).

Remark 1. A similar condition was introduced by Eq. (27) in the previous study [2], which is a special case of the
generalized mass action kinetics with b = 0. Furthermore, the associated function fi(ni) can be thought as the “rate
of association” of the ith species as pointed out in [9]. Such rate of association of the species have been also used in
order to generalize the Horn-Jackson-Feinberg theory to deterministic non-mass action system [11].

Remark 2. The example in Fig. 3g does not follow the generalized mass action kinetics because the propensity of
the reaction A→ AP , α1nA + α2nAnAP

, depends on both nA and nAP
, but the latter is not supported in the source

complex. Nevertheless, it can be re-expressed as α1nA + α2nA(T0 − nA) using the conservation law: nA + nAP
= T0

so it now follows the generalized mass action kinetics.

SUPPLEMENTARY NOTE 3: DERIVATION OF STATIONARY DISTRIBUTIONS

If a network is weakly reversible and has zero deficiency, the deterministic mass action model with any rate constants
always possesses a CBE c ∈ Rd>0 [4, 7, 8]. Then the existence of the propensity factorization ensures that the stationary
distribution of the associated continuous-time Markov chain can be derived analytically. In what follows, x � y means
there is at least one i such that xi < yi.

Theorem 2. For a given biochemical reaction network {S, C,R}, suppose that there exists a complex balanced equi-
librium c ∈ Rd>0 for the deterministic mass action model for {S, C,R} with rate constants {κk}. Let λk(n) be the
propensity functions of the continuous-time Markov chain associated with the network {S, C,R}. Suppose that there
exists a vector b such that for n ∈ Γ = {n | n ≥ b}, we have λk(n) > 0 if n ≥ νk + b and λk(n) = 0 otherwise for
each k = 1, 2, . . . , r. Assume further that the propensity functions λk(n) can be factorized as

λk(n) = κkθ(n)ω(n− νk)1{n≥νk} on Γ = {n | n ≥ b}, (S8)
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where θ and ω are non-negative functions such that θ(n) > 0 if n ∈ Γ. Then the Γ is a closed subset, and the stochastic
model admits a stationary measure that can be written as

π(n) =


cn

θ(n)
if n ∈ Γ,

0 if n ∈ Γc.

If π is summable over the state space, then the measure π can be normalized to be a stationary distribution.

Proof. We first show that Γ is closed, i.e., there is no transition from Γ to Γc. Assume that there exists a reaction
from n ∈ Γ to n + ν′k − νk ∈ Γc with λk(n) > 0. This implies that ni + ν′ki − νki < bi for some i, and thus
ni < bi − ν′ki + νki ≤ bi + νki. That is, n � νk + b, and n ≥ b since n ∈ Γ. Therefore, λk(n) = 0 from the definition
of b. This contradicts to λk(n) > 0, so Γ is closed.

We turn to showing that the given π solves the CME at steady state:∑
k

λk(n− (ν′k − νk))π(n− (ν′k − νk)) =
∑
k

λk(n)π(n) for all n ∈ Zd≥0. (S9)

Case 1: n ∈ Γc. The right-hand side in Eq. (S9) is 0 as π(n) = 0 for n ∈ Γc. For the left-hand side in Eq. (S9), if
n− (ν′k − νk) ∈ Γ, λk(n− (ν′k − νk)) = 0 because Γ is a closed set, and if n− (ν′k − νk) ∈ Γc, π(n− (ν′k − νk)) = 0 by
its definition. Therefore, the left-hand side in Eq. (S9) is 0.
Case 2: n ∈ Γ. For each n ∈ Γ, we define KΓ(n) = {k | n− (ν′k − νk) ∈ Γ}. Then Eq. (S9) can be reduced into∑

k∈KΓ(n)

λk(n− (ν′k − νk))π(n− (ν′k − νk)) =
∑
k

λk(n)π(n) for all n ∈ Zd≥0 (S10)

because π(n− (ν′k− νk)) = 0 for each k ∈ KΓ(n)c. After the substitution of π(n) =
cn

θ(n)
and Eq. (S8), the Eq. (S10)

becomes

LHS =
∑

k∈KΓ(n)

κk
cn−(ν′k−νk)

θ(n− (ν′k − νk))
θ(n− (ν′k − νk))ω(n− ν′k)1{n≥ν′k}

= cn
∑

k∈KΓ(n)

κkc
νk−ν′kω(n− ν′k)1{n≥ν′k}, (S11)

RHS =
cn

θ(n)

∑
k

κkθ(n)ω(n− νk)1{n≥νk} = cn
∑
k

κkω(n− νk)1{n≥νk}. (S12)

We can show that the RHS and LHS are equal by using that c ∈ Rd>0 is a CBE and thus for any fixed complex
z ∈ C, ∑

k:ν′k=z

κkc
νk =

∑
k:νk=z

κkc
νk .

Multiplying c−zω(n− z)1{n≥z} on the both sides, we have∑
k:ν′k=z

κkc
νk−zω(n− z)1{n≥z} =

∑
k:νk=z

κkc
νk−zω(n− z)1{n≥z},

∑
k:ν′k=z

κkc
νk−ν′kω(n− ν′k)1{n≥ν′k} =

∑
k:νk=z

κkω(n− νk)1{n≥νk}.

Hence, by summing these up for all z ∈ C and multiplying cn both sides, we get

cn
∑
k

κkc
νk−ν′kω(n− ν′k)1{n≥ν′k} = cn

∑
k

κkω(n− νk)1{n≥νk} (S13)
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because every reaction has exactly one complex as its source complex and product complex. Since the right hand side
of Eq. (S13) is equal to the RHS (Eq. (S12)), we need to show that the left hand side of Eq. (S13) is equal to the
LHS (Eq. (S11)).

If k ∈ KΓ(n)c, then n − (ν′k − νk) ∈ Γc meaning that ni − ν′ki ≤ ni − (ν′ki − νki) < bi for some i and thus
n − ν′k ∈ Γc. Since the network has the complex balanced equilibrium, the network is weakly reversible [7]. Thus,
there exists a reaction k̃ whose source complex νk̃ is equal to ν′k. For such k̃, by the definition of b, λk̃(n) =

κk̃θ(n)ω(n − νk̃)1{n≥νk̃} = 0 because n ≥ b and n − νk̃ ∈ Γc (i.e., n − νk̃ � b). Since θ(n) > 0, furthermore,
ω(n − νk̃)1{n≥νk̃} = ω(n − ν′k)1{n≥ν′k} = 0. Hence, the left hand side of Eq. (S13) is equal to the Eq. (S11) and
therefore, Eq. (S11) and Eq. (S12) are equal.

Example 1. Here, we illustrate Theorem 2 with the translated EGFR network in Fig. 3a:

0 A AP
α1

α2nA(nA−1)

α3nAP

α4nAP

The CBE c = (cA, cAP
) of the deterministic mass action model satisfies the balancing equations for the complex 0:

α3cAP
= α1, for the complex A: α1 + α4cAP

= α2cA, and for the complex AP : α2cA = α3cAP
+ α4cAP

. Thus,
c = (cA, cAP

) = (α1

α2
+ α1α4

α2α3
, α1

α3
). For this example, b = (1, 0) since λk(n) > 0 for n ≥ νk + (1, 0), and λk(n) = 0 for

n such that n ≥ (1, 0) and n � νk + (1, 0) for all k = 1, . . . , 4. Letting fA(nA) = nA(nA − 1) and fAp
= nAP

, the
condition in Theorem 1 holds. Therefore, the propensity factorization λk(n) = κkθ(n)ω(n− νk)1{n≥νk} is given by

κk = αk, θ(nA, nAP
) = nA!(nA − 1)!nAP

!

and

ω(nA, nB) =
1

θ(nA, nAP
)
1{nA≥1} =

1

nA!(nA − 1)!nAP
!
1{nA≥1}

for (nA, nAP
) ∈ Γ = {(nA, nAP

) | nA ≥ 1, nAP
≥ 0}. By Theorem 2, a stationary measure π(nA, nAP

) is given by

π(nA, nAP
) =

M
(
α1

α2
+ α1α4

α2α3

)nA
(
α1

α3

)nAP

nA!(nA − 1)!nAP
!

if (nA, nAP
) ∈ Γ,

0 if (nA, nAP
) ∈ Γc.

where M is a normalizing constant. π(nA, nAP
) is indeed a stationary distribution because it is summable over Γ as

follows:

∑
(nA,nAP

)∈Γ

(
α1

α2
+ α1α4

α2α3

)nA
(
α1

α3

)nAP

nA!(nA − 1)!nAP
!

≤
∑

(nA,nAP
)∈Γ

(
α1

α2
+ α1α4

α2α3

)nA
(
α1

α3

)nAP

nA!nAP
!

≤
∑

(nA,nAP
)∈Z2
≥0

(
α1

α2
+ α1α4

α2α3

)nA
(
α1

α3

)nAP

nA!nAP
!

= exp(
α1

α2
+
α1α4

α2α3
+
α1

α3
) <∞.

Moreover, since Γ is closed, the states (nA, nAP
) ∈ Γc are transient as each state in Γc is reachable to Γ with either

0 → A or Ap → A. This implies that the stochastic process can visit the state n ∈ Γc only finitely many times.
Indeed, if (nA, nAP

) ∈ Γc, i.e., nA = 0, then only the reactions 0→ A, AP → A and AP → 0 can occur in Γc. Thus,
the process moves along one of the stoichiometric vectors (1, 0), (1,−1), and (0,−1), then it eventually escapes from
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Γc to Γ and never comes back to Γc. Due to the transient states, Theorem 6.6, which is the most general version of
the previous work [2], is not applicable to this example.

Let us compute the marginal means and variances of nA and nAP
. For nAP

, the marginal distribution

π(nAP
) = M1

(α1/α3)nAP

nAP
!

, nAP
≥ 0,

which is a Poisson distribution with rate α1

α3
, so both the mean and the variance are α1

α3
. Thus, the coefficient of

variation (CV) is
√

α3

α1
, and the Fano factor, defined as the variance divided by the mean, is always 1. For nA, the

marginal distribution

π(nA) = M2
unA

0

(nA − 1)!nA!
, nA ≥ 1

where u0 = (α1/α2 + α1α4/α2α3), and M2 is the normalizing constant.

M2 =

( ∞∑
nA=1

unA
0

nA!(nA − 1)!

)−1

= [
√
u0I1(2

√
u0)]

−1

where Im(x) is the modified Bessel function of the first kind. Then the mean and variance are given by

E[nA] =

∞∑
nA=1

nAπ(nA) =
√
u0
I0(2
√
u0)

I1(2
√
u0)

,

Var(nA) = E[n2
A]− (E[nA])

2
=
√
u0
I0(2
√
u0)

I1(2
√
u0)

+ u0 − u0
I0(2
√
u0)2

I1(2
√
u0)2

.

The CV and the Fano factor are also given by

CV =

√
Var(nA)

E[nA]
=

√
E[n2

A]

E[nA]2
− 1 =

√
1
√
n0

I1(2
√
u0)

I0(2
√
u0)

+
I0(2
√
u0)2

I1(2
√
u0)2

− 1,

Fano factor =
Var(nA)

E[nA]
= 1 +

√
u0
I1(2
√
u0)

I0(2
√
u0)
−
√
u0
I0(2
√
u0)

I1(2
√
u0)

.

0
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 300
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

C
V

F
a

n
o

 F
a

c
to

r

Supplementary Figure 1. The coefficient of variation (CV) and Fano factor of the stationary distribution of nA in Fig. 3A
can be determined by the single parameter u0 = α1

α2
(1 + α4

α3
). The CV attains the maximum at u0 ≈ 1.8, and the Fano factor

monotonically increases. Since the Fano factor is always less than 1, this distribution is sub-Poissonian.

Remark 3. By the basic Markov properties [10], Theorem 2 not only provides a stationary measure but also char-
acterizes the status of states. Since π(n) > 0 for each n ∈ Γ, every state in Γ is recurrent as long as the process is
non-explosive (i.e., well-defined for all time t). Since Γ is a closed set, furthermore, if a state n ∈ Γc is reachable to
Γ, then n is transient. Another special case is that a state n is isolated state, i.e., λk(n) = 0 for all k. In this case,
the set of the single element {n} is an irreducible subset, and π(n) = 1 on {n} is a stationary distribution, obviously.
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Remark 4. This theorem does not require nor imply the irreducibility of Γ. If Γ is not irreducible then for an
irreducible subset Γg ⊂ Γ, we consider a measure πΓg = π|n∈Γg restricted on Γg. This measure is still a stationary
measure and can be a stationary distribution on Γg as long as πΓg is summable over Γg. For instance, in the
example in Fig. 3d, Γ is not an irreducible set, but a union of irreducible subsets ΓT0

= {(x1, x2, x3) ∈ Z3
≥0 | x1 ≥

1 and x1 + x2 + x3 = T0}. Since the stationary measure π obtained by Theorem 2 is summable on ΓT0
for each T0,

the restricted stationary measure πΓT0
can be normalized to be a stationary distribution on the irreducible subset.

In this remark, we prove the irreducibility of {(x1, x2, x3) ∈ Z3
≥0 | x1 ≥ 1 and x1 + x2 + x3 = T0} for Fig. 3d. We

say that for a Markov chain X, state y is accessible from state x and write x→a y if X can reach y starting from x

with positive probability, that is, the probabilities P (X(t) = y | X(0) = x) > 0 for some t > 0. We say that states x
and y communicate and write x↔c y if x→a y and y →a x. For the Markov chain X(t) associated with a translated
network, we denote by λC1→C2

and η the propensity of a reaction C1 → C2 and the stoichiometric vector of the
reaction, respectively. Note that if λC1→C2(x) > 0 then x→a x+ η because for a sufficiently small ∆t,

P (X(∆t) = x+ η | X(0) = x) = λC1→C2(x)∆t+ o(∆t).

By using this, for the translated network in Fig. 3d, we have (nA, nAP
, nAPP

) ↔c (nA − 1, nAP
+ 1, nAPP

) and
(nA, nAP

, nAPP
)↔c (nA−1, nAP

, nAPP
+1) for nA ≥ 2 and nA+nAP

+nAPP
= T0 because λA→AP

(nA, nAP
, nAPP

) >

0, λAP→APP
(nA−1, nAP

+1, nAPP
) > 0 and λAPP→A(nA−1, nAP

, nAPP
+1) > 0, which imply that (nA, nAP

, nAPP
)→a

(nA − 1, nAP
+ 1, nAPP

)→a (nA − 1, nAP
, nAPP

+ 1)→a (nA, nAP
, nAPP

). As ↔c forms an equivalent class, any two
states in {(x1, x2, x3) ∈ Z3

≥0 | x1 ≥ 1 and x1 + x2 + x3 = T0} communicate so it is irreducible when T0 ≥ 2. If T0 = 1

then the set consists of a single element (1, 0, 0), and it is irreducible itself.
Similarly, for the translated network in Fig. 1 we have that (nA, nB)↔c (nA+1, nB) and (nA, nB)↔c (nA, nB +1)

for any (nA, nB) ∈ Z2
≥0 because λ0→A(nA, nB) > 0, λA→A+B(nA + 1, nB) > 0 and λA+B→0(nA + 1, nB + 1) > 0,

which imply that (nA, nB)→a (nA + 1, nB)→a (nA + 1, nB + 1)→a (nA, nB). As ↔c forms an equivalent class, any
two states in Z2

≥0 communicate and hence Z2
≥0 is irreducible. The irreducibilities of the other two examples in Fig.

3a, g can be shown in similar ways.

Remark 5. By introducing a new factor ω(n), Theorem 2 generalizes Theorem 6.6 in [2], which is the most general
version of the previous work [2]. In particular, if the function ω(n) for the factorization is θ(n)−1 then Theorem 2
becomes equivalent to Theorem 6.6 in [2]. This generalization is demonstrated by three biologically relevant examples
in Fig. 3. For instance, ω(n) = θ(n)−11{n≥b} in Fig. 3a with the nonzero vector b = (1, 0), so this factorization is
not directly covered by the previously identified form, where ω(n) = θ(n)−1. However, the additional characteristic
function is somehow negligible under a change of variable n′ = n−b since the state space can be restricted on {n ≥ b}.
Nevertheless, the usefulness of our theorem is clearly demonstrated by the examples in Fig. 1 and Supplementary
Figs. 3 and 4 .

SUPPLEMENTARY NOTE 4:
CASTANET: COMPUTATIONAL PACKAGE FOR DERIVING STATIONARY DISTRIBUTION

FORMULAE

Applying our theoretical framework (Fig. 1) has two practical difficulties. Translating a given network to a weakly
reversible deficiency zero network (Fig. 1a) is not straightforward as prohibitively many candidates of translated
networks often exist. Furthermore, unless propensity functions follow the generalized mass action kinetics, it is
challenging to check whether the factorization condition holds (Fig. 1b) as it requires to solve associated recur-
rence relations. Thus, we have developed an open-source and publicly available MATLAB code (GitHub repository:
http://github.com/Mathbiomed/CASTANET) that performs our theoretical analysis to derive stationary distribu-
tions. Specifically, the package checks two conditions: whether a given BRN can be made weakly reversible and of
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zero deficiency after network translation, and whether the propensities of the translated network can be factorized as
in Eq. (S2). If these two conditions are satisfied, the package then calculates the analytic formula for a stationary
distribution. One can easily run our code by simply entering the source complexes, product complexes, and propensity
functions of reactions.

       3

Step 3) Search all weakly reversible and deficiency zero translated networks. 

lambda_k{1}(n) = alpha(1);

lambda_k{2}(n) = alpha(2)*n(1);

lambda_k{3}(n) = alpha(3)*n(1)*n(2);

lambda_k{4}(n) = alpha(4)*n(1);

c(1)^n(1)*c(2)^n(2)/theta

Step 1 & 2) Input a network and propensities.

Output

oxx

Translated

Network 

Translated

Network 

       1        2

Translated

Network ...

Step 5) Compute CBE     and derive an analytic formula for the stationary distribution.

Step 4) For each translated network, check the propensity factorization Eq. (1) with            . 

        

sources_trans products_trans Index_trans

0 1 1

0 0 1

1 1 0

0 1 0
{1,4} {2} {3}

sources products

0 1 1 1

0 0 1 0

1 1 0 2

0 1 0 1

pi

A A

A B

A0

A B

A0

Supplementary Figure 2. A step-by-step schematic diagram of CASTANET. Here, θc(n) is a candidate for propensity factor-
ization. See the manual for details.

Manual for the code

We explain how to enter the input and run the code CRN_main.m with our example in Fig. 1a as follows.

Step 1) Enter the source and the product complexes into sources and products as column vectors.

% Fig.1 example
sources = [0 0; 1 0; 1 1; 1 0]';
products = [1 0; 1 1; 0 0; 2 0]';

>> disp(sources)
0 1 1 1
0 0 1 0

>> disp(products)
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1 1 0 2
0 1 0 0

The ith columns of source and product represent the source complex and the product complex of the ith reaction,
respectively. For instance, the fourth columns of source ([1, 0]T) and product ([2, 0]T) describe the source and
product complexes of the fourth reaction: A(= 1A+ 0B)→ A+A(= 2A+ 0B).

Step 2) Enter the propensity functions of all reactions into the cell variable lambda_k and run the section
‘Initialization of all input variables and parameters’ to set up all the input variables.

lambda_k{1}(n) = alpha(1);
lambda_k{2}(n) = alpha(2)*n(1);
lambda_k{3}(n) = alpha(3)*n(1)*n(2);
lambda_k{4}(n) = alpha(4)*n(1);

Note that the propensity functions do not need to follow the mass action kinetics. The symbolic variable alpha(k)
represents the rate constants of the reactions. Users can also fix the values of alpha(k) (e.g., alpha(1) = 3;).

Step 3) Run the section ‘Performing Network translation’ to obtain translated networks.

[Solution,Index] = CRN_translation(sources, products, 2);

The third input argument 2 means that the function searches all translated networks whose reaction order is at
most two (i.e., bimolecular). It can be changed to any other positive integer. The ith row of Solution contains
the source and product complexes of the ith translated network. Each element in the ith row of Index is a set of
indices indicating which reactions in the original network are merged to form a reaction in the ith translated BRN.
For instance, if the ij entry of Index is {1, 3}, then this indicates that the first and third reactions in the original
BRN were merged to form the jth reaction in the ith translated network. As the outcome, the number of identified
weakly reversible deficiency zero translated networks is reported:
The number of weakly reversible deficiency zero translated networks is 2.

Step 4) Run the section ‘Performing Propensity factorization’ to identify a translated network whose propen-
sity functions satisfy the factorization condition (Eq. (S2)) among all the translated networks obtained in Step 3.
Specifically, for each translated network, the code constructs a candidate (θc(n)) for the function θ(n) and checks
the factorization conditions with the candidate θc(n). This candidate is necessarily the desired function θ(n) if there
exists a factorization (see the next subsection for details). The key function CRN_theta_construction() provides the
candidate, and CRN_check_factorization_condition() examines whether the factorization condition (Eq. (S2))
holds. Since the example in Fig. 1 has a translated network satisfying the factorization condition, the code successfully
finds the factorization and displays the following line:

The factorization condition holds for the translated network 1!

If none of the translated networks have the desired propensity factorization, the code displays the following line:

No translated network satisfying the factorization condition is
identified.
Step 5) If a translated network having the propensity factorization is found in Step 4, run the section ‘Compute

CBE and derive a stationary distribution pi(n)’ to compute a complex balanced equilibrium and analytically
derive a stationary distribution. Then the code will provide the translated network and its stationary distribution
formula, which is the same as the stationary distribution of the original network.

Output)
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We have five outputs: source_trans, product_trans, Index_trans, lambda_trans, and pi. The first two outputs
represent the stochiometric vectors of the source complexes and the product complexes in the translated network iden-
tified in Step 4. Index_trans is the row of Index corresponding to the translated network. lambda_trans contains
the propensity functions of the translated network, and pi is a symbolic expression for the stationary distribution.

The source complexes of the translated network:
0 1 1
0 0 1

The product complexes of the translated network:
1 1 0
0 1 0

The index of the translated network:
{1,4} {2} {3}

ni is the number of the ith species.
1st reaction propensity of the translated network:
alpha1 + alpha4*n1

2nd reaction propensity of the translated network:
alpha2*n1

3rd reaction propensity of the translated network:
alpha3*n1*n2

Analytic formula for the stationary distribution:
piecewise(~in((alpha1 - alpha4)/alpha4, 'integer') |
~(alpha1 - alpha4)/alpha4 in Dom::Interval([-n1], [-1]),
(alpha2ˆ(n2 - n1)*alpha4ˆn1*gamma((alpha1 + alpha4*n1)/alpha4))/
(alpha3ˆn2*gamma(n1 + 1)*factorial(n2)*gamma(alpha1/alpha4)))

Here, piecewise(condition, value) means conditionally defined function in MATLAB. If condition holds then
value is the function output. Since MATLAB symbolic expression uses gamma(a+k+1)/gamma(a+1) to represent
(a+ 1)(a+ 2) · · · (a+ k) and the domain of the gamma function does not contain the non-positive integers, the above
complicated expression appears. The above expression certainly the same to the theoretical result.

Note that, technically, this is a formula for a stationary measure, not a distribution. To get the stationary distribu-
tion, the stationary measure needs to be normalized so that the sum of the probabilities over the state space is one,
which is possible only when the formula is summable over the state space.

Underlying algorithm of the code

The code generates all possible network translations under a user-defined maximum reaction order (e.g., 1, 2, and
3 for unimolecular, bimolecular, and termolecular reaction networks, respectively). Among these translated networks,
the code identifies weakly reversible deficiency zero networks. However, because there are sometimes prohibitively
many translated networks (e.g., 864 candidates for the example in Fig. 1 with maximum reaction order 3), checking
weak reversibility and deficiency for all translated network is extremely inefficient. In particular, it greatly increases
computational cost to check weak reversibility and count the number of linkage classes via a connected components
search algorithm (Tarjan’s algorithm [12]). Thus, before performing this calculation, we first simply check whether a
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translated network can have a desired property by using the following necessary conditions of being a weakly reversible
deficiency zero network, which greatly reduce computational cost.

Theorem 3 (Necessary condition of a network to be weakly reversible after network translation). For a given
biochemical reaction network, if there exists a weakly reversible translated network of the given network then for each
species index i, one of the following two conditions holds.

1. The ith coordinates of the stoichiometric vectors of all reactions, ν′ik − νik, are zero. In other words, {ν′i1 −
νi1, ν

′
i2 − νi2, . . . , ν′ir − νir} = {0}.

2. There exist both positive and negative numbers among the ith coordinates of the stoichiometric vectors of all
reactions. In other words, the set {ν′i1 − νi1, ν′i2 − ν′i2, . . . , ν′ir − ν′ir} has both positive and negative elements.

Proof. This can be proved by contradiction. Suppose that there exists a species index i such that the set of ith
coordinates of all the stoichiometric vectors has only non-negative (non-positive) elements and has at least one positive
(negative) element. Note that this is the negation of the above statement. Since the set of stoichiometric vectors is
invariant under network translation, the weakly reversible translated network also has the same set of stoichoimetric
vectors as the original network does. Note that every reaction in a weakly reversible network belongs to a closed cycle.
However, the reaction whose stoichiometric vector has positive ith coordinate cannot be contained in any closed cycle
because the ith coordinate of every other stoichiometric vector is non-negative.

If the necessary condition is not satisfied for a given BRN, we do not need to check weak reversibility of all translated
networks, which greatly reduces computational cost.

Theorem 4 (Necessary condition of a network to have zero deficiency). For a given biochemical reaction network,
let n, l, and s be the number of complexes, the number of linkage classes, and the dimension of the subspace spanned
by the stoichiometric vectors, respectively. If the deficiency of the network is zero, then s+ 1 ≤ n ≤ 2s.

Proof. The deficiency δ is given by n− l−s. Since the deficiency of the given network is zero, n = l+s. As long as the
given network is not the empty network (i.e. S = C = R = ∅), there exists at least one linkage class, so 1 ≤ l. Each
linkage class consists of at least two complexes so n(= l+s) ≥ 2l and thus l ≤ s. Therefore, s+1 ≤ n = l+s ≤ 2s.

This condition might appear useless because n can vary among translated network. Nevertheless, s is invariant
under network translation, and furthermore, we no longer need to calculate the number of linkage classes l for the
condition in Theorem 4, which requires to perform the graph search algorithm and thus takes high computational
cost. Hence, by avoiding this calculation for translated networks that do not satisfy the necessary condition, we can
greatly reduce computational cost.

After identifying a weakly reversible and of zero deficiency network, the code checks whether each translated
network satisfies the factorization condition (Eq. (S2)) by constructing the explicit formula for a candidate θc(n) for
the function θ(n) in Eq. (S2). The candidate θc(n) can be constructed as follows. We first derive the recurrence
relation of the function θ(n). If there exists a desired propensity factorization, from the factorization conditions for
reactions i and j at n− νj and n− νi,

λi(n− νj) = κiθ(n− νj)ω(n− νj − νi),

λj(n− νi) = κjθ(n− νi)ω(n− νi − νj).

By dividing the above equations, we get the following recurrence relation:

θ(n− νj) =
λi(n− νj)/κi
λj(n− νi)/κj

× θ(n− νi). (S14)
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Let n0 be a state satisfying λk(n0) > 0 for all k. Let us consider a sequence of pairs of source complexes,
(νa1 , νb1), (νa2 , νb2), . . . , (νam , νbm), such that

n0 +

m∑
j=1

(νaj − νbj ) = n. (S15)

This means that n0 → n0 + (νa1
− νb1)→ · · · → n0 +

∑m
j=1(νaj − νbj ) = n is a path from n0 to n. For a pair of n and

n0, in order to identify this type of paths, we use the row-style Hermite normal form, an analogue of reduced echelon
form for a matrix over the integers. Specifically, non-zero rows of the Hermite normal form of the matrix whose jth
row is νj+1 − ν1 form a basis for the lattice as νi − νj = (νi − ν1) − (νj − ν1). Thus, by using this basis, one can
identify a path from n0 to n [3, 5]. Note that such a path is not unique in general but it is enough to consider a single
path (see below). We multiply Eq. (S14) along this path, and then we obtain

θ(n) =

m∏
j=1

λaj (n0 +
∑j
i=1(νai − νbi))/κaj

λbj (n0 +
∑j−1
i=1 (νai − νbi))/κbj

× θ(n0). (S16)

Note that the RHS of Eq. (S16) can be obtained by substituting n in Eq. (S14) with n + νi and one can assume
θ(n0) = 1 without loss of generality as the factorization holds up to constants.

For a special case, CASTANET uses a more efficient way to identify θ(n). Specifically, if the propensity functions
of a translated network follow the generalized stochastic mass action kinetics and all the complexes consist of zero or
one species, then CASTANET constructs the function θ(n) by using Eq. (S7).

Based on this expression for θ(n), the code constructs the candidate θc(n) using Eq. (S16) with a path from
n0 to n. If there exists a desired function θ(n) for propensity factorization then it must be the same as the
candidate θc(n) because both should be expressed as Eq. (S16). Thus, the propensity factorization condition
(Eq. (S2)) can be checked using θc(n). In the package, CRN_find_elementary_path() generates a path from
n0 to n, CRN_theta_construction() constructs θc(n), and CRN_check_factorization_condition() examines
the factorization condition. The functions CRN_find_elementary_path(), CRN_find_elementary_function() and
CRN_solve_sym_linear() are auxiliary functions to preprocess the input variables into appropriate forms for the
construction code. See README.md in the GitHub repository for details. Finally, a complex balanced equilibrium of
the deterministic mass action model for the translated network is determined by solving the algebraic equation for
the complex balanced equilibrium with the function CRN_compute_cbe().
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Supplementary Figure 3. Our computational package CASTANET identifies BRNs with two species whose stationary distri-
bution can be analytically derived. Specifically, CASTANET translates these networks to be weakly reversible and of zero
deficiency and then finds factorizations for the propensity functions of the translated networks as in Eq. (S8), thus calculat-
ing their stationary distributions. The figure shows the first 32 networks identified by our package among randomly selected
networks with two species (A and B) and at most bimolecular reactions (e.g., A + B → A). More examples can be found in
https://github.com/Mathbiomed/CASTANET. All kinetics are assumed to follow the mass action kinetics. All rate constants
are set to be one to reduce complexity while arbitrary rate constants are allowed to derive stationary distributions.
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Supplementary Figure 4. Our computational package CASTANET identifies BRNs with three species whose stationary dis-
tribution can be derived. Specifically, CASTANET translates these networks to be weakly reversible and of zero deficiency
and then finds factorizations for the propensity functions of the translated networks as in Eq. (S8), thus calculating their
stationary distributions. The figure shows the first 32 networks identified by our package among randomly selected networks
with three species (A, B, and C) and at most bimolecular reactions (e.g., A + B → C). More examples can be found in
https://github.com/Mathbiomed/CASTANET. All kinetics are assumed to follow the mass action kinetics. All rate constants
are set to be one to reduce complexity while arbitrary rate constants are allowed to derive stationary distributions.
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Supplementary Figure 5. Stationary distributions of autophosphorylation networks with non-elementary reactions (e.g., Hill
functions). a, b, c Autophosphorylation networks with non-elementary propensity functions. The propensity functions
f, f1, f2, g, and h can be Michaelis-Menten or Hill functions, which are often used to describe autophosphorylation, phosphatase-
mediated dephosphorylation, and proteasomal degradation. The propensity functions f, f1, f2, g, and h can be Michaelis-Menten
or Hill functions, which are often used to describe autophosphorylation, phosphatase-mediated dephosphorylation, and pro-
teasomal degradation. In fact, f(nA) can be other functions as long as there exists bA such that f(nA) > 0 if and only if
nA > bA. For the Michaelis-Menten and Hill-type functions, bA = 0 because f(nA) > 0 if and only if nA > bA = 0. The
restriction f(nA) > 0 if and only if nA > bA means simply that the propensity is positive when there is a large enough number
of A molecules (i.e., nA > bA), and the value of bX is, in turn, the minimum number of species A in the recurrent state. This
indicates that our method can be applied to any typical propensity function f for these networks. Similarly, f̃ , g, and h can
be other functions satisfying the natural positivity condition (e.g, g(nAP ) > 0 if and only if nAP > bAP ). d, e, f Stationary
distributions of the autophosphorylation networks with the non-elementary reactions. Note that the stationary distributions
of the networks in Fig. 3 are special cases of these formulae.
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Supplementary Figure 6. The stationary distributions of modified autophosphorylation networks with additional trans-
autophosphorylation reactions (dotted boxes). These can be approximated by the stationary distributions of the original
networks as long as the relative magnitude (γ) of the rate constant of a new trans-autophosphorylation reaction (dotted box)
is sufficiently small compared to that of the original trans-autophosphorylation reaction. a Trans-autophosphorylation reaction
A+ AP → AP + AP is added to the original network (Fig. 3a). Due to this modification, although the modified network can
be translated to a weakly reversible deficiency zero network, a desired propensity factorization does not exist. b Nevertheless,
the stationary distributions π(nA) of the modified network (γ = 0.05, 0.1, 0.2, gray lines) calculated from stochastic simulations
can be closely approximated by the stationary distribution of the original network (γ = 0, colored line), which is derived by
our method (Fig. 3b, c). c Even the stationary distributions π(nAP ) of the modified network are nearly identical to those of
the original network. d Similar to a, adding A + AP → AP + AP makes their propensities unable to be factorized as in Eq.
(S2) even after network translation. e, f, g The stationary distributions, π(nA), π(nAP ), and π(nAPP ) of the modified network
can be approximated by the stationary distributions of the original network (γ = 0), which are obtained by our method (Fig.
3e, f). h Another trans-autophosphorylation reaction A + A → A + AP is added to the original network (Fig. 3g). i,j The
stationary distributions π(nA) and π(nAP ) of the modified network are nearly identical to the stationary distributions of the
original network (γ = 0). Note that the stationary distribution of the modified network in h can still be analytically derived
because there exists a desired propensity factorization for this modified network after network translation. For each example,
105 simulations were performed using the Gillespie algorithm. See Fig. 3 for the values of parameters.
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SUPPLEMENTARY NOTE 5:
STATIONARY DISTRIBUTIONS OF THE GENETIC TOGGLE SWITCH WITH SLOW PROMOTER

KINETICS (FIG. 4)

To obtain the probabilities of the gene GA is active (ρact) and repressed (ρrep), we can construct the reduced-order
Markov chain infinitesimal generator Λr:

[Λr]ij =

{
ε−1E [λij |gene state j] for i 6= j

−ε−1
∑
k 6=j λkj for i = j

}
,

where λij is the propensity of the reaction that changes the gene state from j to i, and ε is the ratio between the fast
and slow timescale. The gene state 1, 2, 3, and 4 represent (GAact, G

B
act), (GAact, G

B
rep), (GArep, G

B
act), and (GArep, G

B
rep),

respectively, where GAact represents nGA
act

= 1 and nGA
rep

= 0, and GArep represents nGA
act

= 0 and nGA
rep

= 1,
and it is defined in the same manner for the gene GB . Then λ21 is the propensity of the reaction AP + GBact →
GBrep, which changes the gene state from (GAact, G

B
act) to (GAact, G

B
rep). Thus, [Λr]21 = ε−1E

[
λ21|(GAact, GBact)

]
=

lbE
[
nAP
|(GAact, GBact)

]
because λ21 = ε · lbnAP

nGB
act

, and nGB
act

= 1. Since the conditional moment of nAP
is solely

determined by the state of the gene GA, [Λr]21 = lbE
[
nAP
|GAact

]
. Repeating the similar computations, we get the

infinitesimal generator

Λr =
−lbE

[
nAP
|GAact

]
− kbE

[
nBP
|GBact

]
lu ku 0

lbE
[
nAP
|GAact

]
−lu − kbE

[
nBP
|GBrep

]
0 ku

kbE
[
nBP
|GBact

]
0 −ku − lbE

[
nAP
|GArep

]
lu

0 kbE
[
nBP
|GBrep

]
lbE
[
nAP
|GArep

]
−ku − lu

 .

Note that Λr is Metzler i.e., all the entries are non-negative except for those on the diagonal, and 1TΛr = 0. Hence, the
Perron-Frobenius theorem [6] implies that there exists a positive eigenvector ρ = (ρ(act,act), ρ(act,rep), ρ(rep,act), ρ(rep,rep))

corresponding to the eigenvalue 0. Furthermore, we can uniquely determine the eigenvector ρ using the normaliza-
tion: ρ(act,act) + ρ(act,rep) + ρ(rep,act) + ρ(rep,rep) = 1. Here, ρ(act(,rep),act(,rep)) is the probability that the gene state
is (GAact(,rep), G

B
act(,rep)) [1]. From this eigenvector, we can derive the approximation of the full (i.e., unconditional)

mariginal stationary distribution of fast variable AP :

π(nAP
) ≈ρ(act,act)π(nAP

|GAact, GBact) + ρ(act,rep)π(nAP
|GAact, GBrep)

+ ρ(rep,act)π(nAP
|GArep, GBact) + ρ(rep,rep)π(nAP

|GArep, GBrep),
(S17)

where the approximation becomes more accurate as the timescale separation is larger and becomes exact when ε→ 0.
Since the conditional distribution of the AP solely depends on the state of the gene GA, it can be reduced as follows:

π(nAP
) ≈ (ρ(act,act) + ρ(act,rep))π(nAP

|GAact) + (ρ(rep,act) + ρ(rep,rep))π(nAP
|GArep).

Finally, the probabilities that the gene GA is active (ρact) and repressed (ρrep) are given by

ρact = ρ(act,act) + ρ(act,rep) and ρrep = ρ(rep,act) + ρ(rep,rep).

The full marginal stationary distributions of all other fast variables: A,B,BP , can also be obtained by computing the
linear combination of the conditional stationary distributions of each fast variable, similar to Eq. (S17) (Supplementary
Fig. 7). More details on the derivation of the reduced-order Markov chain are discussed in [1].
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Supplementary Figure 7. Full marginal stationary distributions formulae (solid lines) and the simulation results obtained with
104 times Gillespie algorithms (dots) for A,B,BP in Fig. 4. See Fig. 4 for the values of parameters.
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Figure 4e Reduced Figure 4e Full modelFigure 4d Figure 3c

Resident tProbabilitResident tProbabilitNumber ofProbability Number ofProbabilitNumber ofProbability

300 0.315059 300 0.310996 1 0.0022 31 4.00E-05 12 2.00E-05

900 0.153582 900 0.150808 2 0.0065 32 7.00E-05 13 1.00E-05

1500 0.089841 1500 0.090143 3 0.0192 33 5.00E-05 14 0.0001

2100 0.062847 2100 0.062829 4 0.0364 34 0.00018 15 0.00021

2700 0.04856 2700 0.052077 5 0.0518 35 0.00044 16 0.00039

3300 0.042816 3300 0.042497 6 0.0697 36 0.00073 17 0.00069

3900 0.036158 3900 0.036508 7 0.0762 37 0.00134 18 0.00141

4500 0.031126 4500 0.031463 8 0.0725 38 0.00275 19 0.00245

5100 0.026961 5100 0.027452 9 0.0566 39 0.00468 20 0.00349

5700 0.022998 5700 0.024226 10 0.0434 40 0.00732 21 0.00664

6300 0.021139 6300 0.020794 11 0.0269 41 0.01163 22 0.00994

6900 0.01827 6900 0.018464 12 0.0175 42 0.01733 23 0.01342

7500 0.016295 7500 0.016252 13 0.0112 43 0.02381 24 0.01878

8100 0.013911 8100 0.014246 14 0.0067 44 0.03209 25 0.02522

8700 0.01204 8700 0.013006 15 0.0028 45 0.04272 26 0.03278

9300 0.011178 9300 0.011055 16 0.0011 46 0.05168 27 0.04026

9900 0.009436 9900 0.009408 17 0.0002 47 0.061 28 0.04779

10500 0.008322 10500 0.008257 18 0.0003 48 0.06866 29 0.05526

11100 0.007228 11100 0.007478 19 0.0003 49 0.07637 30 0.06152

11700 0.006496 11700 0.006334 20 0.0001 50 0.07804 31 0.06663

12300 0.005388 12300 0.005817 21 0 51 0.07873 32 0.0691

12900 0.004818 12900 0.004797 22 0.0003 52 0.07745 33 0.06862

13500 0.00476 13500 0.004342 23 0.0001 53 0.07017 34 0.06767

14100 0.004054 14100 0.003935 24 0.0001 54 0.06298 35 0.06357

14700 0.003186 14700 0.00335 25 0.0001 55 0.05482 36 0.05973

15300 0.003044 15300 0.00315 26 0.0003 56 0.04491 37 0.05398

15900 0.002604 15900 0.002578 27 0.0001 57 0.03692 38 0.04762

16500 0.002312 16500 0.002426 28 0.0001 58 0.02809 39 0.04094

17100 0.00206 17100 0.001971 29 0 59 0.02035 40 0.03347

17700 0.001658 17700 0.001578 30 0.0005 60 0.01527 41 0.02765

18300 0.001658 18300 0.001378 31 0.0006 61 0.01095 42 0.02061

18900 0.001386 18900 0.001254 32 0.0015 62 0.00686 43 0.01621

19500 0.001069 19500 0.001206 33 0.0015 63 0.00432 44 0.0131

20100 0.000984 20100 0.000944 34 0.0022 64 0.00304 45 0.00957

20700 0.000797 20700 0.000848 35 0.0027 65 0.00183 46 0.00648

21300 0.000764 21300 0.000765 36 0.0036 66 0.00099 47 0.00497

21900 0.000706 21900 0.000669 37 0.0041 67 0.0006 48 0.00327

22500 0.000427 22500 0.000558 38 0.0077 68 0.00033 49 0.00239

23100 0.000583 23100 0.000503 39 0.0085 69 0.00018 50 0.00142

23700 0.000324 23700 0.000524 40 0.0117 70 0.00014 51 0.00101



24300 0.000447 24300 0.00042 41 0.0136 71 0.0001 52 0.0006

24900 0.000369 24900 0.000372 42 0.0149 72 3.00E-05 53 0.00034

25500 0.000369 25500 0.000358 43 0.0194 73 1.00E-05 54 0.00031

26100 0.00022 26100 0.000255 44 0.0194 55 6.00E-05

26700 0.000181 26700 0.000165 45 0.0224 56 0.00019

27300 0.00022 27300 0.000165 46 0.0233 57 7.00E-05

27900 0.000181 27900 0.000145 47 0.0266 58 1.00E-05

28500 0.000149 28500 0.000124 48 0.0265 59 2.00E-05

29100 0.000117 29100 0.000207 49 0.0284 60 1.00E-05

29700 9.71E-05 29700 5.51E-05 50 0.031

30300 0.00011 30300 0.000124 51 0.0249

30900 5.18E-05 30900 0.000145 52 0.026

31500 7.12E-05 31500 4.14E-05 53 0.0262

32100 8.42E-05 32100 6.89E-05 54 0.0219

32700 7.12E-05 32700 4.82E-05 55 0.0212

33300 5.83E-05 33300 4.82E-05 56 0.0207

33900 4.53E-05 33900 4.14E-05 57 0.0176

34500 4.53E-05 34500 6.20E-05 58 0.0133

35100 3.24E-05 35100 4.82E-05 59 0.011

35700 1.94E-05 35700 1.38E-05 60 0.0091

36300 3.89E-05 36300 6.89E-06 61 0.0077

36900 1.94E-05 36900 2.07E-05 62 0.007

37500 2.59E-05 37500 3.45E-05 63 0.0044

38100 3.24E-05 38100 2.76E-05 64 0.0044

38700 3.24E-05 38700 1.38E-05 65 0.0035

39300 6.48E-06 39300 1.38E-05 66 0.0013

39900 1.30E-05 39900 6.89E-06 67 0.0024

40500 1.30E-05 40500 1.38E-05 68 0.002

41100 0.00E+00 41100 1.38E-05 69 0.0015

41700 1.30E-05 41700 6.89E-06 70 0.0003

42300 6.48E-06 42300 6.89E-06 71 0.0001

42900 0.00E+00 42900 6.89E-06 72 0.0003

43500 6.48E-06 43500 6.89E-06 73 0.0002

44100 6.48E-06 44100 1.38E-05 74 0

44700 0.00E+00 44700 1.38E-05 75 0

76 0

77 0.0001

78 0

79 0

80 0.0001



Figure 3f Figure 3i

Probability Number ofProbabilitNumber ofProbabilitNumber ofProbability Number ofProbabilitNumber of

7 1.00E-05 38 2.00E-05 0 0.00323 0 0.00625 42

8 0 39 0 1 0.01926 1 0.03144 43

9 8.00E-05 40 4.00E-05 2 0.05706 2 0.07961 44

10 0.00036 41 9.00E-05 3 0.11194 3 0.13622 45

11 0.0012 42 0.00021 4 0.15923 4 0.17285 46

12 0.00416 43 0.00029 5 0.17586 5 0.17163 47

13 0.01056 44 0.00075 6 0.16314 6 0.14888 48

14 0.02318 45 0.0021 7 0.12803 7 0.10781 49

15 0.04299 46 0.00382 8 0.0861 8 0.06866 50

16 0.06984 47 0.00746 9 0.04957 9 0.04104 51

17 0.10159 48 0.01475 10 0.02617 10 0.02015 52

18 0.12419 49 0.024 11 0.01225 11 0.00923 53

19 0.13987 50 0.03828 12 0.00506 12 0.00388 54

20 0.13266 51 0.05686 13 0.00216 13 0.00155 55

21 0.11643 52 0.07597 14 0.00065 14 0.00051 56

22 0.09123 53 0.09303 15 0.00023 15 0.00022 57

23 0.06202 54 0.10968 16 5.00E-05 16 4.00E-05 58

24 0.03847 55 0.11564 17 1.00E-05 17 2.00E-05 59

25 0.02123 56 0.11443 18 1.00E-05 60

26 0.0115 57 0.0992

27 0.00485 58 0.08478

28 0.00219 59 0.06277

29 0.00086 60 0.04321

30 0.00034 61 0.02543

31 0.00016 62 0.01486

32 1.00E-05 63 0.00721

33 2.00E-05 64 0.00301

65 0.00153

66 0.00041

67 0.00012

68 4.00E-05

69 1.00E-05
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