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Abstract

Multiple myeloma remains treatable but incurable. Despite a
growing armamentarium of effective agents, choice of therapy,
especially in relapse, still relies almost exclusively on clinical
acumen. We have developed a system, Ex vivo Mathematical
Myeloma Advisor (EMMA), consisting of patient-specific math-
ematical models parameterized by an ex vivo assay that reverse
engineers the intensity and heterogeneity of chemosensitivity of
primary cells from multiple myeloma patients, allowing us to
predict clinical response to up to 31 drugs within 5 days afterbone
marrow biopsy. From a cohort of 52 multiple myeloma patients,
EMMA correctly classified 96% as responders/nonresponders and
correctly classified 79% according to International Myeloma
Working Group stratification of level of response. We also
observed a significant correlation between predicted and actual
tumor burden measurements (Pearson 7 = 0.5658, P < 0.0001).
Preliminary estimates indicate that, among the patients enrolled

Major Findings

We have developed a novel tool capable of predicting,
within 5 days, 3 month clinical response of multiple myeloma
patients to 31 drugs, using fresh bone marrow aspirates, a
digital image analysis algorithm, mathematical models, and
pharmacokinetic data.
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in this study, 60% were treated with at least one ineffective agent
from their therapy combination regimen, whereas 30% would
have responded better if treated with another available drug or
combination. Two in silico clinical trials with experimental agents
ricolinostat and venetoclax, in a cohort of 19 multiple myeloma
patient samples, yielded consistent results with recent phase I/II
trials, suggesting that EMMA is a feasible platform for estimating
clinical efficacy of drugs and inclusion criteria screening. This
unique platform, specifically designed to predict therapeutic
response in multiple myeloma patients within a clinically action-
able time frame, has shown high predictive accuracy in patients
treated with combinations of different classes of drugs. The
accuracy, reproducibility, short turnaround time, and high-
throughput potential of this platform demonstrate EMMA's
promise as a decision support system for therapeutic management
of multiple myeloma. Cancer Res; 77(12); 1-16. ©2017 AACR.

Introduction

For decades, there have been attempts to develop predictive
biomarkers in cancer, unfortunately, with limited translational
success (1). Most biomarker development today depends
on molecular techniques applied to dead cells, cell lines, or
primary cancer cells isolated from their microenvironment,
thus failing to account for many elements needed to properly
assess therapeutic efficacy (2). We anticipate that the develop-
ment of novel technologies and multidisciplinary approaches
to directly assess chemosensitivity of primary cells in ex vivo
reconstructions of the tumor microenvironment (TME) are
critical avenues toward personalized predictive biomarker
development (3-5).

Multiple myeloma is a treatable, but incurable malignancy of
plasma cells (6), which serves as an excellent model disease to
examine the potential of personalized management strategies.
Frontline therapy combining multiple novel agents, high-dose
therapy with autologous stem cell transplant, and maintenance
therapy has yielded a high success rate of response in multiple
myeloma (7). However, all patients eventually relapse, with the
treatment of relapsed patients relying mainly on clinical acumen.
This empirical approach has been made increasingly more diffi-
cult by the large number of approved anti-multiple myeloma
agents, leading to astronomical numbers of possible two-, three-,
or even four-drug combinations. In addition, at least one or two
cycles of therapy are required to determine clinical efficacy, during
which time the patient may suffer side effects without clinical
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Quick Guide to Equations and Assumptions

We have implemented a gray-box parametric model that represents the tumor's response to drugs as a collective of subpopula-
tions, each with different levels of chemosensitivity. In this model, the likelihood of cell death depends on drug concentration and
exposure time. This model is parameterized by an ex vivo chemosensitivity assay, where primary multiple myeloma cells from fresh
bone marrow aspirates are exposed to different concentrations of drug for 96 hours (Fig. 1; Supplementary Fig. S1).

Suppose the population of multiple myeloma cells in the patient's body is represented by p(t). The tumor burden varies with time
according to the difference equation:

p(t+dt) = p(t) x G(dt) x D(t,dt), G(dt) = (1+LI1(2* —1)) (A)
where G(dt) represents growth due to tumor cell replication and D(t,dt) represents drug-induced cell death between times t and t+dt.
In cell culture, doubling time is used as a metric for quantifying cell replication. For mammalian cells, this number is approximately
24 hours. However, the doubling time of multiple myeloma tumors is much longer due to its characteristically low proliferative
index (LI, labeling index). In the mathematical model, the growth factor for the multiple myeloma population in the absence of
therapy is given by Equation A, where dt is a time interval (in days), and At is the time step used in the simulation's calculation. To
determine LI for a given patient, we use the two closest prebiopsy measures of tumor burden, obtained from monoclonal
paraprotein, and Equation A, with D = 1.

To describe the stochastic cell death process, we propose an empirical pharmacodynamics model based on the drug occupancy

dt/At
b

theory (8):
Binding | Drug-Receptor | Threshold g n
[Drug] + [Receptor] - Complex — Cell death,Ef —«B(t) + R(t)", (B)

Dissociation  Binding

where drug and receptor molecules form drug-receptor complexes, which in turn cause cellular damage g and, eventually, cell death.
The dynamics of this reversible reaction follow the law of mass action (9), where R(t) is the drug concentration at time ¢, h is an
empirical exponent denoting the rate of conversion of drug exposure into cell damage, and « of cell damage repair.

When the cellular damage is greater than the threshold 7, the probability of cell death increases asymptotically:

D(t,dt) = 1 — 0.5 x tanh(a(t)/2) x dt, a(t, dt) = max (%,o), (©)

where § is a nondimensionalizing empirical factor.

Short-term response of multiple myeloma patients to therapy can be monotonic or present an inflexion point followed by relapse
(Fig. 2A-C). Thus, tumor chemosensitivity cannot always be accurately described by a single "clonal" population, but requires a
more nuanced representation in the general model. We propose two subpopulations, with different degrees of sensitivity to therapy.
Each subpopulation can either be modeled as "clonal" or as a distribution, with drug-specific threshold values (z, Equation D). These
threshold values are obtained from a normally distributed probability density function that specifies the fraction of a subpopulation
that initiates cell death beyond a given threshold. Figure 2B shows an example of such a representation of tumor chemosensitivity as
a single and as a double distribution. Thus, the total tumor burden of a patient is represented as:

p(t+dt) = ij‘i(t) x G(dt) x Dj(t,dt,t;), j=1,2subpoplations.i=1,...,nbins,, (D)

where the composition of each subpopulation at initial time t, is modeled as a distribution with a mean y;and standard deviation ;
that define the percentage of cells that initiate cell death when the accumulated damage surpasses t. For computational purposes, we
have discretized this distribution in a histogram with n bins, ranging from w; — 60; to u; + 60, using MATLAB's function normpdf
(Supplementary Fig. S2).

There is no biological meaning for negative , so the histogram is truncated when p; — 60; < 0, and the value of each bin is
normalized so that the sum of all bins corresponds to p;. Thus, at initial time ¢, the composition of the j™ subpopulation is:

pulto) = B0 _

" Y p;i(to)
To separate drug-induced and spontaneous cell death, we divide every ex vivo dose-response curve by the corresponding vehicle
control. Thus, the ex vivo data used to parameterize the mathematical model consist of percent live cells normalized by control at
every time point, drug concentration, and exposure time. We then use MATLAB's Isqcurvefit function to find the model parameters
that minimize the difference between normalized ex vivo data and the model estimates.

The last step consists of choosing among the four possibilities (1 or 2 subpopulations, clonal or distribution) the model that best
describes the ex vivo data. We achieve this by applying Akaike's Information Criterion (AIC; ref. 10), which favors the best fitting
model with the least number of parameters. Our simulations have shown that models with three or more subpopulations are never
chosen, as they produce minor improvements in ex vivo data fitting, and are significantly penalized by AIC due to their large number
of parameters (e.g., 1-population distribution requires 5 parameters, 2-subpopulation distributions require 9 parameters,
3-subpopulation distributions require 13 parameters).

In summary, the model assumes the existence of one or two tumor subpopulations, with different degrees of chemosensitivity. Each
subpopulation, in turn, exhibits a range of sensitivity to therapy modeled as a normally distributed probability density function.

. PDF(ti; jt;,07), V& >0
x pi(to), Py (to) = { (Tloﬂj U]) Ve <0, (E)
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A high-throughput ex vivo assay for prediction of clinical response in multiple myeloma. During a standard-of-care bone marrow biopsy, an extra volume

of 10 mL aspirate is harvested in a heparin-coated tube. Multiple myeloma cells are obtained by selection for CD138 expression, and cocultured with previously
established human bone marrow stroma (bone marrow mesenchymal stem cells, BMSC) and collagen in 384- or 1,536-multi well plates. The culture medium

in each well is supplemented with the patient’'s own plasma, and the plate is incubated overnight for stroma adhesion and equilibration of soluble factors. The next
day, the plate is drugged (up to 31drugs ina 384- and 127 drugs ina1,536-well plate) and placed in a microscope for bright-field live imaging for 4 days (1 picture every
30 minutes). A digital image analysis algorithm quantifies cell death (Fig. 2 and Supplementary Fig. S1) and generates ex vivo dose-response curves, which inturn are
used to parameterize patient/drug-specific mathematical models of chemosensitivity. Each mathematical model is unique for a patient/drug combination. Once we
include the drug-specific pharmacokinetic properties, available from phase | studies, to the patient/drug-specific mathematical models, EMMA creates 3-month
predictions of clinical response. By comparing the predicted response of multiple drugs tested, it is possible to choose the best therapy for each patient. In the
example above, the first patient would mostly benefit from treatment combining the "yellow" and "orange"” drugs, whereas the best therapy for the second patient
would include the "orange” and "blue” drugs. Importantly, these predictions are available 5 days after biopsy, and thus could be incorporated in the clinical

decision-making process.

benefit. Moreover, individual patients may be sensitive to targeted
agents not formally investigated in multiple myeloma (11, 12).
Thus, an assay capable of choosing the drug combination with
highest clinical benefit would provide a critical step forward in the
personalized treatment of relapsed multiple myeloma and other
hematologic malignancies (13).

We describe an approach to predict clinical response of mul-
tiple myeloma patients to several classes of drugs, hereon referred
to as Ex vivo Mathematical Myeloma Advisor (EMMA), designed
to overcome the main hurdles that have limited the success of past
and present technologies for assessment of clinical efficacy of
experimental drugs in multiple myeloma. Historic colony forma-
tion assays require 2 to 3 weeks to yield results, which is beyond
clinically actionable time. In addition, multiple myeloma cells
have a low success rate of colony formation (1). Patient-derived
tumor xenografts (PDX) models, although an invaluable tool for
basic and translational research, are equally limited as predictive
biomarkers due to extensive interval required for tumor engraft-
ment and treatment response (14). Further, the infrastructure,
financial burden, number of multiple myeloma cells, and, until
recently, the lack of an appropriate host make PDX models
suboptimal as clinically predictive biomarkers for testing the large
number of drugs available in multiple myeloma (15). In contrast,
using off-the-shelf multi-well plates, EMMA can test 31 drugs or
combinations in 384-well plates, or 127 drugs in 1,536-well
plates (16), with as few as 0.5 million multiple myeloma cells,

www.aacrjournals.org

thus allowing the clinical screening of an individual multiple
myeloma patient to all standard-of-care and clinically relevant
"non-multiple myeloma" therapeutics, in a single experiment.

In order to evaluate the accuracy of EMMA as a predictive
multiple myeloma biomarker, we have tested samples of primary
multiple myeloma cells from fresh bone marrow biopsies against
multiple standard-of-care and experimental agents generating
patient- and drug-specific mathematical models of chemosensi-
tivity and clinical response to therapy within 5 days of biopsy.
Crucially, we prospectively validated these in silico responses with
postbiopsy treatment outcomes. EMMA also provides a platform
to conduct in silico clinical trials to assess the efficacy of novel
therapeutics. We assessed the efficacy of a series of experimental
agents, including 25 protein kinases inhibitors (PKI), demon-
strating patient-specific responses. Further, test/re-test reproduc-
ibility was demonstrated in patients with sequential biopsies.
Collectively, these results support the use of EMMA as a novel
rapid, reproducible, and high-throughput, ex vivo-, and mathe-
matically informed decision-support tool for patient-specific
multiple myeloma therapy.

Materials and Methods

Primary cancer cells
We investigated the ex vivo response of cancer cells from
multiple myeloma patients (newly diagnosed or relapsed).
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Investigators obtained signed informed consent from all
patients who were enrolled on the clinical trials MCC#14745,
MCC#14690, and MCC#18608 conducted at the H. Lee Moffitt
Cancer Center and Research Institute, as approved by the Insti-
tutional Review Board. To this end, patient samples were utilized
in accordance with the Declaration of Helsinki, International
Ethical Guidelines for Biomedical Research Involving Human
Subjects (CIOMS), Belmont Report, and U.S. Common Rule. The
medical records were de-identified, and only the following clin-
ically relevant information was reviewed: (A) treatment admin-
istered (therapeutic agents, doses, and schedule) prior to biopsy;
(B) cytogenetics; and (C) serum and urine electrophoresis results.

Cell lines

MM1.S myeloma cells were obtained from ATCC in 2009 and
arevalidated biannually (last, February 2017) by comparing short
tandem repeat analysis with ATCC's genetic profile (Geneteca)
and screening for mycoplasma contamination by PCR (Agilent
Technologies). Cells are utilized for only 2 to 8 passages before
renewal with validated cryostorage aliquots.

Stromal cells

The non-CD138-selected cells from bone marrow aspirates
were placed in a flask with RPMI 1640 media supplemented with
FBS (heat inactivated), penicillin/streptomycin, and passaged
until only adherent cells remained (17). As this process takes
weeks, primary multiple myeloma cells from fresh biopsies were
cocultured with established stroma from prior patient samples.

Ex vivo assay

The ex vivo assay used to quantify chemosensitivity of primary
multiple myeloma cells was described in detail previously (16).
Briefly, fresh bone marrow aspirate cells are enriched for CD138"
expression using magnetic beads. Multiple myeloma cells
(CD138") were seeded in multi-well plates with collagen-I and
previously established human-derived stroma, to a total volume
of 8 UL containing approximately 4,000 multiple myeloma cells
and 1,000 stromal cells. Each well is filled with 80 uL of RPMI
1640 media supplemented with FBS (heat inactivated), penicil-
lin/streptomycin, and patient-derived plasma (10%, freshly
obtained from patient's own aspirate, filtered) and left overnight
for adhesion of stroma (Supplementary Figs. S1 and S3). The next
day, drugs were added using a robotic plate handler, so that every
drug was tested at five concentrations (1:3 serial dilution) in two
replicates. Negative controls (supplemented growth media with
and without vehicle control, DMSO) were included, as well as
positive controls for each drug (cell line MM1.S at highest drug
concentration). Plates were placed in a motorized stage micro-
scope (EVOS Auto FL; Life Technologies) equipped with an
incubator and maintained at 5% CO, and 37°C. Each well was
imaged every 30 minutes for a total duration of 4 days (Supple-
mentary Figs. S1, S3, and $4).

Digital image analysis algorithm

We have developed a digital image analysis algorithm previ-
ously described (8, 16) to determine changes in viability of each
well longitudinally across the 96-hour interval. In summary, this
algorithm computes differences in sequential images and iden-
tifies as live cells those with continuous membrane deformations
resulting from the interaction with the surrounding matrix. These
interactions cease upon cell death. By applying this operation to
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all 192 images acquired for each well, it is possible to quantify
nondestructively, and without the need to separate stroma and
myeloma, the effect of drugs as a function of concentration and
exposure time (Supplementary Fig. S1D and S1E).

Simulation of clinical treatment

The ultimate goal of this work is to predict the clinical response
of multiple myeloma patients to therapy using the proposed
mathematical model of chemosensitivity, and the pharmacoki-
netic (PK) properties of the drug and regimen chosen. Below, we
describe an example of prediction of treatment with carfilzomib,
whose regimen consists of infusions on days 1, 2, 8,9, 15, and 16
in a cycle of 28 days. Blood concentration of carfilzomib peaks at
approximately 5.5 umol/L upon injection, quickly decreasing to
30 nmol/Lafter 20’, 1.4 nmol/Lat 1 hour, and 0.14 nmol/L after 4
hours (18).

To simulate the treatment of a patient, we replace the function
R(t) from Equation B by the PK curve of blood concentration of
drug for the entire interval of the treatment. For example, let us
consider patient Pt103, whose chemosensitivity to carfilzomib is
depicted in Supplementary Fig. S5, drug concentrations ranged
from 50 nmol/L to 0.6 nmol/L. Total exposure time was 96 hours,
with imaging intervals of 30 minutes. Black dots represent actual
data measurements. Green and blue surfaces represent distributed
models of one and two populations, whereas cyan and red
(overlapped) represent one and two population models with no
distribution. As per the Akaike's Information Criterion (AIC), the
two-population model with distribution is the best ex vivo fit.

The parameters for this patient's model of chemosensitivity to
carfilzomib are listed in Supplementary Table S1. The in vivo
growth rate, obtained from the rate of increase in monoclonal
paraprotein from the latest relapse, is determined by the labeling
index (LI) of 1.44%. Parameter a, indicates that there are two
subpopulations within this tumor burden in terms of chemosen-
sitivity to carfilzomib. The first, more sensitive, occupies 53% of
the number of cells and the other, more resistant, 47%.

As mentioned earlier, the least squares method is used to
estimate parameters for each of the four proposed models. The
implementation of this method is done through MATLAB's
Isqcurvefit function, which uses an iterative gradient-based opti-
mization algorithm to find those parameter values that yield the
smallest SSR. In order to determine how AIC's choice of the "best
model" eliminates over-parameterization, we have conducted
convergence studies on the parameters during Isqcurvefit optimi-
zation of patient Pt103's ex vivo response to panobinostat (see
Supplementary Material).

Importantly, this approach does not require a training set: all
parameter values are obtained by fitting a general set of equations
to the ex vivo data, using AIC to penalize more complex and favor
simpler models. Thus, this work is a type 4 TRIPOD study (19).

The following PK models were used for the patients tested in
this study: bortezomib (20), carfilzomib (21), melphalan (22),
liposomal doxorubicin (23), selinexor (CRM1i, investigator bro-
chure), dexamethasone (24), lenalidomide (25), and pomalido-
mide (26).

Generation of the heatmap representing the activity of

30 drugs in multiple myeloma cells from 13 patients
Twenty-five protein kinase inhibitors were tested in 13 primary

multiple myeloma samples, at 10 umol/L maximum concentration

each (1:3 serial dilution, 5 concentrations, 2 replicates). We have
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quantified the AUC (the average of viability between all replicates
across 96 hours) of each drug for each patient sample and
normalized this measure by the maximum possible AUC. If the
drug showed no effect whatsoever, the normalized AUC would be
100%, whereas drugs with higher effect have a lower AUC. Drugs
were sorted from most active (lowest average AUC) to least active
(highest average AUC).

Results

Ex vivo data and mathematical models capture the
heterogeneity of individual tumor chemosensitivity

Figure 1 and Supplementary Fig. S1 illustrate the workflow for
ex vivo analysis of chemosensitivity: CD138-selected multiple
myeloma cells obtained from fresh bone marrow aspirates were
seeded in multi-well plates with collagen and previously estab-
lished human-derived primary stroma. After overnight incuba-
tion to ensure stroma adhesion, 31 different drugs were added,
and plates were imaged every 30 minutes for 4 days. As previously
described (5, 16), a digital image analysis algorithm determined
the number of viable cells in every well at each of the 192 time
points, thus producing 1,920 data points per drug. Supplemen-
tary Fig. S1E demonstrates an output of the ex vivo assay. Curves
represent changes in viability of primary multiple myeloma cells
and a cell-line control to different drug concentrations during 96
hours. These data were used to parameterize patient-specific
mathematical models of chemosensitivity (see Methods and
Supplementary Material).

The central aspect of EMMA is the ability to characterize
tumor heterogeneity in the form of subpopulations with dif-
ferent degrees of chemosensitivity to a given drug (Fig. 2A). The
importance of proper characterization of tumor heterogeneity
is depicted in Fig. 2B and C: a homogeneous tumor reacts to
therapy monotonically, either by steadily decreasing viability
(Fig. 2C, green line) or by sustained growth. A heterogeneous
tumor, however, harboring a chemoresistant subpopulation,
will have a curve of response characterized by an inflection
point at the time of relapse (Fig. 2C, blue line). To identify
these subpopulations from the ex vivo dose-response data, we
test four hypotheses: the first assumes only one "clonal" pop-
ulation (all cells in the tumor have the same degree of sensi-
tivity to one particular drug), the second assumes that there is
one population, but its chemosensitivity follows a normal
distribution. The two other models assume two "clonal" sub-
populations or two distributions, respectively. EMMA identifies
the parameters that best fit each of these four models to the ex
vivo data (Fig. 2D) and chooses the best model after residue

correction by AIC to avoid overfitting (10). In the example
of Fig. 2E, EMMA's interpretation is that the tumor is composed
of two subpopulations, p; and p,: the first is more uniform
("clonal") and more sensitive, whereas the second has higher
variance (Fig. 2E and F) and is more resistant.

EMMA predicts clinical response of multiple myeloma patients
to single agents or drug combinations

A total of 52 patient specimens were tested ex vivo against a
panel of drugs, and EMMA model predictions were tested against
clinical outcome to the same drugs. The median patient age was
64.5 years, 21 patients were female, 13 were newly diagnosed, and
the majority relapsed and/or refractory (Table 1). In order to
generate clinical predictions of response to therapy, EMMA simu-
lates each of the drugs in a regimen independently and combines
all responses assuming additivity. Figure 3 describes patient
Pt111's response to a triplet regimen of carfilzomib (K), lenali-
domide (R), and dexamethasone (D). Figure 3A depicts the
ex vivo response to carfilzomib (black dots) as well as the math-
ematical model proposed by EMMA (blue surface). Figure 3B
depicts the actual response of this patient to the three-agent
treatment (black dots linked by dashed lines) and model-pre-
dicted response of this patient to carfilzomib as single agent
(green line). Figure 3C-D and Fig. 3E-F represent ex vivo and
clinical predictions for the same patient to dexamethasone and
lenalidomide, respectively. The combination of the three mod-
els shows high correlation with the actual outcome (Fig.
3G). Figure 3H shows the predictions of clinical response for
this patient to other drugs: those expected to be most clinically
effective were carfilzomib, bortezomib, and liposomal doxoru-
bicin, whereas pomalidomide and lenalidomide were predicted
to have little effect on this patient's tumor.

Classification of 52 multiple myeloma patients as responders or
nonresponders. Clinically, multiple myeloma response is mon-
itored over time via sequential measurements of serum or urine
monoclonal antibody produced by malignant cells (parapro-
tein) as a surrogate assessment of tumor burden. The least strict
level of validation for this predictive model was to classify
patients as responders and nonresponders. Table 1 shows that
this model correctly classified 50 of 52 patients (96%) according
to response/no-response. The first exception, Pt73 was predicted
not to respond, but the cycle 2 day 1 paraprotein measure
indicated a 70% tumor reduction. Unfortunately, this patient
died 3 weeks later with disease progression, and no subsequent
measures are available to confirm response/progression. Pt95's
model correctly predicted an initial response (Supplementary

Figure 2.

Mathematical representation of intratumoral heterogeneity of clinical response to a hypothetical treatment. A, Given any particular drug and a patient's

tumor burden can be entirely sensitive to therapy (top), or contain a subpopulation of resistant cells (bottom). B, These subpopulations (p,) can be characterized as
mono- or bi-modal distributions, with corresponding thresholds for initiation of cell death determined by a mean (x;) and standard deviation (o), and a rate
of drug-induced cell death (§;). C, The clinical implication of this mathematical representation is that a homogeneous tumor will have a monotonic response to
therapy, leading to a complete response, whereas a heterogeneous tumor will present an inflection point where the sensitive population is eradicated and the
resistant cells promote tumor re-growth. D, In this example, we depict EMMA's analysis of the ex vivo response of patient Pt104's multiple myeloma cells to
bortezomib in a 96-hour interval. There is a shift in the rate of cell death (from §; to 8,), more noticeable in the highest concentration (50 nmol/L, magenta) around
36 hours, indicating the depletion of the more sensitive subpopulation (p;). The multiple plateaus observed after 72 hours of exposure in the three highest
concentrations indicate that the resistant subpopulation (p,) has a tail of more resistant cells with higher threshold for initiation of drug-induced cell death. E, EMMA's
mathematical representation of the threshold for induction of cell death depicts two distributions: the first, more sensitive, is almost uniform, whereas the
second, more resistant, is represented by a wider distribution. F, EMMA's quantification of rate of drug-induced cell death for both subpopulations.

For more details on model implementation, please refer to the Mathematical Model Description section.
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Table 1. Patient demographics, correlation between model predictions and clinical outcome according to IMWG, and theoretical best outcome based on model
predictions of best therapy

Actual Model’s prediction Actual outcome Model’s outcome
Status at response/no response/no (last M-Spike (last M-Spike
Patient ID Age Gender Bmbx Actual treatment response response available) available)
6 68 M PD PI+IMID NR NR PD/SD PD/SD
7 76 M PD PI+ALK+IMID NR NR PD/SD PD/SD
9 51 F PD PI+IMID NR NR PD/SD PD/SD
10 56 F PD PI+IMID R R MR/PR MR/PR
il 45 M ND PI+IMID R R VGPR/CR VGPR/CR
12 65 F ND PI+IMID R R VGPR/CR VGPR/CR
14 68 M ND PI+IMID R R VGPR/CR VGPR/CR
15 76 M ND PI+IMID R R VGPR/CR VGPR/CR
18 77 F PD PI+IMID R R MR/PR VGPR/CR
21 63 M PD PI+IMID NR NR PD/SD PD/SD
24 66 M ND PI+IMID R R VGPR/CR VGPR/CR
27 49 F PD PI+IMID NR NR PD/SD PD/SD
34 66 M RD PI+IMID NR NR PD/SD PD/SD
36* 51 F PD CRM1i+-DOX+DEX R R MR/PR MR/PR
37 69 M PD PI+ALK+IMID NR NR PD/SD PD/SD
39* 51 F PD CRMI1i+DOX+DEX R R MR/PR VGPR/CR
47 62 F PD PI+IMID R R MR/PR MR/PR
51+ 49 F PD CRMI1i+DOX+DEX R R MR/PR MR/PR
53 53 M PD CRMI1i+DOX+DEX R R MR/PR MR/PR
54 62 M PD Pl NR NR PD/SD PD/SD
55 7 M PD PI+ALK+IMID NR NR PD/SD PD/SD
56 64 M PD PI+IMID R R MR/PR MR/PR
57+ 66 M PD CRMT1i+-DOX+DEX R R MR/PR VGPR/CR
58 68 F RFD PI+IMID NR NR PD/SD PD/SD
59 74 M RD CRM1i+-DOX+DEX R R MR/PR VGPR/CR
64 75 M PD Pl NR NR PD/SD PD/SD
68 53 M PD CRMT1i+-DOX+DEX R R MR/PR MR/PR
69 65 F PR PI4+ALK+IMID NR NR PD/SD PD/SD
71 74 M RD CRMI1i+DOX+DEX R R MR/PR MR/PR
73 64 F ND PI+IMID R NR MR/PR PD/SD
74 63 M PD PI+IMID R R MR/PR MR/PR
78 67 F RFD PI+ALK+IMID R R MR/PR MR/PR
84 67 M RFD CRMI1i+DOX+DEX NR NR PD/SD PD/SD
87 76 M PD PI+IMID R R VGPR/CR MR/PR
94 82 F ND PI+ALK+IMID R R VGPR/CR MR/PR
95 56 F PD CRMI1i+DOX+DEX R NR MR/PR PD/SD
97 68 M PD ALK (ASCT) R R VGPR/CR VGPR/CR
98 67 F PD PI+IMID R R VGPR/CR VGPR/CR
100 70 M PD PI+IMID NR NR PD/SD PD/SD
102 67 F PD PI+IMID R R MR/PR MR/PR
103 40 M ND PI4+IMID R R VGPR/CR VGPR/CR
105 62 M ND PI+IMID R R VGPR/CR MR/PR
110 70 M PD P+D+ACY241 R R MR/PR MR/PR
m 64 M ND K(70)+R+D R R VGPR/CR VGPR/CR
14 52 M ND V+R+D R R MR/PR MR/PR
19 67 M RD K+CY+D R R MR/PR MR/PR
120 58 M SMM=>MM K+R+D NR NR PD/SD PD/SD
121 60 F PD P+D+DARA R R MR/PR VGPR/CR
122 63 F PD V+R+D R R VGPR/CR VGPR/CR
126 65 F PD K+R+D R R MR/PR VGPR/CR
127 58 F ND V+D R R MR/PR MR/PR
130 76 M PD CRM1i+DX+D R R MR/PR MR/PR

NOTE: The age range was 40-81, with a median of 65 years old. Biopsies were obtained between April 2014 and July 2016. * and ** indicate sequential biopsies of the
same patient.

Abbreviations for disease status: PD, progressive disease; ND, newly diagnosed; RD, relapsed disease; RFD, refractory disease. For treatment: M, marizomib; CFZ,
carfilzomib; CY, cyclophosphamide; D, dexamethasone; VD, bortezomib + dexamethasone; VRD, bortezomib + lenalidomide + dexamethasone; OPR, oprozomib;
CRD, carfilzomib + lenalidomide + dexamethasone; VPD, bortezomib + pomalidomide + dexamethasone; CyBorD, cyclophosphamide + bortezomib +
dexamethasone; V, bortezomib; CFZ + P + D, carfilzomib + pomalidomide + dexamethasone; DX, liposomal doxorubicin. For clinical response: CR, complete
response; VGPR, very good partial response; PR, partial response; MR, minimal response; SD, stable disease; PD, progressive disease.

Fig. S6), but anticipated an early relapse, thus classifying this  Predictions according to International Myeloma Working Group
patient at 90 days as nonresponder. Of note, this patient stratification. A more strict level of prediction is used to assess
relapsed after 4 months. clinical response according to a stratification system aligned with
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Figure 3.

From mathematical model to clinical predictions. A, EMMA's
mathematical model fitting of patient Pt111's multiple myeloma
cells' ex vivo response to carfilzomib (CFZ) indicates the
presence of two "clonal" (no distribution) subpopulations.
B, The simulation of the patient-specific mathematical model
using published phase | trial pharmacokinetic data generates a
prediction curve of clinical response. The actual response of
the patient, as measured by serum paraprotein, is overlaid as
black dots linked by dashed lines. The same process was
followed for the two other drugs in the regimen,
dexamethasone (DEX; C and D) and lenalidomide (LEN; E and
F). By combining the effect of the three drugs assuming
additivity, EMMA creates the actual clinical prediction of the
patient's estimated response to the therapeutic regimen (G).
H, An analysis of the clinical efficacy (lowest achievable tumor
burden, normalized by treatment initiation) shows that
carfilzomib, bortezomib, and liposomal doxorubicin are the
most active agents, with a prediction of 100% tumor reduction,
followed by dexamethasone (27% tumor reduction) and CRMTi
(21% reduction). Lenalidomide and pomalidomide had no
predicted effect. I, Tumor burden measures from each of the
patients in this study (133 in total, detailed in Supplementary
Fig. S6) were correlated with the corresponding model
prediction. The linear regression indicates high correlation
between model predictions and actual outcome

(equation of regression line Actual = 0.8300*Model+15.33,
Pearson r = 0.5658, P < 0.0001).
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the International Myeloma Working Group (IMWG) multiple
myeloma response criteria (27), which clusters patient responses
in three categories: VGPR/CR includes complete response (>99%
tumor reduction) or very good partial response (90%-99%
reduction), MR/PR includes partial response (50%-90% reduc-
tion) or minimal response (25%-50% reduction), and PD/SD,
which includes stable disease (<25% reduction) or progressive
disease (>25% increase). Table 1 outlines the postbiopsy therapy
received by each patient in this study, corresponding clinical
outcome according to the IMWG response criteria (28), and
EMMA's predictions. Model predictions and clinical outcome
agreed in 41 of 52 patients (79%). The highest accuracy occurred
when the model predictions were PD/SD (15/17, or 88% accu-
racy), followed by MR/PR (16/19, or 84% accuracy) and VGPR/
CR (10/16, or 63% accuracy). The narrower the range of response
in each category, the greater the chance of disagreement between
model predictions and actual outcome. Therefore, a more natural
validation of EMMA would be a direct correlation between the
actual tumor burden measures and model predictions as contin-
uous variables.

Linear correlation between predicted and actual tumor burden. The
strictest validation of this model is the direct correlation of the
tumor burden predictions with all available tumor burden mea-
surements. Supplementary Fig. S6 highlights the model predic-
tions and actual tumor burden measurements from 52 patients.
Each graph shows tumor burdens normalized by the date of
beginning of treatment post-biopsy (i.e., tumor burden =
100% at time = 0 days). Thick-colored lines represent model
predictions of clinical response generated 5 days after biopsy.
Each prediction curve is flanked by thinner lines, representing the
upper and lower boundaries of the prediction. These boundaries
are a function of low and high estimates of tumor growth rate,
computed from prebiopsy measures of tumor burden. Black dots
linked by dashed lines represent the patient's clinical after biopsy
tumor burden measurements. Figure 31 shows the aggregated
correlation between mathematical model predictions and actual
clinical response for all available tumor burden measurements
from the 52 patients within 90 days after biopsy (133 data points).
The regression line between in silico model predictions and clinical
response, shown flanked by the 95% confidence interval, had
a slope of 0.83 and Pearson correlation coefficient r = 0.5658
(P < 0.0001).

Estimated clinical benefit of EMMA as a decision-support
system for choice of therapy

As a multi-drug predictive biomarker, EMMA has two main
goals: (i) to ensure that each patient receives the most effective
therapy and (ii) to remove ineffective drugs from therapy. Accord-
ing to the model predictions, if EMMA's choice of drugs was used,
the number of patients in this study who achieved VGPR or CR
would have increased from 13 to 22, the number of patients
presenting MR or PR would have decreased from 24 to 23, and the
number of patients with no clinical benefit (PD or SD) would
have decreased from 15 to 7. Also, according to EMMA, 60% of
patients in this study received at least one agent with no predicted
clinical efficacy (Supplementary Table S2). As an estimate of the
single-agent efficacy of the drugs administered to these 52
patients, EMMA predicted that 34% of the agents had no predicted
clinical efficacy, 24% were predicted to produce stable disease,
27% a minimum or partial response, and 15% a very good or
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complete response. These data suggest the potential clinical
benefit of identifying the right drug for the right patient at the
right time.

A high-throughput tool for personalized drug screening

We have tested the sensitivity of primary multiple myeloma
cells from 13 patient samples to a panel of 5 anti-multiple
myeloma agents and 25 PKIs. In Fig. 4A, each cell of the heatmap
represents the average 96-hour AUC of the five concentrations
(1:3 serial dilution, two replicates each) for each drug in indi-
vidual patients. The drugs were ordered from lowest to highest
AUC averaged across all patients, green being the most effective
and red the least effective. Figure 4B lists the previous lines of
therapy. Despite interpatient variation, it is possible to identify
PKIs with consistently higher activity (e.g., BI2536, INK128,
ponatinib, MK2206, and crizotinib), whereas others are consis-
tently ineffective (e.g., ralimetinib, vemurafenib, VX745, and
BMS777607). Further, PKIs that demonstrated patient-specific
activity (e.g., ibrutinib, momelotinib, AZD 1480, and palbociclib)
highlight the potential for personalized management strategies.
For example, the multidrug refractory patients 79 and 83 dem-
onstrated sensitivity to the FDA-approved BTK inhibitor ibrutinib,
suggesting that these two patients may derive clinical benefit from
treatment with this PKI. The remaining patients were resistant to
ibrutinib, further illustrating the need for personalized strategies
for treatment allocation. These data indicate that this approach
may be used to assess patient sensitivity to targeted therapeutics
facilitating patient sample-derived drug screening or in silico
clinical trials of experimental agents.

In addition, by grouping the 30 agents in pairs and performing
alinearregression in each of the possible 435 combinations, it was
possible to investigate agents with putative ex vivo activity corre-
lation (Supplementary Fig. S7). Fifteen pairs of drugs showed
Pearson correlation coefficient r> 0.75, suggesting that their anti-
multiple myeloma activities involved similar biological processes
in these patient specimens. Certain pairs were consistent with
known activities such as carfilzomib/bortezomib and bortezo-
mib/panobinostat, which have established links in anti-multiple
myeloma activities (29). Other pairs, including panobinostat
(HDACi)/ponatinib (Abli), with a positive slope of 0.8755 and
r=0.7695, suggest previously undefined shared biological path-
ways contributing to multiple myeloma survival. Interestingly,
there were no instances of drugs with significant interpatient
inverse correlation. This suggests that, across a group of patients,
increased resistance to one drug during treatment correlates with
increase, or has no effect at all, on resistance to a second drug,
while cross-sensitization between drugs is unlikely (Supplemen-
tary Fig. $8). This has been observed in multiple clinical trials of
alternating therapies seeking to exploit a cost of adaptation to two
different regimens (30). Ultimately, those studies failed to dem-
onstrate a significant improvement in survival between sequential
and alternating groups (31, 32). However, our data suggest that
there are patient-specific exceptions to this rule. For instance,
Supplementary Fig. S9 depicts changes in 96-hour LD50 values for
2 patients between two sequential biopsies for 20 PKIs, with the
posttreatment tumors becoming more resistant to some PKIs and,
importantly, more sensitive to others, including the clinically
relevant crizotinib and ponatinib, as well as the PLK inhibitor
BI2536 (33), once again, highlighting the potential for pheno-
typically derived biomarker tools for truly personalized
management.
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Figure 4.

Ex vivo chemosensitivity of 13 patient samples to a panel of 25 PKIs and chemotherapeutic agents. A, Each sample was tested ex vivo in coculture with

stroma for 96 hours against 6 chemotherapeutic agents and 25 PKIs at five concentrations. Chemosensitivity was quantified as the normalized AUC for all five
concentrations. Drugs were sorted descending order by decreasing activity, with most active drugs represented as green and least active as red. * or + represent
patients with sequential biopsies. **, Maximum concentration of drug was 6 umol/L. ***, Drug not tested. B, The list of previous treatments: lenalidomide (R),
dexamethasone (D or Dex), bortezomib (V), dexamethasone + cyclophosphamide + etoposide + cisplatin (DCEP), cyclophosphamide + bortezomib -+ liposomal
doxorubicin + dexamethasone (CVDD), carfilzomib (CFZ), panobinostat (PAN), pomalidomide (POM or P), liposomal doxorubicin + dexamethasone + lenalidomide
(DDR), high-dose melphalan followed by bone marrow transplant (HDM), cyclophosphamide (Cy), radiation (Rad), cyclophosphamide + bortezomib +
dexamethasone (CyBorD), and pomalidomide + dexamethasone (PD).
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Critically, even drugs within a same class, such as bortezomib
and carfilzomib, can have significantly different clinical efficacy.
Carfilzomib has been shown to be the more effective PI in early
relapsed multiple myeloma (34); however, from Supplementary
Table S2, Fig. 5, and Supplementary Fig. S10, it is clear that
individual patients have differential predicted sensitivities to one
PI versus the other. For instance, 7 of the 21 patients predicted as
resistant to bortezomib were predicted to respond to carfilzomib.
In contrast, 10 of the 24 patients predicted as resistant to carfil-
zomib were predicted to respond to bortezomib. Despite corre-
lated ex vivo activity (Supplementary Fig. S7), the two drugs have
different PK, leading to different predicted clinical responses.
Collectively, these data again illustrate the potential clinical
importance of allocating the right drug to the right patient at the
right time even within a class of agents.

A platform for in silico clinical trials

We have tested 19 patient samples (Supplementary Table S3)
with the HDAC6 inhibitor ricolinostat (Ri) and the Bcl-2
inhibitor venetoclax (Ve), created patient-specific models of
chemosensitivity and simulated how these patients would have
responded in a clinical trial. We have compared our results with
actual phase I/II studies with single agents and combination
with bortezomib (V) and dexamethasone (D; refs. 35, 36). The
only data used for the simulations were the ex vivo results and
drug-specific PK. The results are depicted in Fig. 6: in the single
agent ricolinostat arm of the in silico trial (Fig. 6A), 1 patient
(5%) was predicted to achieve VGPR/CR, 1 patient (5%) would
achieve MR, whereas the remaining 17 (90%) would present
PD/SD, in agreement with the low single-agent efficacy
observed in the actual trial (60% PD and 40% SD). The
simulation of single-agent venetoclax (Fig. 6B) predicted 3
patients reaching VGPR/CR (17%), 3 reaching PR (17%), 3
reaching MR (17%), and 9 presenting PD/SD (50%). Consis-
tent with the clinical activity of venetoclax in phase I trials (36),
t(11,14) status correlated with EMMA-predicted drug sensitiv-
ity with a mean depth of response 60% versus 31% of t(11,14)
positive versus negative multiple myeloma, respectively (P =
0.0275). Note that newly diagnosed status (NDMM) was also a
predictor of response (Fig. 6B, inset). It is also important to
note that responses and failures were noted in both groups as
well, demonstrating that molecular screening alone would not
adequately predict clinical outcome. The virtual trial also
projected clinical benefit for adding either drug to bortezomib
and dexamethasone (V+D, P = 0.0181 and P = 0.0175 for Ri
for Ve, Fig. 6C and D, respectively). Again, the actual benefit is
observed in only a percentage of patients, highlighting the
potential for the utilization of a phenotypic biomarker screen-
ing prior to treatment.

Discussion

Multiple myeloma is an example of a cancer in which the
efforts of basic, translational, and clinical research have pro-
vided a growing number of therapeutics with significant
improvements in survival. Yet, curative intent therapy remains
elusive. To this end, it is critical that we best allocate these
therapies to maximize outcomes (and ideally minimize toxi-
cities). Here, we have demonstrated a novel approach to predict
clinical response of multiple myeloma patients to a wide range
of therapeutics using an ex vivo chemosensitivity assay and
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computational models. This assay is scalable, reproducible and
allows analysis of drug efficacy in primary multiple myeloma
cells in the presence of elements of the tumor microenviron-
ment (matrix, patient-derived serum, and human bone mar-
row-derived stroma). The major contribution of this approach,
compared with existing techniques, is the detailed ex vivo
characterization of the heterogeneity of tumor chemosensitiv-
ity, and its integration with mathematical models to accurately
and reproducibly predict clinical response, with the potential to
improve patient clinical outcomes through model-informed
personalized management decisions.

EMMA has a number of advantages compared with past and
current preclinical chemosensitivity assays. First, similar experi-
ments would have cost and time-prohibitive hurdles in PDX
models and may not be concluded in clinically actionable time
frame (14). Second, EMMA not only mimics the real-time action
of the drug on cancer cells, but mathematical models are used to
extrapolate this short-term response into a longer clinical time
frame, based on PK data. This trait makes EMMA an attractive
system for multiple myeloma patients, including multi-drug
refractory patients requiring salvage therapy. Third, patient-spe-
cific EMMA mathematical models can be used to test the effect of
multiple classes of drugs in different regimens, leading to the
assignment of the most efficacious regimen or drug to individual
patients (21). Finally, EMMA's output is not limited to a dichot-
omized response/no-response or depth of response, but trajecto-
ries of actual clinical response at any moment during the first 3
months of treatment. Thus, its predictions can be followed in real-
time during treatment, giving both physician and patient the
opportunity to make informed, pretreatment decisions, and pro-
actively act during therapy.

Recent works in the field have suggested different approaches
to identify agents with clinical efficacy in liquid and solid
cancers. Pemvoska and colleagues (4) have described a com-
bination of ex vivo chemosensitivity and molecular profiling to
determine therapeutic windows for drugs in acute myeloid
leukemia. Majumder and colleagues have combined ex vivo
chemosensitivity assays of slices of tumor explants (37), immu-
nohistochemistry, and clinical data to create a signature to
classify clinical response of patients with solid tumors. Both
methods assess chemosensitivity at one fixed time point and do
not account for the temporal dynamics of cell death, essential
for the extrapolation of the effect of short periods of drug
exposure (in vitro) to actual clinical response. In an analogy to
physical sciences, these assays are capable of determining the
initial speed of the clinical response but not "acceleration" and
thus cannot predict the clinical trajectory. The concept of
"acceleration" implies that the response of cancer cells to
therapy cannot be described as a first-order differential equa-
tion, where rate of cell death is proportional to drug concen-
tration, but instead requires a second-order model, which
incorporates the notion of "damage," and a threshold beyond
which cell death starts. To this end, other assays can predict the
initial effect of therapy on tumor burden, but cannot predict the
actual depth, duration, or time to relapse. In cancers such as
multiple myeloma, depth of response is commonly utilized as
surrogates of clinical benefit (38). As such, a system capable of
creating actual clinical trajectories (response) will be central to
successfully translating in silico predictions to true clinical out-
comes. In addition, although the agnostic pattern recognition
techniques used in these published works (37) are adequate to
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Figure 5.

Model predictions of clinical response of 41 multiple
myeloma patients indicate no correlation between
bortezomib and carfilzomib 90-day depth of response.
Each graph represents the model-predicted clinical
response to bortezomib (blue solid line) and carfilzomib
(red dashed line) as single agents during an interval of
90 days. The vertical axis, ranging from 0% to 150%,
represents the tumor burden values as a percentage of the
pretreatment tumor (day 0).
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Virtual clinical trial of ricolinostat and venetoclax as single agents and combination with bortezomib and dexamethasone. We have used EMMA to simulate
the clinical response of 19 multiple myeloma patients to the HDACG6 inhibitor ricolinostat (160 mg days 1-5 and 8-12 on a 21-day cycle) and the BCL-2 inhibitor
venetoclax (1,200 mg daily) as single agents and in combination with bortezomib and dexamethasone. A and B represent each of the patients’ maximum
response to either drug as single agents during 90 days, 100% indicating complete tumor regression and 0% indicating no tumor reduction. C and D indicate each
patient's expected response to either drug's combinations with bortezomib and dexamethasone (V+D, V-+D+Ri, and V+D-Ve). Statistical differences were
observed as a consequence of the inclusion of ricolinostat (two-tailed paired t test, P = 0.0181) and venetoclax (two-tailed paired t test, P = 0.0175), despite limited
single-agent activities in most patients. Presence of translocation 11,14 or newly diagnosed status correlated with sensitivity to single-agent venetoclax

(inset B). t(11,14) stands for positive for translocation between chromosomes 11 and 14, NDMM stands for newly diagnosed, ~ stands for "not,” thus "~NDMM"

stands for not newly diagnosed. *t(11,14) positive, "newly diagnosed.

create signatures capable of classifying patients into categories
such as responders or nonresponders, they lack the ability to
extrapolate conditions for which the signature was not trained.
For instance, how would a patient respond to a combination of
two drugs for which signatures were predetermined, or a
different therapeutic regimen (dosing and schedule) for a
known drug? The novel approach developed in this work
provides an instrumental platform to address these issues. So
far, EMMA-generated clinical predictions for regimens of two or
more drugs assume additivity, which is the simplest possible
implementation. However, our preliminary data indicate
regions in the time-concentration space where there is synergy

www.aacrjournals.org

in primary multiple myeloma cells treated ex vivo (Supplemen-
tary Materials and Methods and Supplementary Fig. S11).
Given drug-specific PK, staggered drug administration sche-
dules, and the inherent heterogeneity of tumor populations,
further work is required to adequately incorporate this infor-
mation in EMMA models.

Predicting clinical response of patients based on ex vivo assays is
a major challenge irrespective of how close the assay is to in vivo
conditions. The most obvious difficulty is the translation of results
from an assay that lasts for days into estimates of clinical response
across months or even years (1, 38). We have begun to bridge this
timescale gap through the use of mathematical models
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accounting for tumor heterogeneity, pharmacodynamics, and
PK imputed with a tested phenotype (drug sensitivity). It has
been long known that nature selects for phenotype, not geno-
type, and that multiple genotypes can produce the same phe-
notype (39). This nonexclusive relationship makes it challeng-
ing to predict clinical outcome from genotype alone or even
gene expression profiles (40). EMMA directly identifies the
phenotypic (or functional) representation of subpopulations
regardless of genotypic background, thus removing the "middle
man" and producing in silico clinical response outputs. Through
nonlinear regression of the ex vivo chemosensitivity results, the
model identifies subpopulations within the tumor burden
based on chemosensitivity. In turn, the platform combines
these data with drug- and regimen-specific PK, generating
trajectories of clinical response demonstrating a high degree
of accuracy in predicting outcomes.

We anticipate that this approach can provide precise clinical
insight about treatment efficacy in a timely manner and assist
oncologists in practicing truly personalized management, by
proposing the best choice of therapy for each patient and
identifying those with risk of early relapse due to the presence
of therapy-resistant cells. In addition to clinical predictions of
standard-of-care regimens, this approach can also serve as a
means to perform in silico clinical trials (Fig. 6; refs. 5, 41, 42),
where several experimental agents are tested in primary mul-
tiple myeloma cells from a cohort of patients mimicking the
actual clinical setting without the potential cost or toxicity to
patients. Additional uses of these mathematical models include
the simulation of alternative regimens, such as metronomic
therapy (43), adaptive therapy (44), or the introduction of
treatment "holidays" (45), depending on the nature of the
mechanism of resistance. Once the subpopulations have been
identified and characterized by this method, computer simula-
tions can be used to determine which alternative regimens may
lead to best clinical outcome (45, 46).

Importantly, the mechanistic nature of these computational
models allows the incorporation of additional influences on
clonal evolution, including genotypic, epigenetic, microenvi-
ronmental, and clinical data, to continually upgrade this sys-
tem. To this end, we expect to continue to build additional
parameters into this computational model to improve the
predictive capacity and to account for new classes of therapeu-
tics. Studies are underway to integrate our prior models of
response trajectories (47, 48) with EMMA to move from pre-
dications of depth of response to PFS. Further, we recognize the
increasing importance of immune-mediated therapies in mul-
tiple myeloma (49, 50). Our preliminary studies with the CD38
antibody daratumumab (50), using EMMA's current protocol,
have shown activity in primary multiple myeloma cells in
concentrations as low as 86 nmol/L, with cell death initiated
after 4 days, and reaching 25% viability reduction 1 day later.
As depicted in Supplementary Fig. S12, the mechanism of cell
death is phagocytosis by a yet-to-be-determined adherent cell
present in the coculture, and only occurs in the presence of
daratumumab. Research is ongoing to parameterize T-cell, NK-
cell, and myeloid-derived stromal cell phenotypes in patient
bone marrow samples to direct T-cell cytotoxicity assays in this
platform. We anticipate that these data can be incorporated in
EMMA to account for sensitivity to specific immune-based
therapies. Further, continued validation of inter-day reproduc-
ibility (Supplementary Fig. S13), intra-plate variation (Supple-
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mentary Fig. S14), and dependence of AIC convergence of
solution on ex vivo experiment duration and dynamic range
of drug concentration (Supplementary Fig. S15, Supplementary
Table S4, Supplementary Fig. S16, Supplementary Table S5, and
Supplementary Figs. S17 and S18) are ongoing in larger num-
bers of patients to achieve the goal of a true clinical decision
support tool.

To our knowledge, this study provides estimates on the indi-
vidual efficacy of clinically administered agents in multiple mye-
loma for the first time: approximately one third of agents admin-
istered in this study may have had little to no clinical efficacy, 60%
of patients received at least one ineffective agent, and 31% could
have been treated with a more effective agent proposed by the
mathematical models. Thus, we anticipate that EMMA would
provide a critical support to oncologists to customize regimens by
avoiding therapeutics that will not benefit the patient, thus
reducing the potential toxicity while maximizing the clinical
benefit.
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Supplemental Materials and Methods:

A novel platform for analysis of drug combinations. One of the goals of this study was to develop a
platform capable of testing a large number of potential therapeutic agents and combinations (clinical utility
and drug development), while maintaining the level of detail required by the mathematical model to simulate
the clinical efficacy of each agent or combination. For this purpose, regular drug interaction analysis at a fixed
time point is not sufficient, as the temporal effect must be captured into the mathematical model.
Supplemental Figures 11a and 11b depict the LD50s (concentration required to kill 50% of MM cells) for
primary MM cells from two patients to a panel of drugs and combinations. Despite being a useful
representation of patient-specific drug efficacy as single agents, these classic bar plots provide only limited
interpretation of the dynamics of drug interaction, and they do not incorporate critical time-dependent
information. Supplemental Figures 11c and 11d exemplify how this assay can be used to determine the cell-
kill benefit of combining two agents. Each image represents normalized drug concentration on the horizontal
axis and exposure time on the vertical axis (h). The color range represents the increase in percentage of cell
death of the agent combination as compared to cell death induced by a single agent (values above 20% are
red; negative values are blue). Supplemental Figure 11c shows that, for the first patient, bortezomib
combined with panobinostat (HDACI), had a significant increase in cell-kill as compared to bortezomib alone at
all concentrations, with highest benefit in the lowest concentrations. The benefit of bortezomib plus
panobinostat relative to single agent panobinostat is restricted mainly to the lowest concentrations. The
lowest panel of Supplemental Figure 11c depicts the regions of synergy or the area in which the cell-kill of the
combination of bortezomib and panobinostat is higher than the Bliss additive® effect of both drugs. Similar
data for the second patient are presented in Supplemental Figure 11d and illustrate the response pattern of
CRM1i plus doxorubicin. Synergy between bortezomib and panobinostat? as well as CRM1i and doxorubicin®
have been previously identified, but the graphs from Supplemental Figures 11c and 11d show evidence of
how these positive interactions can be limited to a small range of concentrations and narrow windows of time.
As such, it appears that synergy is difficult to identify and interpret by classical methods®>. This is especially
true for primary cells, where the number of experimental conditions that can be tested in a single sample is
limited.

To study drug interactions in patient samples, we have added two drugs at maximum concentration and
diluted them serially, so that their concentration ratio remains the same across all wells tested. To assess the
benefit of adding panobinostat to a bortezomib regimen for a particular patient, we have subtracted the dose
response surface of bortezomib from the dose response surface of the combination. The result is depicted in
Supplemental Figure 11c, top panel, showing in red the conditions (concentration and exposure time) where
the difference in cell kill is higher than 20%. Regions where the increase in cell kill is negligible or negative are
shown in blue, and a color gradient is used for the intermediate values. Here we use the classic definition of
synergy, which determines that two drugs are synergistic if their combined effect (percent cells killed) is
higher than the combination of their independent effect’. For instance, consider that drugs A and B, at a
specific concentration and during a certain period of time, kill the fractions a and b of cells, where a<1 and
b<1. Should the combination of both drugs kill a fraction equal to [1-(1-a)*(1-b)], then A and B are additive. If
the fraction killed is higher, the drugs are synergistic; if lower, they are antagonistic.

Determination of variation of ex vivo chemosensitivity between sequential samples (test-retest). One of
the most important components of this assay is the capture of changes in a patient’s clinical response over
time (sequential therapy). First, we have performed a test-retest in order to assess the inter-day variability of
the assay. This variability includes, but is not limited to: inter-day variation of media and reagents, biopsy
procedure, MM cell enrichment, plate seeding and drugging with robotic plate handler, sequential imaging,
and digital image analysis. Supplemental Figure 13a depicts the clinical history of a MM patient who had two
biopsies performed within one month, in absence of treatment. We have quantified the chemosensitivity of
both biopsies and used this information to build mathematical models of clinical response (red dashed line for



data from biopsy 1, blue solid line for data from biopsy 2) to the therapy the patient ultimately received after
the second biopsy (CRM1i + liposomal doxorubicin). Results indicated high correlation between both modeled
curves (Pearson r=0.9707) demonstrating reproducibility of the assay, as well as accuracy of predicted depth
of response and actual outcome (solid green line). Supplemental Figure 13b represents a measure of the
inter-day variability of this assay, which is the predicted best clinical response through 90 days, demonstrating
inter-day consistency of model predictions.

We also evaluated the influence of therapy on ex vivo drug sensitivity in sequential biopsy analyses.
Supplemental Figure 13c represents a patient with two sequential biopsies separated by five months (Pt32).
During the intervening period, the patient was treated with a combination of a hypoxia-activated alkylating
agent (TH-302), proteasome inhibitor (bortezomib) and immunomodulatory agent (dexamethasone), leading
to a partial response followed by relapse. The clinical predictions generated by the mathematical model based
on the first biopsy (pre-treatment) indicated that this patient was highly sensitive to bortezomib and
melphalan, moderately sensitive to CRM1i, and refractory to liposomal doxorubicin (Supplemental Figure
13d). The mathematical models parameterized by the biopsy post-relapse indeed confirm that the tumor has
become refractory to bortezomib, maintained its resistance to liposomal doxorubicin, and would present only
a minor response to melphalan or CRM1 inhibitor. These data demonstrate the ability of the ex vivo model to
account for the changing drug resistant subpopulations associated with intervening therapy suggesting that
this platform has the potential to provide meaningful information as a clinical decision support tool
throughout the course of a patient’s cycles of clinical management.

Determination of intra-plate variation. We have characterized the behavior of this assay towards intra-
plate variability. It is well known that temperature and gas gradients contribute to location bias in multi-well
plates. In order to determine the degree of intra-plate variation or possible spatial bias, we plated primary
MM cells from one patient (Pt48, Supplemental Figure 14) in co-culture with patient-derived stroma
embedded in collagen matrix and repeated a pattern of 3 drugs (melphalan, bortezomib and carfilzomib) as
well as negative control, eight times across the plate. Each drug was tested in five different concentrations and
two replicates. There were also positive controls for each drug (cell lines at highest concentration, two
replicates). We have grouped the measurements of both replicates of each concentration for each drug in
each of the eight repeats across the plate. Similarly, we have also grouped and determined the variation in the
negative and positive controls. In order to determine the contribution of location in the plate versus exposure
time, we have calculated a two-way ANOVA on each combination of drug-concentration (total of 16 ANOVAs).
For the control and low concentrations, where there is no measurable drug-induced cell death, the
contribution of both exposure time and location in plate should be similar, and the total variation should be
negligible. However, for higher drug concentrations, we expected most of the variation to come from
exposure time and only a negligible amount to be attributed to location in the plate. In the control wells, 41%
of the variation came from exposure time and 36% from location. For the highest concentrations of
bortezomib, carfilzomib and melphalan, these values were 99%, 98% and 97% for exposure time, <1%, 2% and
2% for location. Also, as expected, the total variation, quantified as the total sum of squares (SS) in the highest
concentrations for bortezomib, carfilzomib and melphalan, were 58-, 50- and 39-fold higher than control,
respectively. These test-retest studies demonstrate that the assay is robust with low intra-plate variation.

Convergence of solution for parameters of ex vivo chemosensitivity. Supplemental Figure 15 shows
MATLAB'’s Isgcurvefit converge to the parameter estimates as it approaches a minimal value of SSR for the
four models fitted to the ex vivo data for panobinostat. The single population, no distribution model, as
referenced in Supplemental Table 4, is the model with the smallest AIC value. Even though the “two-
population with distribution” is the model with the least SSR, indicating that the benefit in terms of SSR is
marginal as compared to adding additional parameters to the model. It can also be observed that all
parameters in the single population model quickly converge and stabilize, while both 2-population models
show oscillation of parameters, indicating an underdetermined system.



Supplemental Figure 16 shows MATLAB’s Isqcurvefit converge to the parameter estimates as it
approaches a minimal value of SSR for the four population models fitted to the ex vivo data for carfilzomib.
The best model chosen based on the least AIC is the one with two populations modeled as distributions as
shown in Supplemental Table 5. Note the considerable reduction in SSR between two population and one
population models, as well as the stability of the parameter values after convergence, validating heterogeneity
in tumor population.

Supplemental Figure 17 depicts a comparison between the clinical predictions for Pt103 using the four
different models for bortezomib. Notice the similarity in the clinical predictions and the AIC values. This is a
case where all the proposed models fit the data sufficiently well and we choose the model with the least AIC.
On the other hand, Supplemental Figure 18 presents a comparison between the clinical predictions for Pt103
using the four models for carfilzomib. Notice the variation in clinical predictions between the models. This is a
case where AIC chooses the model that fits the data best (lowest SSR), two populations modeled as
distributions. In summary, the choice of the correct, simplest model, may lead to significant differences in the
clinical outcome.

Extended Description of Mathematical Model. \We propose a nonlinear dynamical model to describe the
growth/death of tumor populations in MM patients. For this purpose, we employ a statistical, grey-box,
parametric model that represents the tumor’s response to various drugs by modeling them as a distribution of
populations, where each subpopulation has a different level of sensitivity to a given drug concentration.
Further, within a subpopulation it is assumed that the likelihood of cell death depends on the drug
concentration.

Let the total number of MM cells in the patient’s body be quantified and represented by p(t), which stands
for population of tumor cells. The tumor burden, in the absence of treatment, is assumed to increase with
time due to cell replication.

The non-monotonic variation of the tumor population was modeled as a difference equation

p(t+dt) = p(t)G(dt)D(t,dt), (Equation $1)

where G(dt) is the growth factor due to tumor cell replication and D(t,dt) is the death factor due to drug-
induced cell death between times t and t+dt.

Tumor growth in absence of therapy. In cell culture, the time required for the number of cells in a flask to
double, commonly known as doubling time, is used as a metric for quantifying growth due to cell replication.
For mammalian cells this number is often around 24 hours. However, the doubling time of MM tumors is
much longer due to its characteristically low proliferative index. In the mathematical model, the growth factor
for the MM population in the absence of therapy is:

G(dr)=(1+L1(2" - 1))M , (Equation 52)

where dt is a time interval (in days) between measurements, labeling index L/ is the percentage of MM
cells actively replicating, and At is the time step used during simulation.

Let a given patient have a L/ of 3% and say we would like to determine the growth of the tumor over a
period of three days. Using Equation 2 with a L/ of 0.03, dt of 3 days, and At of 5 minutes or 1/288 days:

6(3)=(1+0.03(2" -1))™ = 1.064.

Thus, the MM population, or tumor burden, would increase 6.4% in three days for this patient. Conversely,
to determine L/ for a given patient, we use a method similar to the calculation of doubling time in cell culture.
We use the two closest prior measures of tumor burden as obtained from monoclonal paraprotein, a
surrogate of tumor burden in MM, and use Equations S1 and S2 to determine LI. For example, prior to the
current biopsy, a MM patient had two measures of Serum-free light chain (lambda) confirming relapse, where
the first was 996mg/L and the second measure was 1,312mg/L, 34.2 days later. Thus, LI can be calculated as:



)At/dt
-1
1312/996 -1
140 =( ) =0.0116, or 1.16%.
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Therapy-induced death of tumor cells. Prior to modeling the stochastic cell death process, we have
proposed an empirical pharmacodynamics model based on the drug occupancy theory, described by the
reaction ®

Ll =

inding Drug-Receptor
[Drug]+[Receptor]#D,B - = Cg | P Threshold 5 Response,
1Ssoclation Omp eX

where drug and receptor molecules form drug-receptor complexes, which in turn cause cellular damage
and, beyond a certain threshold, initiates cell death. The dynamics of this reversible reaction follows

DBk ple)+OR()'.
dt —— ——

Dissociation Binding (Eq uation 53)
where, the forward rate of reaction is given by the law of mass action ’ and is described as the rate of
binding alone

% = (Kf[Receptor]s)R(t)h =0R(t)",
dt / (Equation S4)
where, R(t) is the drug concentration at time t. s and h are stoichiometric coefficients of the reversible
reaction. Further the rate of dissociation is proportional to the extent of binding $(t) and and an empirical rate
constant k. Equation S3 is in Bernoulli’'s ODE form and has an analytical solution assuming binding starts at
t=0.

t
(&)= IR dT,
0 (Equation S5)
When the cellular damage is greater than the threshold, the probability of cell death increases
asymptotically with increase in damage as in a sigmoid function
0 p——
l+e (Equation S6)
Where e is the Euler’'s number and o is a positive number defining the steepness of the curve. As the
probability of cell death cannot be negative, Equation S6 was modified such that the death function D varies
from 1 to 0.5 as the accumulated binding beyond the threshold varies from 0 to oo:

D(t,dt)=1-0.5tanh(ex(t)/ 2)dt, (Equation 57)

aa¢h)=nmx(flﬁﬂﬂifgo)
d (Equation S8)

where & is a measure of accumulated damage beyond the threshold, T, and d is a non-dimensionalizing
empirical factor.

Modeling heterogeneity in tumor population. The short-term response of MM patients to therapy can be
monotonic (continuous increase or decrease of tumor burden), or may present an inflexion point followed by
relapse (Figure 2a-c). Thus, the tumor chemosensitivity of MM patients cannot always be accurately described
by a single “clonal” population, but requires a more general representation. In this model, we propose the
tumor composed of two subpopulations, with different degrees of sensitivity to therapy. Each subpopulation



can either be modeled as “clonal” or as a distribution, with drug-specific threshold values (t, Equation S8).
These threshold values are obtained from a normally distributed probability density function (defined in terms
of a drug-specific mean and variance) that specifies the fraction of a subpopulation that initiates cell death
beyond a given threshold. The rationale behind adopting such an approach lies in the assumption that both
sensitive and resistant subpopulations have their own degree of heterogeneity. Figure 2b shows an example
of such a representation of tumor chemosensitivity as a single and as a double distribution.

The total tumor burden of a patient is

2
p(t+dt) = 2 p,(t+dt), j=1,2 subpopulations, (Equation S9)
=

where the composition of each subpopulation at initial time tg is modeled as a distribution
2
(T 5 ”./)

1
A [2]1’0}2 sz

with a specific mean Yj and standard deviation gj that define the percentage of cells that initiate cell death
when the accumulated damage surpasses t. For computational purposes, we have discretized this distribution
in a histogram with n bins, ranging from wj—60;j to w;+60;j using MATLAB’s function normpdf (Supplemental
Figure 2).

pj7l.(t+dt) = pjj(t)G(dt)Dj(t,dt,ri), j =1,2 subpoplations. i =1,...,n bins. (Equation S11)

PDF(‘L’; ﬂj,ajz) = (Equation S10)

n
p,(t+d)=Y p, (t+ds), j=12 subpopulations.i=1,...,n bins. (Equation S12)
i=1
There is no biological meaning for negative t values, so the histogram is truncated when u;—60;j<0, and
the value of each bin is normalized so that the sum of all bins corresponds to p;. Thus, at initial time to, the
composition of thejth subpopulation

p. (t
p,.(t) znpf”Axpj(to), j =1,2 subpopulations. i =1,...,n bins, (Equation S13)

2P

PDF(t;u.,0.), V7,20
where ﬁ,j,i(to)= ( il ‘/) i
0, V7, <0

In summary, the model assumes the existence of two tumor subpopulations, with different degrees of
chemosensitivity. Each subpopulation, in turn, exhibits a range of sensitivity to therapy modeled as a normally
distributed probability density function. The total number of parameters for this general model is nine: two
subpopulation-specific mean and standard deviation, two reaction constants 0, one drug-specific cell repair
rate x, one drug-specific empirical parameter h relating drug concentration to response, and the ratio of
sensitive population to the entire tumor population.

In specific cases, the estimated standard deviation may be so small that it may be beneficial to model one
subpopulation as a Dirac delta function. In such a case, the threshold T could be estimated directly, reducing
the total number of parameters of the system to seven. Additionally, one of the populations may be so small
that its effect cannot be detected by the ex vivo assay, and thus the tumor could be modeled as only one
population.

Determining model parameters for a specific drug-patient combination. Before predicting the clinical
response of MM patients using the proposed model, we need to, firstly, estimate the parameters for all the
models specified above using ex vivo data, and secondly, choose the model that best fits the data. One of the
challenges faced in dealing with ex vivo data is to ensure that it best represents tumor response in vivo. An



important point in this process is to differentiate between drug-induced cell death, D(t,dt) in Equation 1, and
spontaneous ex vivo cell death. This is accomplished by normalizing the ex vivo response of the tumor to a
specific concentration of a drug with the ex vivo vehicle control. Let

Py (t+dt) = p, (0D, (t,d1) | G(dD)D(t, 1) (Equation 514)

represent the response of tumor to drug R, ex vivo, where D.(t,dt) represents the rate of spontaneous cell
death. Further, let

p.(t+dt)=p ()G(dt)D, (t,dt) (Equation S15)

represent the ex vivo behavior of the control. By dividing Equations S14 and S15, we have
Py (t+dt) [ p, (1)
p(t+dt) | p(0)
pRX(t+dt) pRX(t)

where pc(t + dt) and pc(t) represent p(t+dt) and p(t) respectively, in Equation S1. Thus, by dividing
every ex vivo response curve by the corresponding vehicle control we are able to discard ex vivo spontaneous
cell death and quantify direct drug-induced cell death. The parameters can then be estimated using MATLAB's
Isqcurvefit, which minimizes the sum of squares of the residual (difference between normalized ex vivo data
and the model estimate) at every data point. The ex vivo data consists of percent live cells normalized by
control at 0 hours, drug concentration, and exposure time. Our objective is to estimate the set of parameters
that best fit this data using the least squares method. Further, we used Akaike Information Criterion® (AIC)

AIC =2k + nln(SSR / n), (Equation S17)

where SSR is the sum of squares of residual, n is the number of data points used for estimation, and k is the
total number of parameters used to describe the model. The model with the smallest AIC is considered to be
the best model.

D(t,dt), (Equation S16)




Supplemental Figures and Tables:

COLLAGEN |
MM
.

Time= 0h Time= 96h
e Bortezomib

157 _ s50nm — 1.85nM
~ 16.7nM — 0.62nM
— 550M  — MM1S (50nM)

( c L} L} L} —
/S “ - 0 25 50 75
’ : - Time(h)

Supplemental Figure 1. Overall workflow of ex vivo chemosensitivity assay. During a standard-of-care bone marrow biopsy myeloma cells are
separated from non-cancer by CD138-positive magnetic bead sorting. (a) Cancer cells are re-suspended in collagen-I in conjunction with stroma
(adherent non-cancer cells obtained from bone marrow biopsies, CD138-). (b) The cell-matrix mix is seeded in a multi-well plate and left to
polymerize overnight. Wells are organized so that 31 drugs can be tested at 5 different concentrations with 2 replicates. (c) By imaging at regular
intervals each well in bright field, and using a digital image analysis algorithm, we non-destructively detect live and dead cells (d). (e) Digital image
analysis algorithm quantifies longitudinal changes in number of live MM cells in each well and generates dose-response curves for each of the five
concentrations plus the positive control (cell line MM1.S under highest concentration only).
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Supplemental Figure 2. Computational implementation of tumor sensitivity as a probability distribution. In the example above, patient Pt111’s
bortezomib sensitivity was best represented as a single mode normal distribution with regards to the threshold variable t. The distribution was
approximated to a histogram spanning 12 standard deviations, with 10 bins per standard deviation (a). Since t is a positive value, the distribution is
truncated to remove negative values for t (b). To ensure that the sum of all bins amounts to 100%, we multiply each bin by the sum of all bin values
and multiply by 100% (c).




Supplemental Figure 3. Spatial co-localization of MM and stroma. Confocal microscopy of co-culture of stably transfected human myeloma cell
line 8226/dsRed2 and human stromal cell line HS-5/GFP confirm that MM cells maintain a round shape while stroma stretches and adheres to
bottom of well (A) while both populations maintain close contact and adhesion (B).
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Supplemental Figure 4. Example of assessment of spontaneous cell death in 14 primary MM samples across 96h in EMMA’s ex vivo assay. Please
note the border effect artifact that suggests increase in viability in the beginning of the experiment, and decrease at the end. This border effect is
removed when the curves from each experimental condition is divided by the corresponding controls. In the examples above, only the samples
from patients Pt108 and Pt110 had a significant rate of spontaneous cell death, while the remaining patients had less than 25% loss of viability
under control conditions.
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Supplemental Figure 5. Ex vivo chemosensitivity curve of patient Pt103 to carfilzomib.
Parameter Obtained from Used in Value
LI Previous relapse or 1% if Eqg. (S3) 1.44%
naive

a, i, Ex vivo assay Eqg. (510) 8.0139e-3
apél Ex vivo assay Eg. (S9) 7.3421e-4
a,,K Ex vivo assay Eqg. (S4) 0.012432
a4,h Ex vivo assay Eqg. (S4) 0.4669
as, 0, Ex vivo assay Eqg. (510) 4.007e-3
ag, P, Ex vivo assay Eqg. (S14) 47.098%
a,, U, Ex vivo assay Eqg. (510) 0.024996
a,,o, Ex vivo assay Eqg. (510) 6.3511e-3
619,52 Ex vivo assay Eqg. (S9) 5.4014e-4

Supplemental Table 1. Model parameters for patient Pt103’s primary MM cells tested ex vivo with carfilzomib.

Supplemental Figure 6. Correlation between predicted trajectories and actual clinical response of 52 MM patients up to 90 days post biopsy.
Please see document with 52 pages, one for each patient.
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Supplemental Table 2. Choice of best therapeutic option based on EMMA. The above table groups the clinical predictions of the 52 MM patients
in this study for 7 individual drugs: bortezomib (V), carfilzomib (K), dexamethasone (D), lenalidomide (R), pomalidomide (P), CRM1i (C) and
doxorubicin (Dx). Each prediction is color coded as follows: green for VGPR/CR, orange for MR/PR, yellow for SD, and red for PD. Drugs that were
not tested ex vivo for a patient sample appear as white. Diagonal lines mark the drugs that were actually administered to the patients. This dataset
suggests that approximately 40% of the agents administered to these patients had no clinical efficacy (diagonal marked red cells). In addition, the
model predictions suggested a different therapeutic choice, with deeper response, for 16 patients (27, 34, 37, 64, 69, 73, 78, 84, 87, 94, 100, 102,
119, 120, 127 and 130).
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Supplemental Figure 7. Correlation between ex vivo drug efficacy in 12 MM patients tested with six chemotherapeutic agents and 25 PKls. We
have paired the 31 agents and calculated the linear regression of area under the curve (AUC) across 12 MM patients in order to determine
correlation of drug sensitivity. The top correlations are depicted in the figure: bortezomib and carfilzomib (Pearson r=0.9141), bortezomib and
doxorubicin (r=0.8762), linifanib and azd1208 (r=0.8322), doxorubicin and carfilzomib (r=0.8136), doxorubicin and panobinostat (r=0.8046),
crizotinib and dasatinib (r=0.7764), alisertib and azd1208 (r=0.7752), alisertib and Ibrutinib (r=0.7749) and panobinostat and ponatinib (r=0.7694).

Supplemental Figure 8. Hypothetical models for inter-patient correlation of drug sensitivity. (a) Consider two independent pathways, A and B,
converging downstream into pathway C. Drugs that target any of these pathways can cause cell death. Cellular adaptations that downregulate
pathway C will make the cell resistant to drugs that target this pathway and also cross-resistant to those upstream (A and B). In other words,
resistance to drugs that target pathway C will correlate with resistance to drugs that target either A or B, and vice versa. While (a) is a common
motif in intracellular cell signaling, and explains the commonly observed development of cross-resistance observed in patients in the clinic, the
explanation of cross-sensitivity, or increase in sensitivity to one drug as a consequence of increase in resistance to another, requires a more
complex motif (b). In this network, once again pathway C is downstream from A and B, but now pathways A and B suppress each other. Thus,
mutations that downregulate the effect of pathway A will cause upregulation of pathway B and thus increase in sensitivity to drugs targeting
pathway B. This is a less common motif and possibly explains the lack of drugs with negative correlation of sensitivity in the panel of 25 PKls studied
in this work.
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Supplemental Figure 9. Changes in chemosensitivity of tumor cells from two MM patients to 20 PKIs between two sequential biopsies. Each
marker represents the LD50 at 96h for a particular combination of patients/biopsy. When LD50 is not reached, the marker is absent. For 4 PKls
(Ruxolitinib, Selumetinib, Tozasertib and Trametinib), the LD50 at 96h was higher than me maximum concentration tested (10uM) and thus could
not be determined. (a) This patient provided two biopsies separated by an interval of 4 months, during which the patient was treated with a
combination of the hypoxic pro-drug TH-302, bortezomib and dexamethasone. Some PKls were more effective in the first biopsy than in the second
(e.g. Alisertib and Dasatinib) while others only more efective in the second biopsy (e.g. Ponatinib, Crizotinib and BI2536). (b) This patient provided
two biopsies separated by three weeks, during which the patient was treated with the nuclear export inhibitor selinexor, liposomal doxorubicin and
dexamethasone. The most noticeable increases of sensitivity were Crizotinib and Momelotinib, and the most noticeable increase in resistance was

BMS754807.
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Supplemental Figure 10. Model predictions of 41 MM patients indicate no correlation between bortezomib and carfilzomib 90-day depth of
response. For each patient, the blue and red lines represent the minimum tumor burden expected in a 90-day treatment with single agent
bortezomib and carfilzomib, respectively. Patients have been sorted from left to right in descending order of clinical resistance to bortezomib.



Patient ID Status at biopsy | Age | Sex Race t(11:14)
127 NDMM 58 Female Black or African American NO
129 Triple 60 Male Black or African American NO
130 Quad 76 Male White NO
135 Naive 70 Female White NO
138 Naive 60 Male White NO
140 NDMM 68 Male White YES
141 PI-R 62 Male White NO
142 NDMM 75 Male White YES
143 PI-R 66 Female White NO
144 Naive 69 Female White NO
145 Double 55 Female White NO
148 Triple 54 Female White YES
152 NDMM 69 Male White NO
160 NDMM 45 Male White NO
161 Naive 60 Male White YES
163 Double 73 Female White NO
164 Triple 52 Male Other NO
165 Naive 68 Male White NO
166 Penta 69 Female White YES

Supplemental Table 3. Demographics of patients whose bone marrow aspirates were used in virtual clinical trials of ricolinostat and venetoclax.
Status at bone marrow biopsy were: newly diagnosed (NDMM), proteasome inhibitor resistant (PI-R), double-refractory, triple-refractory, quad-
refractory, penta-refractory, and naive (relapse in absence of therapy). Patients were also classified according to presence of translocation 11,14 in
standard of care MM FISH.
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Supplemental Figure 11. Quantification of drug sensitivity and time-dependent synergy in primary MM cells. (a) and (b) represent the LD50
(concentration for 50% reduction in viability as compared to the beginning of experiment, normalized by control) of primary MM cells from two
patients. Please note that for drug combinations, only the LD50 of the first drug is shown. (c) and (d) show a more detailed representation of drug
efficacy across concentration and exposure time, revealing the concentrations where drug combinations increase cell kill, and identifying possible
synergy “islands”, where effect of the drug combination is higher than the product of their individual efficacies. List of drugs tested ex vivo: MEL
(melphalan), CFZ (carfilzomib), BTZ (bortezomib), CRM1i (selinexor), QST (quisinostat), PAN (panobinostat), DOXIL (liposomal doxorubicin) and 113
(defactinib).



b — 7.0uM — 7.0uM
— 2.3333333uM —— 2.3333333uM

0.7777778uM _2_400...%:_‘:— 0.7777778uM
0.25925925uM | F Lo — 0.25925925uM
0.086419754uM| & — 0.086419754uM
MM1S_7uM 2 — MM1S_7.0uM

0 0

0 50 100 0 50 100

Time(h) Time(h)

Supplemental Figure 12. Daratumumab-mediated MM cell death. Unlike drugs with direct cytotoxic activity studied in this manuscript,
daratumumab, a CD38 monoclonal antibodyg'm, mediates immune response to MM cells. The first and second panels (a and b) depict two separate
groups of MM cells from patient Pt174 (blue arrow) during an EMMA assay, exposed to 7uM of daratumumab for 120h. After approximately four
days of exposure, a yet-to-be-determined adherent cell (red arrow), originated from either the patient aspirate or stroma, begins to engulf the MM
cells in its vicinity, and proceeds to other regions of the well. This process is observed in all wells with daratumumab, from concentrations 7uM to
86nM; it does not occur in controls, and was observed in two separate patients (c).
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Supplemental Figure 13. Ex vivo chemosensitivity in sequential biopsies in absence and during treatment. (a) To assess the inter-day
reproducibility of the ex vivo assay (test-retest) we have quantified the chemosensitivity of one patient (Pt52) with two biopsies separated by one
month without treatment and used this information to build mathematical models of predicted clinical response to therapy (CRM1i) using the ex
vivo data from both biopsies (red dashed line for biopsy 1, blue solid line for biopsy 2), indicating high correlation between both modeled curves
(Pearson r=0.9707) and thus reproducibility of assay. (b) Variation of mathematical model clinical predictions of best response built with ex vivo
data from two sequential biopsies (Pt52). (c) Two biopsies of patient Pt32, separated by treatment with Th-302, bortezomib and dexamethasone,
were tested for ex vivo chemosensitivity (this patient had the dose of bortezomib reduced from 1.3mg/m2 to 1mg/m2 due to thrombocytopenia).
(d) Model predictions indicate that the patient, who was initially sensitive to proteasome inhibitors and alkylating agents, has become refractory to
both.
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Supplemental Figure 14. Intra-plate variation of ex vivo assay. Primary cells from a patient (Pt48) were seeded as usual in a 384-well plate and
tested in a pattern of three different drugs (bortezomib, melphalan and carfilzomib), at five concentrations and two replicates, and a negative
control (no drugs added). This pattern was repeated 8 times across the plate and standard deviation (S.D.) of dose response curves for each drug
and concentration were determined. Maximum S.D. values were 3.4% for melphalan, 6.3% for bortezomib, 8.9% for carfilzomib, and 6.7% for

controls.
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Supplemental Figure 15. Convergence study comparing the four population models for panobinostat.

1 Pop —No Dist. | 2 Pops — No Dist. 1 Pop — Dist. 2 Pops — Dist.
Sum of Squares of
Residuals (SSR) 76,591.1 76,482.6 76,591.1 76,352.8
Number of
parameters (k) 4 / > 9
Akaike Information | o 53, 76.2533 76.2434 76.2572
Criterion (AIC)

Supplemental Table 4. SSR, number of parameters, and AIC values for the four models for patient Pt103’s ex vivo sensitivity to panobinostat.
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Supplemental Figure 16. Convergence study comparing the four population models for carfilzomib.

1 Pop —No Dist. | 2 Pops — No Dist. 1 Pop — Dist. 2 Pops — Dist.

Sum of Squares of
2 . 27,318. . .

Residuals (SSR) 32,334.6 7,318.7 33,278.0 26,585.9
Number of
parameters (k) 4 7 > 9
Akaike Information | . o) g 54.3972 58.5464 53.8599
Criterion (AIC)

Supplemental Table 5. SSR, number of parameters, and AIC values for the four models for carfilzomib.
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Supplemental Figure 17. Comparison between clinical predictions for bortezomib using the four models.
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Supplemental Figure 18. Comparison between clinical predictions for carfilzomib using the four models.



Data Processing Guide:

The flow of data analysis consists in multiple steps: (a) running the digital image analysis algorithm in
imagel; (b) creation of a description file assigning each well in the plate to a particular drug and concentration;
(c) grouping the results from image analysis of wells according to drugs and concentrations, normalizing
results by control and time Oh; (d) creation of charts in Prism Graphpad format; and (e) generation of Matlab
code for analysis of chemosensitivity as well as estimates of clinical response. These steps are automated by
different pieces of software developed in Javascript (for Imagel), Java and Matlab, and are provided below.

Use auto focus
Software

96h ex vivo
experiment

Bortezomd
1907 5o — 185eM
1670M  — OB2nM
55aM  — MAMIS (SOnM)

Digital image ’
analysis *

Create drug plate
templates

Create dose

response files e
§
Create clinical H
Create GraphPad Crea::rir\;l:tlab outcome 1.
predictions .



Use auto focus software

Open template file with pre-defined beacons;

Set beacons 1, 24, 180, 181, 361 and 384;

Run time lapse and stop after at least one beacon was imaged;

Save results;

Open template file using software CalibrateFocus.jar (below, arrow 1)

8 00 8 00
Choose File to Focu: OCUSED Choose File to Focus | FILE NOW IN FOCUS
Beacons 1, 24, 180, 36 4 should be previously focused Beacons 1, 24, 180, 361 and 384 should be previously focused
. zFit=mdI(ahat,XY);
hold on

scatter3(XY(1,:),XY(2,:),zFit,'r' filled")
scatter3(XY2(1,),XY2(2,),22,'g', filled");
scatter3(XY(1,),XY(2,),2,'b' filled);
A=ahat(1)

B=ahat(2)

C=ahat(3)

%PLEASE WAIT WHILE MATLAB RUNS...

a a -5.016205164229323E-8
-0.0010142648306488526

b b
c d Q 2067.2788718222027
Generate Template File | ... General Jate File

* One thefile is read, the software will calculate the correct focal “plane”;
* Press the “Generate template file” and close the software;

* Re-open the now focused template file in and run the time lapse;



Digital image analysis

Copy the folder containing all beacons into cluster’s “parent folder”;

Open the file BatchGenerator.sh and change the value of the property “folder” to
the name of the folder containing all the beacons;

Open the file BatchStart.txt and edit the path imageJ, imagel script and “parent
folder” where the folder with beacons are stored:

— Default imageJ path: /home/silvaa/fiji

— Default image) macro path: /home/silvaa/fiji/macros/MacroAnalysis384_14Cluster.ijm

— Default “parent folder” containing all beacons: /share/data/evos_silva/$folder/Beacon-$beacon
Do not replace the text in red.
Run the analysis with the command line: bash ./BatchGenerator.sh
Once the jobs are completed, a folder named “tiffs” will be created inside the
“folder” directory. Inside “tiffs” there will be a video for each beacon as well as a
results.csv file with the time lapse analysis of all beacons;

Create drug plate templates

Open the template file DrugList.csv;

Edit the names of drugs in the file according to their spatial location in the drug
plate used in the robotic plate handler;

Modify the maximum concentration (final) for each drug. For instance, if the
maximum concentration in the 384-well plate with cells is 10uM, then enter this
value here;

Run the software BuildExperimentalDesign.jar and pass as parameter the path to
the folder containing the Druglist.csv file. For instance:

— java -cp BuildExperimentalDesign.jar BuildExperimentalDesign "/Users/silvaa/Desktop/Pt in cluster/

Pt101”

The software creates two folders named “PtSample” and “MM1_S". The first
contains the list of beacons and corresponding drug names and concentrations for
the wells with primary cells, and the second for the cell line positive control. Each
folder has a unique file name ExperimentalDesign.txt;



Create dose response files

Copy the file “results.csv” inside both “PtSample” and “MM1_S” folders;

Run software Evos384.jar; eoo P —
[ CimmLs
8 00 BatchProcess384
Name | Date Modified
New experiment +) 30 (0 Report Thursday, August 27, 2015 10:27 AM
Time step (minutes) B Results.csv Thursday. August 27, 2015 10:27 AM
Choose Fil gose File 2 | Choose File 3 | Choose File 4 8 00 Choose .csv file generated by image) macro
M Remove B ffect? @ Continuous plots? [ Ptsample
Normalize by index: 0 (] Cap at 100%? — B Date Modified
(1 Report Thursday, August 27, 2015 12:02 PM
1 Results.csv Thursday, August 27, 2015 10:27 AM
8 00 BatchProcess384
File Format: | *.csv Result Files N
New experiment al 30

Time step (minutes)
| Choose File 1 | Choose File 2 | Choose File 3 | Choose F
M Remove Border Effect? M Continuous plots?

Normalize by index: 0 Cap at 100%?

un!
Success!!!

Cancel Open

e 4 /\
[ * Open “results.csv” in MM1_S folder

1), then run (arrow 2);
Repeat the steps above for PtSample;
* A“report” folder will be created for each;

Create GraphPad

Run the software to build the GraphPad report and It will generate a file named

Report.pzfx:

java -cp BuildGraphPadFile.jar BuildGraphPadFile "/Users/silvaa/Desktop/Pt in cluster/Pt101”

Open the file using GraphPad and ignore the error message;

Open the leaflet “info” and delete one of the two “Project info 1” items;
Save the file with an alternative name, e.g. ReportPt101.pzfx;

Re-open the file and there should be no error messages;

Each of the 31 drugs and control should be depicted in a separate chart and

numeric values in data tables;

All values are normalized by negative controls and are 100% at timepoint Oh.

150
— 10.0uM

3.3333333uM
> 100 — 11111112uM
g — 0.37037036uM
K<}
g Mw — 0.12345679uM
R 50 \ fsnse — MMIS_100uM

_ 25 50 75




Create Matlab script

* Run the software to build Matlab code for clinical predictions based on patient ex
vivo results:

— java -cp GenerateMatlabGraphFormat.jar GenerateMatlabGraphFormat "/Users/silvaa/Desktop/Pt
in cluster/PtPathList.txt”

— The file PtPathList.txt contains the folder where the Matlab script files will be stored (1) as well as
the folders where each patient ex vivo results are stored (2). The syntax is: path to patient folder
where ex vivo results are stored;-1;1;,;number of hours of experiment;patient identifier

/Users/siIvaa/Désktop/Career/Manuscripts 2014/Mode|ingPredictionTherapyReﬁ/Nature Medicine/Drug Synergy
/Users/silvaa/Desktop/Pt in cluster/Pt6/Report;-1;1;,;96;Pt6

/Users/silvaa/Desktop/Pt in cluster/Pt7/Report;-1;1;,;72;Pt7

/Users/silvaa/Desktop/Pt in cluster/Pt9/Report;-1;1;,;72;Pt9

/Users/silvaa/Desktop/Pt in cluster/Pt10+11/Pt10/Report;-1;1;,;90;Pt10

/Users/silvaa/Desktop/Pt in cluster/Pt10+11/Pt11/LenAsControl/Report;-1;1;,;90;Pt11

* The output will be the number of patients analyzed as well as any errors found:

Running Finished prot g 57 patients,

* Afile with each patient’s ID will be created. To run the analysis, copy and paste
code into Matlab

Create clinical outcome predictions

* Run the software that creates a single Matlab script file for ex vivo, drug combination
synergy and clinical outcome predictions for all patients:

— java -cp DruglistSynergy.jar DruglListSynergy "/Users/silvaa/Desktop/Career/Manuscripts 2014/
ModelingPredictionTherapyResponse/Nature Medicine/Drug Synergy"

— Where the folder above contains the file DrugListSynergy.txt with the list of drugs and combinations to be
modeled. Add new drugs to the bottom of the list.

— Afile named RunAllPatients.m will be generated. Copy this file to Matlab path and run the command
RunAllPatients in Matlab’s command line. Figures (.fig and .png) will be created in the folder /matlabFiles:

* Ptxx_DrugY_Clinical_Prediction: the treatmet simulation if there is an available PK model for the drug;

¢ Ptxx_ClinicalRadar: bar plot with the minimum tumor, normalized by day O, within an interval of 90
days, for the simulated drug as single agent;

¢ Ptxx_ExVivo_DrugY: the ex vivo chemosensitivity dose response and fitting models;

¢ Ptxx_ExVivoRadar: bar plot with AUC (area under curve) of dose response surfaces for the duration of
the experiment;

¢ Ptxx_LD50Radar: bar plot with LD50 concentrations (in molar) for the last time point of the
experiment (default 96h);

* Ptxx_Drugl+Drug2_Synergy: heatmaps comparing efficacy of drug combination versus either drug as
single agent as well as conditions of synergy;
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