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Abstract—Cellular reprogramming is traditionally ac-
complished through an open loop (OL) control approach,
wherein key transcription factors (TFs) are injected in cells
to steer the state of the pluripotency (PL) gene regulatory
network (GRN), as encoded by TFs concentrations, to the
pluripotent state. Due to the OL nature of this approach,
the concentration of TFs cannot be accurately controlled.
Recently, a closed loop (CL) feedback control strategy was
proposed to overcome this problem with promising theo-
retical results. However, previous analyses of the controller
were based on deterministic models. It is well known that
cellular systems are characterized by substantial stochas-
ticity, especially when molecules are in low copy number
as it is the case in reprogramming problems wherein the
gene copy number is usually one or two. Hence, in this
paper, we analyze the Chemical Master Equation (CME)
for the reaction model of the PL GRN with and without the
feedback controller. We computationally and analytically
investigate the performance of the controller in biologically
relevant parameter regimes where stochastic effects dictate
system dynamics. Our results indicate that the feedback
control approach still ensures reprogramming even when
both the PL GRN and the controller are stochastic.

I. INTRODUCTION

Cellular reprogramming is an approach to convert
a differentiated cell type (such as a fibroblast) to a
pluripotent cell type (known as an induced pluripotent
stem cell or iPS cell). Human iPS cells, functionally
equivalent to embryonic stem cells (ESCs), are the best
alternative to ESCs in regenerative medicine, especially
for laboratory research, in which the use of ESCs faces
ethical and political barriers [1], [2].

The first iPS cell (iPSC) reprogramming approach was
proposed by Yamanaka et al. [3], who obtained iPS
cells by constant overexpression of four key transcription
factors. From a control theoretic point of view, the GRN
can be viewed as the plant to be controlled and the
overexpression of select TFs can be viewed as a control
input. Therefore, current reprogramming approaches can
be regarded as OL control.

Several studies have been conducted in order to im-
prove the performance of this reprogramming method
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([4], [5]), but its efficiency remains as low as 1% [6],
[7]. In a more recent study [1], it has been proposed that
the fact that the core PL GRN is a monotone dynamical
system ([9]) along with the fact that the target pluripotent
(PL) state may not be associated with extremal concen-
trations of TFs ([1]), may contribute to failure of current
reprogramming practices based on OL control. This led a
novel feedback control approach to reprogramming ([1]),
in which the TFs constant overexpression is replaced
by a variable one, implemented by a negative feedback
control. This control law can be implemented through a
synthetic genetic circuit that can be delivered to the cells
through standard infection methods [11]. The proposed
approach is theoretically able to reach the desired steady
state (SS) as demonstrated through preliminary studies
based on ODE models [1].

However, both the plant to be controlled (the PL GRN)
and the controller (the synthetic genetic circuit) are
realized through chemical reactions, which are inherently
stochastic [12], [13], [14]. This is especially the case for
differentiation as this is often driven by noise, due, in
part, to the combination of low molecular counts and
slow promoter kinetics (i.e., when the process of binding
and unbinding of TFs to promoters is slow) [15]. In order
to determine the extent to which the feedback control
approach still ensures to steer the network state to the PL
state when stochastic effects are taken into account, in
this paper we analyze the performance of the controller
with a stochastic model of the CL system in parameter
regimes where stochasticity is not negligible. We first
consider the limit of slow promoter kinetics, small
volume and one copy of each TF’s gene. Second, we
explore when the promoter kinetics is on the same time
scale as protein kinetics, which may be a more realistic
assumption for certain applications [16]. Specifically, we
simulated the CL system with the Gillespie algorithm
([22]) and compared the results to those obtained using
the OL control. For the slow promoter kinetics parameter
regime the performance of this reprogramming approach
was further evaluated through a recently proposed ana-
lytical method [17], based on the systematic application
of singular perturbation to the CME [18].

This paper is organized as follows. In Section 2, we
describe the PL GRN model and summarize the previous
results obtained with the deterministic approach. In Sec-
tion 3, we show the SS distributions obtained with the
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computational and analytical methods. Then, in Section
4 we describe and compare the results obtained through
OL control and through CL control. Conclusive remarks
are presented in Section 5.

II. A DETERMINISTIC MODEL OF THE PL GRN

Nanog Oct4

Figure 1: A two-node pluripotency gene regulatory network
(PL GRN). Network model as taken from [1].
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Figure 2: Comparison between location of stable SSs of
the deterministic model and position of peaks of the SS
probability distribution of the stochastic model. For the
deterministic model, stable SSs of system in equations (1) are
obtained as in [1]. For the stochastic model, the set of chemical
reactions in Table I are simulated with parameter values given
in Table II using the Gillespie algorithm [22].

The PL GRN proposed by Boyer et al. [19] is formed
by three master TFs: Oct4, Nanog, and Sox2, which acti-
vate each other while self activating [4], [20]. Under the
assumption of a sufficiently large number of molecules
and sufficiently large volume, an ODE model was pro-
posed in [1]. This PL GRN model is characterized by
two nodes in which Oct4 and Sox2 were lumped together
since they heterodimerize. Furthermore, to account for
the observation that higher Oct4 concentration leads to
lower Nanog concentration, a repressive term (from Oct4
to Nanog) was added. A diagram of the PL GRN model
is shown in Fig. 1. In particular, letting x1 represent
[Nanog] and x2 [Oct4], the ODE model is given as
follows ([1]):

ẋ1 = H1(x)− γ1x1, ẋ2 = H2(x)− γ2x2, (1)

where the first term of each equation is a Hill function
([21]) capturing all the transcriptional regulations, and
the terms −γixi represent dilution and degradation.
With the parameter values and specific form of the
Hill functions taken from [1], this system displays three
stable SSs, each characterized by specific levels of TFs:
the PL stem cell, the trophectoderm (TR) and primitive
endoderm (PE) cells (differentiated cells). The three SSs
are shown in red in Fig. 2.

III. STOCHASTIC MODEL OF THE PL GRN

A deterministic model is not always sufficiently rep-
resentative of a biomolecular system because the cell
differentiation dynamics is often driven by noise, due,
in part, to the combination of low molecular counts (e.g.
one or two copies of a TF’s gene) and slow promoter
kinetics [15]. That is, binding of TFs with DNA in
mammalian cells can be very slow due to the poor
accessibility of gene promoters given that it is tightly
wrapped around nucleosomes [23], [24].

Therefore, we consider the constituent reactions of the
two-node PL GRN as given in [1] and create a CME
model for this system. The reactions for the whole PL
GRN (the plant to be controlled) are collected in Table I
with parameter values given in Table II and taken from
[1]. In particular, 15 species are involved: the TFs N
and O (Nanog and Oct4), the TF dimers N2 and O2,
the corresponding mRNA species mN and mO and all
the promoter-TF binding configurations. Specifically, we
have the free TF DNA promoters DN and DO, the
single-bound promoters DNO, DON , DNN and DOO
(defining Dij as the i promoter bound by the dimer
of species j), the double-bound promoters DNNO and
DONO (defining Dijz as the single-bound promoter Dij
bound by the dimer of species k), and DX , that is
the N promoter DNO additionally bound by O2 and
represents the transcriptionally inactive form of DNO

being repressed by O2 [1]. Concerning the reactions
involved, we have the dimerization (reactions 1, 13),
the TFs binding and unbinding (2-5, 14-17), the TFs
transcription (TX) (6-9, 18-21) and translation (TL) (10,
22), decay (11, 12, 23, 24) and the repression from Oct4
to Nanog (X).

In order to study the effects of stochasticity, we im-
plement the reactions through the stochastic simulation
algorithm (SSA) ([22]) for two parameter regimes. We
first consider the limit of slow promoter kinetics (i.e.,
d1, ..., d8 � α0

O, ...α
3
O, α

0
N , ...α

3
N , signifying that the

reversibe binding dynamics is much slower than TX)
and one copy number for each TF’s gene (i.e., Dtot =∑
i∈O,ON,OO,ONODi =

∑
i∈N,NO,NN,NNO,X Di =

1). For this specific parameter regime, we also apply
the analytical method proposed by [17] in order to gain
further insight on the effect of the controller.
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Rj Reaction Prop.Func.(aj)

1f O + O aO−−→ O2 a1f = aOO(O−1)
2Ω

1r O2
dO−−→ O + O a1r = dOO2

2f DO + N2
a1−−→ DON a2f = a1N2DO

Ω

2r DON
d1−−→ DO + N2 a2r = d1DON

3f DO + O2
a2−−→ DOO a3f = a2O2DO

Ω

3r DOO
d2−−→ DO + O2 a3r = d2DOO

4f DON + O2
a3−−→ DONO a4f = a3O2DON

Ω

4r DONO
d3−−→ DON + O2 a4r = d3DONO

5f DOO + N2
a4−−→ DONO a5f = a4N2DOO

Ω

5r DONO
d4−−→ DOO + N2 a5r = d4DONO

6 DO
α0

O−−→ DO + mO a6 = α0
ODO

7 DON
α1

O−−→ DON + mO a7 = α1
ODON

8 DOO
α2

O−−→ DOO + mO a8 = α2
ODOO

9 DONO
α3

O−−→ DONO + mO a9 = α3
ODONO

10 mO
KO−−→ mO + O a10 = KOmO

11 mO
δO−−→ 0 a11 = δOmO

12 O
γO−−→ 0 a12 = γOO

13f N + N aN−−→ N2 a13f = aNN(N−1)
2Ω

13r N2
dN−−→ N + N a13r = dNN2

14f DN + N2
a5−−→ DNN a14f = a5N2DN

Ω

14r DNN
d5−−→ DN + N2 a14r = d5DNN

15f DN + O2
a6−−→ DNO a15f = a6O2DN

Ω

15r DNO
d6−−→ DN + O2 a15r = d6DNO

16f DNN + O2
a7−−→ DNNO a16f = a7O2DNN

Ω

16r DNNO
d7−−→ DNN + O2 a16r = d7DNNO

17f DNO + N2
a8−−→ DNNO a17f = a8N2DNO

Ω

17r DNNO
d8−−→ DNO + N2 a17r = d8DNNO

18 DN
α0

N−−→ DN + mN a18 = α0
NDN

19 DNO
α1

N−−→ DNO + mN a19 = α1
NDNO

20 DNN
α2

N−−→ DNN + mN a20 = α2
NDNN

21 DNNO
α3

N−−→ DNNO + mN a21 = α3
NDNNO

22 mN
KN−−→ mN + N a22 = KNmN

23 mN
δN−−→ 0 a23 = δNmN

24 N
γN−−→ 0 a24 = γNN

Xf DNO + O2
ainc−−−→ DX aXf = aincO2DNO

Ω

Xr DX
dinc−−−→ DNO + O2 aXr = dincDX

Table I: Endogenous circuit reactions

Second, we computationally investigate the case in
which the copy number for each TF’s gene is 1 and
the promoter kinetics is on the same time scale as TX
(ie., d1, ..., d8 ≈ α0

O, ...α
3
O, α

0
N , ...α

3
N ), which may be a

more realistic assumption for certain applications [16].

A. Steady state probability distribution of uncontrolled
PL GRN

To depict the stationary probability distribution of
the PL GRN model, we run the SSA on the chemical
reactions listed in Table I with parameter values given
in Table II, considering a uniform distribution of initial
concentrations in the state space (N,O). For all the
other initial concentrations, we set, for each (N , O) pair,
the corresponding equilibrium values [1]. The simulation
results were used to build a 2D histogram, depicting for
each (N , O) pair the fraction of simulations that resulted
in that pair after the system transient response had

Parameter Value (AU) Parameter Value (AU)

Dcnideal 100 Dcoideal 100

Dcnreal 5 Dcoreal 5

a1-a8,aO,aN 1*ε d1-d8,dO,dN 100*ε

κO 1 κN 1

α0
O 0.01872/Cn α0

N 0.12/Cn

α1
O 0.0707/Cn α1

N 18.85/Cn

α2
O 0.81/Cn α2

N 4.64/Cn

α3
O 0.83/Cn α3

N 15.82/Cn

ainc 0.01 dinc 0.10

asn 0.01 aso 0.01

dsn 61 dso 61

ksn 61 kso 61

δN 0.09 δO 0.17

γN 0.139 γO 0.046

βN 0.05 βO 0.05

hN,1 19.23 hO,1 0.89

hN,2 6.7 hO,2 6.7

Cn = Copy number 1 ε 10−3, 10−5

Table II: Parameters of the PL GRN and of the controller
circuit.

extinguished.
For the slow promoter kinetic regime, we considered

the parameter values listed in Table II (we set ε, that
is the parameter through which we regulate the TFs
binding and unbinding rates, equal to 10−5) and the
results are shown in Fig. 3. Under the slow promoter
kinetic assumption, we can further derive the SS PDF
analytically by using the results of [17], which we briefly
summarize as follows. Let Z(t) ∈ Zn≥0 be the vector of
copy numbers of all the species in the network at time
t and let pz(t) = Pr[Z(t) = z] be the probability that
Z(t) = z for z ∈ Rn. Let z0, z1,... be all the possible
values z and p(t) = [pz0 , pz1 , ..]

T , then the CME can be
written as

ṗ = Λp(t), (2)

where Λ is the infinitisimal generator of the Markov
chain which describes the stochastic evolution of
species’ counts [17]. Letting Rj represent the propensity
function related to the reaction Rj and γj the stochiome-
try vector related to the reaction Rj ([21]), each element
of Λ can be defined as:

λxx̃ :=

 Rj(x) if∃j : x̃ = x− γj
−
∑m
j=1Rj(z) if x̃ = x

0 otherwise,
(3)

In the GRN we can split Z(t) into “gene process”
D(t), i.e., the TFs binding/unbinding reactions, and
“protein process” X(t), i.e., the protein production (that
is the TX and TL lumped together), dimerization and
decay, and then we can decompose the probability
distribution vector correspondingly. Being pdx(t) =
Pr[X(t) = x,D(t) = d] the joint probability distribu-
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Figure 3: Steady state probability distribution of the uncontrolled PL GRN in the slow promoter kinetic regime. (a) and
(b) show the distribution as obtained from Gillespie simulation of the system of reactions listed in Table I with the parameter
values given in Table II. (c) SS probability distribution analytically computed through (8). We indicate with PL the location of
the PL peak of the system without control input.

tion of X and D, we can define the vector pd(t) =
[pdx0

(t), pdx1
(t), ....]T in which we collect, for a certain

d, the probabilities of all the possible x [17]. Hence,
using the notation above and defining L as the total
number of all the possible d, we can decompose the
CME (2) as

ṗ(t) = Λp(t) =
(

Λ̃ + εΛ̂
)
p(t), (4)

where

Λ̃ =

Λ0

. . .
ΛL−1

 , and p(t) =

 p0(t)
...

pL−1(t)

 (5)

The slow matrix Λ̂ contains the propensity functions
from the gene processes, while the fast matrix Λ̃ contains
the propensity functions of the protein processes. Each
of the submatrices Λ0, ...,ΛL−1 of Λ̃ in (5) can be
interpreted as an infinitesimal generator for the network
conditioned on a certain promoter configuration d, i.e.,
Λi is the infinitesimal generator for the Markov chain
conditioned on D(t) = i. Applying singular perturbation
theory to the CME (i.e., setting ε equal to zero) [18], the
overall SS probability distribution can be evaluated with
the following formula:

π(x, d) =

L−1∑
d=0

ρdπX|d(x, d), (6)

where ρd is a weighting coefficient that represents the
fraction of time that the system will spend in the con-
figuration d and πX|d(x, d) is the stationary distribution
conditioned on d. πX|d(x, d) can be expressed as Poisson
distribution ([17]):

πX|d(x, d) := P(x, a) :=
ax

x!
e−a, (7)

where a is the mean value of the distribution, defined
as the ratio between the protein production rate constant

(i.e., the product between the TX rate constant and the
TL rate constant, divided by the mRNA degradation
rate constant) and the protein degradation rate constant.
Hence, the overall stationary distribution is a linear
combination of Poisson distributions. ρd can be evaluated
as the principal normalized eigenvector of the matrix Λr,
in which any (d′, d) entry represents the probability of
transition from the configuration d′ to configuration d
and can be computed through an algorithm given in [17].

In our case, the gene reactions are reactions 2-5, 14-
17, X listed in Table I, protein reactions are all the others
of Table I (considering TX and TL reactions lumped
together as protein production reactions) and we can
describe the promoter configurations with two processes
DN (t) (i.e., N,NO,NN,NNO,X) and DO(t) (i.e.,
O,ON,OO,ONO), which are indexed as 0, 1, 2, 3, 4
and 0, 1, 2, 3, respectively. Considering all the possible
promoter configurations, formula (6) becomes:

π =
4∑
i=0

3∑
j=0

ρijP(N,O;
Ki
N

γN
,
Kj
O

γO
), (8)

where ρij represents a weighting coefficient, Ki
N =

αi
NKN

δN
and Kj

O =
αj

OKO

δO
represent the gene expression

rates of N and O, in which, referring to the Table I, αiN
and αjO are the TX rates of mN and mO, KN and KO

represent the TL rates of N and O, and δN and δO are the
degradation rate constants of mN and mO, respectively.
Furthermore, γN and γO represent the degradation rate
constants of N and O and, as a consequence, the ratios
Ki

N

γN
and Kj

O

γO
represent the SS protein level resulting from

each promoter configuration.
Fig. 3(b)-(c) show good agreement between the SS

distributions computed numerically and analytically:
there are four major modes (local maximum of the PDF):
one in the “high N - low O” region, one in the “low N -
high O” region and two in the “low N - low O” region.
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Figure 4: Steady state probability distribution of the
uncontrolled PL GRN in the comparable time scale regime.
(a) and (b) show the distribution as obtained from Gillespie
simulation of the system of reactions listed in Table I with the
parameter values given in Table II.

Concerning the comparable time scale parameter
regime, we considered the parameter values listed in
Table II (in particular, we set ε equal to 10−3) and the
results are shown in Fig. 4. Comparison between the
results of the two parameter regimes, shown in Fig. 3 and
4, highlights a difference in the position of the mode in
the “high N - low O” region: in the slow promoter kinetic
regime it is characterized by a higher value of Nanog
(≈190 AU) compared to the PL state in the comparable
time scale case (≈140 AU).

Referring to Fig.2, it is possible to notice that, com-
pared to the deterministic results, in both analyzed
parameter regimes the number of the major modes (four)
is higher than the number of the stable SSs in the
deterministic model (three). In particular:
• as in the deterministic analysis, there is a mode

in the “low N - high O” region corresponding to
the PE state and a mode in the “high N - low O”
region corresponding to the PL state. However, their
position is slightly changed compared to the stable
SS obtained through the deterministic study.

• differently from the deterministic analysis, in the
“low N - low O” region there are two modes very
close to each other, instead of one stable SS.

IV. REPROGRAMMING APPROACHES

In this section, we compare the SS probability dis-
tribution of the controlled PL GRN with OL and CL
control. The objective of the control is to obtain a uni-
modal SS probability distribution with peak sufficiently
close to the PL state.

A. OL control: prefixed overexpression reprogramming
approach

In an OL control, i.e., the approach used by the
standard iPSC reprogramming protocol, the production
rate of key TFs (Nanog and Oct4 for our model) is
artificially increased [3]. This reprogramming approach
can be realized by the introduction of the additional

reactions listed in Table III to the reaction system shown
in Table I [3].

R(j) Reaction Prop.Func.(aj) R(j) Reaction Prop.Func.(aj)

25 0 u2−−→ O a1f = u2 26 0 u1−−→ N a13f = u1

Table III: OL control reactions

In order to determine the outcome of this strategy, we
again implemented the reactions through the Gillespie
algorithm with increasing values of u1 and u2. Results
under the slow promoter kinetic assumption are shown in
Fig. 5. As u1 and u2 increase, the stationary distribution
“shifts” towards higher copy number of the overex-
pressed TF and the peak of the mode corresponding to
the maximal expression becomes higher to the detriment
of the peak height of the modes characterized by a lower
protein expression. In more detail, increasing u2, the
stationary distribution shifts towards higher copy number
of Oct4, thus the system cannot be reprogrammed to
PL state because it is characterized by a lower copy
number of Oct4. Increasing u1, the stationary distribution
shifts towards higher copy number of Nanog and then, in
theory, we could obtain a unimodal distribution near PL,
which is characterized by Nanog ≈ 190 AU. However,
gradually varying the inputs, we were unable to find a
unimodal stationary PDF. For example, the case where
u1 = 1.5, shown in Fig. 5(a), is still multimodal. Then,
for higher values of u1, the distribution will continue
shifting and, even if we obtained a unimodal distribution,
the unique mode would be far from PL. From these find-
ings we can conclude that we do not obtain a unimodal
distribution near PL for prefixed overexpression of either
one or both TFs.

In order to gain insight on the effects of prefixed
overexpression on the shape of the SS probability dis-
tribution, we explicitly write this distribution using the
method explained in Section 3. Specifically, prefixed
overexpression implies that the protein production rate
constants Ki

N and Kj
O in Eq. (8) should be increased

by adding u1 and u2, respectively. Hence, formula (8)
becomes

π =

4∑
i=0

3∑
j=0

ρuijP(N,O;
(Ki

N + u1)

γN
,

(Kj
O + u2)

γO
), (9)

where {ρuij} are the weighting coefficients with the mod-
ified TFs production rates. Analyzing the Poisson distri-
butions, the modified constants Ki

N + u1 and Kj
O + u2,

higher than Ki
N and Kj

O in Eq. (8), lead to higher
values of the Poisson distributions’ mean and then to
a SS probability distribution “shifted” towards higher
copy number. Furthermore, Fig. 5(b) illustrates that, as
u1 or u2 grow, the ρuij corresponding to the promoter’s
configuration leading to maximal TF expression becomes
larger, while all the other ρuij become smaller. This
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Figure 5: Constant overexpression results in the slow promoter kinetics regime:(a) shows the distribution as obtained from
Gillespie simulation of the system of reactions listed in Tables I and III with the parameter values given in Table II. (b) is the
steady state probability distribution analytically computed through Formula (9). The values of u1 and u2 that we have set are
written on the top of each graph.

implies that we do not achive a unimodal PDF near PL
state, consistently with the results obtained through SSA.

Concerning the comparable time scale regime, the
obtained results show accordance to those obtained with
slow promoter kinetics.

B. CL control: feedback overexpression through a syn-
thetic genetic controller circuit

The absence of guarantees of success with the OL
control approach led a novel CL feedback control re-
programming approach [1]. Within this approach, the
input is adjusted based on the difference between the
current state and the desired one, as encoded by the
TFs concentrations. Referring to the deterministic model
in equations (1), this feedback overexpression translates
into an input of the form ui = Gi(m

∗
i −mi) where Gi

is a non-negative constant and m∗i is the mRNA desired
value (i.e., the concentration of the TF’s mRNA found
in the PL state). Letting x1 represent [Nanog] and x2

[Oct4], the model becomes

ṁi = Hi(x)− δimi +Gi(m
∗
i −mi),

ẋi = kimi − γixi,
(10)

in which i = 1, 2. If Gi is sufficiently large (that, in
practice, means infecting the cells with sufficiently large
virus copy number), ṁi ≈ Gi(m

∗
i − mi) and, at SS,

mi = m∗i : the unique SS of the system will be the

desired one, that is kim
∗
i

γi
=: x∗i [1]. To implement

this feedback strategy, a genetic circuit regulating the
overexpression and degradation of the mi of the species
xi simultaneously has been proposed [1]. Fig. 6 shows
the implementation of this circuit: the overexpression is
obtained through inducible TX of the TF xi through
inducer Ii,1 and the mi degradation is obtained by using
a small interfering RNA (siRNA) si, RNA molecules
that bind and degrade mRNA [25]. The si transcript is
induced by inducer Ii,2 on the same DNA DCi.

Considering a one-step enzymatic reaction for the mi

degradation (0
DCihi,2(Ii,2)−−−−−−−−→ si;mi+si

ksi−−→ si; si
βi−→ 0,

where ksi is the catalytic rate constant and βi is the
diluition rate constant), the ODE model of our system
becomes

ṡi = DCihi,2(Ii,2)− βisi
ṁi = Hi(x)− δimi +DCihi,1(Ii,1)− ksisimi,

ẋi = kimi − γixi.
(11)

When si reaches the equilibrium (s∗i =
DCihi,2(Ii,2)

βi
),

the ODE describing the evolution of mi becomes ṁi =
Hi(x) − δimi + DCihi,1(Ii,1) − ksis∗imi and, defining
Gi =

DCiksihi,2(Ii,2)
βi

and m∗i =
βihi,1(Ii,1)
ksihi,2(Ii,2) , the system

can be re-written as follows:
ṁi = Hi(x)− δimi +Gi(m

∗
i −mi),

ẋi = kimi − γixi.
(12)
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I

Figure 6: CL control reprogramming approach implemen-
tation. The overexpression is regulated by the inducer Ii,1
and the siRNA-based degradation is regulated by Ii,2. The
endogenous mRNA is produced with a rate given by the Hill
function Hi(x). The synthetic mRNA is produced with a rate
equal to Dhi,1(Ii,1) where D is the DNA concentration and
hi,1 is the function representing how the inducers activate the
genes [1].

R(j) Reaction Prop.Func.(aj)

25 DCO
h(IO,1)−−−−−→ DCO + mO a25 = h(IO,1)DCO

26 DCO
h(IO,2)−−−−−→ DCO + sO a26 = h(IO,2)DCO

27f mO + sO
aSO−−−→ cO a27f = aSOmOsO

Ω

27r cO
dSO−−→ mO + sO a27r = dSOcO

28 cO
kSO−−→ sO a28 = kSOcO

29 sO
βO−−→ 0 a29 = βOsO

30 CO
βO−−→ 0 a30 = βOCO

31 DCN
h(IN,1)−−−−−→ DCN + mN a31 = h(IN,1)Dcn

32 DCN
h(IN,2)−−−−−→ DCN + sN a32 = h(IN,2)Dcn

33f mN + sN
aSN−−−→ cN a33f = aSNmNsN

Ω

33r cN
dSN−−−→ mN + sN a33r = dSNcN

34 cN
kSN−−−→ sN a34 = kSNcN

35 sN
βN−−→ 0 a35 = βNsN

36 CN
βN−−→ 0 a36 = βNCN

Table IV: CL control reactions

As described above, if Gi is large enough, the unique
SS is the desired one. It is possible to notice that the
gain Gi is directly proportional to DCi, and Ii,1 is tuned
on the basis of the stable SS (N∗, O∗) that we want to
obtain with the controller. As it is explained in detail in

Figure 7: Feedback overexpression results in the slow
promoter kinetic regime. The distribution is obtained from
SSA simulation of the system of reactions listed in Tables I
and IV with the parameter values given in Table II.

[1], this still holds if we have a more realistic two-step
enzymatic reaction for the mi degradation. Then, the
reactions to add to the ones in Table I to form the CL
system are listed in Table IV [1]. In particular, in the
two-step enzymatic reaction for the mRNA degradation
(reactions 27, 28, 33, 34 in Table IV), cN and cO
are the intermediate complexes generated during the
degradation, and DCN and DCO represent the DNA
where the synthetic circuit is encoded.

We first analyzed the performance of the controller
in the slow promoter kinetic parameter regime: the SSA
was implemented with parameters given in Table II and
the results are shown in Fig. 7. They highlight that the
feedback overexpression approach allows us to obtain a
unimodal PDF for the CL system with the peak near the
desired state (i.e., PL), meeting the prefixed objective.

The reason why this feedback law is theoretically
guaranteed to result in a unimodal distribution for suf-
ficiently large gain Gi can be explained by analytically
calculating the SS PDF with the formula (8), introduced
in Section 3, for the CL approach. To provide a sim-
ple formula that can be easily inspected, we consider
enhanced degradation of the protein (instead of the
mRNA) and we assume that it occurs through a one-
step enzymatic reaction. Then, the formula (8) for the
CL feedback system is modified by adding the following
reactions:

0
G2O

∗
−−−−→ O, 0

DC2h2,2(I2,2)−−−−−−−−−→ S2;S2 +O
ks2−−→ S2, S2

β2−→ 0,

0
G1N

∗
−−−−→ N, 0

DC1h1,2(I1,2)−−−−−−−−−→ S1;S1 +N
kS1−−→ S1, S1

β1−→ 0,

where Gi (with i = 1, 2) is defined as DCiksihi,2(Ii,2)
βi

and S1 and S2 are the proteases that degradate N and
O, respectively. These reactions are equivalent to the
following ones:

0
G2O

∗
−−−−→ O,O

G2−−→ 0; 0
G1N

∗
−−−−→ N,N

G1−−→ 0,
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that represent the overexpression and degradation of O
and N applied through this control strategy. It means
that the TFs espression rates Ki

N and Kj
O increase by

G1N
∗ and G2O

∗, and the degradation rates γN and γO
increase by G1 and G2, respectively. Hence, Eq. (8) takes
the form

π =

4∑
i=0

3∑
j=0

ρijP(N,O;
(Ki

N +G1N
∗)

γN +G1
,

(Kj
O +G2O

∗)

γO +G2
),

(13)
in which, when G1 and G2 are sufficiently large, we ob-
tain that (Ki

N+G1N
∗)

γN+G1
≈ N∗ and (Kj

O+G2O
∗)

γO+G2
≈ O∗. As a

consequence, all the peaks coincide and are located at the
desired location (N∗, O∗). The computational results,
shown in Fig. 7, are in agreement with these analytical
results. In fact in both cases a feedback overexpression
leads to a stationary distribution characterized by a
unique mode (i.e., the target mode).Then, these results
demonstrate that the feedback overexpression control law
adopted in [1] performs as desired even in the presence
of significant stochastic effects, such as those deriving
from slow promoter kinetcs, small volume and low copy
number.

Concerning the comparable time scale parameter
regime, the obtained results are very similar to the ones
obtained for the slow promoter kinetics regime.

V. CONCLUSIONS

In this work, a stochastic model for iPSC reprogram-
ming has been considered through the CME. This model
takes into account the stochastic effects on both the PL
GRN and the feedback controller circuit, as stemming
from low molecule counts and slow promoter kinetics.
Specifically, we conducted numerical simulations for the
CME of both OL and CL systems through the SSA. Two
parameter regimes were analyzed and simulation outputs
compared. The first regime (i.e., the reversible binding
dynamics is much slower than TX), for which analytical
results are also possible and demonstrate that, despite
the controller is stochastic and the PL GRN operates in
regimes where stochastic behavior cannot be neglected,
the CL approach still works, allowing us to obtain a
unimodal PDF near PL. For the second regime where the
reversible binding dynamics is comparable to TX, only
computational simulations were performed, which show
accordance with the results of the first regime. Future
work will address the experimental implementation of
the controller.
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