
Chapter 22

Examples of Computation of Exact Moment

Dynamics for Chemical Reaction Networks

Eduardo D. Sontag

Abstract The study of stochastic biomolecular networks is a key part of systems

biology, as such networks play a central role in engineered synthetic biology con-

structs as well as in naturally occurring cells. This expository paper reviews in a

unified way a pair of recent approaches to the finite computation of statistics for

chemical reaction networks.

22.1 Introduction

The study of biochemical networks is of great interest not only for the understand-

ing of natural biological systems, but also in the engineering design of biological

control systems, and specifically in the field of synthetic biology. Chemical systems

are inherently stochastic, as reactions depend on thermally induced random effects.

For large systems, deterministic mean-field models are appropriate, but such models

cannot account for random fluctuations, and stochastic models, and specifically the

Chemical Master Equation (CME), a discrete-space continuous-time Markov process

that describes stochastic chemical kinetics, are required for a more accurate descrip-

tion. Tools from dynamical systems and from control theory play key roles in the

analysis of the CME. The CME is typically an infinite-dimensional linear differential

equation, and even its steady-state solutions are very difficult to compute in closed

form. Various techniques, typically moment closure tools based on the“mass fluctu-

ation kinetics” and “fluctuation-dissipation” ideas are used to approximate solutions

or moments [5, 10, 11, 14]. In this expository paper, we first introduce the setup,

and then review in a unified way results for two types of stochastic chemical reac-

tion systems for which moments can be effectively computed: feedforward networks

(FFN), treated in [12], and complex balanced networks (CBN), treated in [13], and

provide several worked examples.
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22.2 Preliminaries

We start by reviewing standard concepts regarding master equations for biochemical

networks, see for instance [11].

Chemical Reaction Networks. Chemical reaction networks involve interactions

among a finite set of species S = {Si , i = 1, 2, . . . n} where one thinks of the Si ’s

as counting the numbers of molecules of a certain type (or individuals in an ecological

model, or cells in a cell population model): Si (t) = ki = number of units of species

i at time t . In stochastic models, one thinks of these as random variables, which

interact with each other. The complete vector S = (S1, . . . , Sn)
′ is called the state

of the system at time t , and it is probabilistically described as a Markov stochastic

process which is indexed by time t ≥ 0 and takes values in Zn
≥0. Thus, S(t) is a

Zn
≥0-valued random variable, for each t ≥ 0. (Abusing notation, we also write S(t)

to represent an outcome of this random variable on a realization of the process.)

We will denote pk(t) = P [S(t) = k] for each k ∈ Zn
≥0. Then p(t) = (pk)k∈Z

n
≥0

is

the discrete probability density (also called the “probability mass function”) of S(t).

To describe the Markov process, one needs to formally introduce chemical reaction

networks.

A chemical reaction network is a finite set R = {R j , j = 1, 2, . . . , m} of formal

transformations or reactions

R j :

n∑

i=1

ai j Si −→

n∑

i=1

bi j Si , j ∈ {1, 2, . . . , m} (22.1)

among species, together with a set of m functions ρ j : Zn
≥0 → R≥0, j = 1, . . . , m,

with ρ j (0) = 0, the propensity functions for the respective reactions R j . The coef-

ficients ai j and bi j are nonnegative integers, the stoichiometry coefficients, and the

sums are understood informally, indicating combinations of elements. The intuitive

interpretation is that ρ j (S1, . . . , Sn)dt is the probability that reaction R j takes place,

in a short interval of length dt , provided that the complete state was S = (S1, . . . , Sn)

at the beginning of the interval. In principle, the propensities can be quite arbitrary

functions, but we will focus on mass-action kinetics, for which the functions ρ j are

polynomials whose degree is the sum of the ai j ’s in the respective reaction. Before

discussing propensities, we introduce some more notations and terminology.

The linear combinations
∑n

i=1 ai j Si and
∑n

i=1 bi j Si appearing in the m reactions

are the complexes involved in the reactions. For each reaction R j , we collect the

coefficients appearing on its left-hand side and on its right-hand side into two vec-

tors, respectively: S(R j ) = a j := (a1 j , . . . , anj )
′ and T(R j ) = b j := (b1 j , . . . , bnj )

′

(prime indicates transpose). We call S, T : R → C the source and target functions,

where C ⊆ Zn
≥0 is the set of all vectors

{
a j , b j , j = 1 . . . m

}
. We identify complexes

with elements of C . The reactants Si of the reaction R j are those species appearing

with a nonzero coefficient, ai j �= 0 in its left-hand side and the products Si of reaction

R j are those species appearing with a nonzero coefficient bi j �= 0 in its right-hand

side.
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For every vector of nonnegative integers v = (v1, . . . , vn) ∈ Zn
≥0, let us write the

sum of its entries as ⊕v := v1 + · · · + vn . In particular, for each j ∈ {1, . . . , m}, we

define the order of the reaction R j as ⊕a j :=
∑n

i=1 ai j , which is the total number

of units of all species participating in the reaction R j .

The n × m stoichiometry matrix Γ = {γi j } is defined as the matrix whose entries

are defined as follows: γi j := bi j − ai j , i = 1, . . . , n, j = 1, . . . , m . The integer

γi j counts the net change (positive or negative) in the number of units of species Si

each time that the reaction R j takes place. We will denote by γ j the j th column of

Γ . With these notations, γ j = b j − a j , j = 1, . . . , m. We will assume that γ j �= 0

for all j (each reaction changes at least some species).

For example, suppose that n = 4, m = 2, and the reactions are R1 : S1 + S2 →

S3 + S4 , R2 : 2S1 + S3 → S2 which have orders 1 + 1 = 2 and 2 + 1 = 3, respec-

tively. The set C has four elements, which list the coefficients of the species partici-

pating in the reactions: C = {(1, 1, 0, 0)′, (0, 0, 1, 1)′, (2, 0, 1, 0)′, (0, 1, 0, 0)′} with

S(R1) = a1 = (1, 1, 0, 0)′, S(R2) = a2 = (2, 0, 1, 0)′, T(R1) = b1 = (0, 0, 1, 1)′,

T(R1) = b2 = (0, 1, 0, 0)′ andγ1 = (−1,−1, 1, 1)′,γ2 = (−2, 1,−1, 0)′. The reac-

tants of R1 are S1 and S2, the reactants of R2 are S1 and S3, the products of R1 are

S3 and S4, the only product of R2 is S2, and the stoichiometry matrix is (using

MATLAB-like notation, listing row by row): Γ = [−1,−2;−1, 1; 1,−1; 1, 0].

It is sometimes convenient to write
∑n

i=1 ai j Si

ρ j (S)

−−→
∑n

i=1 bi j Si to show that the

propensity ρ j is associated to the reaction j , and to combine two reactions R j and Rk

that are the reverse of each other (complexes are transposed): S(R j ) = T(Rk) and

S(Rk) = T(R j ), using double arrows:
∑n

i=1 ai j Si

ρ j (S)

−−⇀↽−−
ρk (S)

∑n
i=1 bi j Si . When propen-

sities are given by mass-action kinetics, as discussed below, one simply writes on

the arrows the kinetic constants instead of the full form of the kinetics.

Chemical Master Equation. A Chemical Master Equation (CME), which is the

differential form of the Chapman–Kolmogorov forward equation, is a system of

linear differential equations that describes the time evolution of the joint probability

distribution of the Si (t)’s:

dpk

dt
=

m∑

j=1

ρ j (k − γ j ) pk−γ j
−

m∑

j=1

ρ j (k) pk , k ∈ Zn
≥0 (22.2)

where, for notational simplicity, we omitted the time argument “t” from p, and

the function ρ j has the property that ρ j (k − γ j ) = 0 unless k ≥ γ j (coordinatewise

inequality). There is one equation for each k ∈ Zn
≥0, so this is an infinite system of

linked equations. When discussing the CME, we will assume that an initial proba-

bility vector p(0) has been specified, and that there is a unique solution of (22.2)

defined for all t ≥ 0. (See [9] for existence and uniqueness results.) A different CME

results for each choice of propensity functions, a choice that is dictated by physical

chemistry considerations. The most commonly used propensity functions, and the
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ones best-justified from elementary physical principles, are ideal mass-action kinet-

ics propensities, defined as follows (see [4]), proportional to the number of ways in

which species can combine to form the j th source complex:

ρ j (k) = κ j

n∏

i=1

(
ki

ai j

)
H (k − a j ) j = 1, . . . , m. (22.3)

where, for any scalar or vector, we denote H (u) = 1 if u ≥ 0 (coordinatewise) and

H (u) = 0 otherwise. In other words, the expression can only be nonzero provided

that ki ≥ ai j for all i = 1, . . . , n (and thus the combinatorial coefficients are well-

defined). Observe that the expression in the right-hand side makes sense even if k � 0,

in the following sense. In that case, ki < 0 for some index i , so the factorial is not well-

defined, but on the other hand, ki − ai j ≤ ki < 0 implies that H (k − a j ) = 0. So

ρ j (k) can be thought of as defined by this formula for all k ∈ Zn , even if some entries

of k are negative, but is zero unless k ≥ 0, and the combinatorial coefficients can be

arbitrarily defined for k � 0. (In particular, ρ j (k − γ j ) = 0 unless k ≥ γ j in (22.2).)

The m nonnegative “kinetic constants” are arbitrary, and they represent quantities

related to the volume, shapes of the reactants, chemical, and physical information,

and temperature. The model described here assumes that temperature and volume

are constant, and that the system is well-mixed (no spatial heterogeneity).

Derivatives of Moments Expressed as Linear Combinations of Moments. Notice

that ρ j (k) can be expanded into a polynomial in which each variable ki has an

exponent less or equal to ai j . In other words, ρ j (k) =
∑

c j ≤a j
κc j

kc j (“≤” is under-

stood coordinatewise, and by definition kc j = k
c1 j

1 . . . k
cnj

n and r0 = 1 for all integers),

for suitably redefined coefficients κc j
’s. Suppose given a function M : Zn

≥0 → R
(to be taken as a monomial when computing moments). The expectation of the

random variable M(S) is by definition E [M(S(t))] =
∑

k∈Z
n
≥0

pk(t) M(k) , since

pk(t) = P [S(t) = k]. Let us define, for any γ ∈ Zn , the new function ∆γ M given

by (∆γ M)(k) := M(k + γ ) − M(k) . With these notations,

d

dt
E [M(S(t))] =

m∑

j=1

E
[
ρ j (S(t))∆γ j

M(S(t))
]

(22.4)

(see [11] for more details). We next specialize to a monomial function: M(k) =

ku = k
u1

1 k
u2

2 . . . kun
n where u ∈ Zn

≥0. There results (∆γ j
M)(k) =

∑
ν∈I (u, j) dνkν for

appropriate coefficients dν , where

I (u, j) :=

{
ν ∈ Zn

≥0

∣∣∣∣∣
ν = u − µ, u ≥ µ �= 0

µi = 0 for each i such that γi j = 0

}
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(inequalities “≥” in Zn
≥0 are understood coordinatewise). Thus, for (22.3):

d

dt
E

[
S(t)u

]
=

m∑

j=1

∑

c j ≤a j

∑

ν∈I (u, j)

dνκc j
E

[
S(t)ν+c j

]
. (22.5)

In other words, we can recursively express the derivative of the moment of order

u as a linear combination of other moments. This results in an infinite set of cou-

pled linear ordinary differential equations, so it is natural to ask whether, for given

a particular moment or order u of interest, there is a finite set of moments, includ-

ing the desired one, that satisfies a finite set of differential equations. This ques-

tion can be reformulated combinatorially, as follows. For each multi-index u ∈ Zn
≥0,

let us define R0(u) = {u}, R1(u) :=
{
ν + c j , 1 ≤ j ≤ m, c j ≤ a j , ν ∈ I (u, j)

}
,

and, more generally, for any ℓ ≥ 1, Rℓ+1(u) := R1(Rℓ(u)) where, for any set U ,

Rℓ(U ) :=
⋃

u∈U Rℓ(u). Finally, we set R(u) :=
⋃∞

i=0 Ri (u). Each set Rℓ(u) is

finite, but the cardinality #(R(u))may be infinite. It is finite if and only if there is some

L ≥ 0 such that R(u) =
⋃L

i=0 Ri (u), or equivalently RL+1(u) ⊆
⋃L

i=0 Ri (u).

Equation (22.5) says that the derivative of the u-th moment can be expressed

as a linear combination of the moments in the set R1(u). The derivatives of these

moments, in turn, can be expressed in terms of the moments in the set R1(u′), for

each u′ ∈ R1(u), i.e. in terms of moments in the set R2(u). Iterating, we have the

following: “Finite reachability implies linear moment closure” observation:

Lemma. Suppose N := #(R(u)) < ∞, and R(u) = {u = u1, . . . , uN }. Then,

with x(t) := (E [Su1(t)] , . . . , E [SuN (t)])′, there is an A ∈ RN×N so that ẋ(t) =

Ax(t), t ≥ 0.

A classical case is when all reactions have order 0 or 1, i.e., ⊕a j ∈ {0, 1}. Since

µ �= 0 in the definition of I (u, j), it follows that ⊕a j ≤ ⊕µ for every index j .

Therefore, ⊕(ν + a j ) = ⊕u + ⊕a j − ⊕µ ≤ ⊕u for all u, and the same holds for

ν + c j if c j ≤ a j . So all elements in R(u) have degree ≤ ⊕u, and thus #(R(u)) <

∞. A more general case is as follows.

22.3 Feedforward Networks

A chemical network is of feedforward type (FFN) if one can partition its n species

Si , i ∈ {1, 2, . . . , n} into p layers S1, . . . , Sp and there are a total of m ′ = m + d reac-

tions, where d of the reactions are “pure degradation” (or “dilution”) reactions D j :

Si j
→ 0, j ∈ {1, . . . , d} and the additional m reactions R j , j ∈ {1, 2, . . . , m} can be

partitioned into p ≥ 1 layers R1, . . . , Rp in such a manner that, in the each reaction

layer Rπ there may be any number of order-zero or order-one reactions involv-

ing species in layer π , but every higher order reaction at a layer π > 1 must have

the form: ai1 j Si1
+ · · · aiq j Siq

→ ai1 j Si1
+ · · · aiq j Siq

+ biq+1 j Siq+1
+ · · · biq+q′ j Siq+q′ ,

where all the species Si1
, . . . , Siq

belong to layers having indices < π , and the species

Siq+1
, . . . , Siq+q′ are in layer π . In other words, multimers of species in “previous”
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layers can “catalyze” the production of species in the given layer, but are not affected

by these reactions. This can be summarized by saying that for reactions at any given

layer π , the only species that appear as reactants in nonlinear reactions are those in

layers < π and the only ones that can change are those in layer π .

A more formal way to state the requirements is as follows. The reactions R j that

belong to the first layer R1 are all of order-zero or one, i.e. they have ⊕a j ∈ {0, 1}

(this first layer might model several independent separate chemical subnetworks; we

collect them all as one larger network), and

if R j ∈ Rπ :

{
ai j �= 0 and ⊕ a j > 1 ⇒ Si ∈

⋃
1≤s<π Sπ

γi j �= 0 ⇒ Si ∈ Sπ .
(22.6)

FFN’s have the finite reachability property ([12]): given any desired moment u,

there is a linear differential equation ẋ(t) = Ax(t) for a suitable set of N moments

x(t) := (E [Su1(t)] , . . . , E [SuN (t)])′ , which contains the moment u of interest.

Notice that steady-state moments can then be computed by solving Ax = 0. The

proof uses a Lyapunov-like construction. In practice, we simply compute (22.5) start-

ing from the desired moment, then recursively apply the same rule to the moments

appearing on the right-hand side, and so forth until no new moments appear. The

integer N at which the system closes might be very large, but the procedure is guaran-

teed to stop. The last section of the paper [12] explains how certain non-feedforward

networks also lead to moment closure, provided that conservation laws ensure that

variables appearing in nonlinear reactions take only a finite set of possible values.

Steady States of CME. Often, the interest is in long-time behavior, after a transient,

that is to say in the probabilistic steady state of the system: the joint distribution of the

random variables Si = Si (∞) that result in the limit as t → ∞ (provided that such

a limit exists in an appropriate technical sense). This joint distribution is a solution

of the steady-state CME (ssCME), the infinite set of linear equations obtained by

setting the right-hand side of the CME to zero, that is:

m∑

j=1

ρ j (k − γ j ) pk−γ j
=

m∑

j=1

ρ j (k) pk , k ∈ Zn
≥0 (22.7)

with the convention that ρ j (k − γ j ) = 0 unless k ≥ γ j . When substituting mass-

action propensitiesρ j (k) = κ j

∏n
i=1

(
ki

ai j

)
H (k − a j ) the steady-state equation (22.7)

becomes:

m∑

j=1

κ j

n∏

i=1

(
ki − γi j

ai j

)
H (k − b j ) pk−γ j

=

m∑

j=1

κ j

n∏

i=1

(
ki

ai j

)
H (k − a j ) pk

(22.8)
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for all k ∈ Zn
≥0. Equivalently, for all k ∈ Zn

≥0:

m∑

j=1

κ̃ j

n∏

i=1

(
ki − γi j

)
!(

ki − bi j

)
!
H (k − b j ) pk−γ j

=

m∑

j=1

κ̃ j

n∏

i=1

ki !(
ki − ai j

)
!
H (k − a j ) pk

(22.9)

when introducing new constants κ̃ j := κ j/
∏n

i=1

(
ai j !

)
. Writing λk := λ

k1

1 . . . λkn
n

and k! := k1! . . . kn! for each k = (k1, . . . , kn) ∈ Zn
≥0 and λ = (λ1, . . . , λn) ∈ Rn

>0,

(22.9) is:

m∑

j=1

κ̃ j

(
k − γ j

)
!(

k − b j

)
!
H (k − b j ) pk−γ j

=

m∑

j=1

κ̃ j

k!(
k − a j

)
!
H (k − a j ) pk , k ∈ Zn

≥0 (22.10)

Since (22.10) is a linear equation on the
{

pk, k ∈ Zn
≥0

}
, any rescaling pk’s will satisfy

the same equation; for probability densities, one normalizes to a unit sum.

If there are conservation laws satisfied by the system then steady-state solu-

tions will not be unique, and the equation Ax = 0 must be supplemented by a

set of linear constraints that uniquely specify the solution. For example, consider

a reversible reaction S1

κ1

−⇀↽−
κ2

S2 (propensities are mass-action, ρi (S1, S2) = κi Si ).

The first moments (means) satisfy ẋ1 = κ2x2 − κ1x1 and ẋ2 = κ1x1 − κ2x2. Any

vector (ξ̄1, ξ̄2) with κ1ξ̄1 = κ2ξ̄2 is a steady state of these equations. However, the

sum of the numbers of molecules S1 and S2 is conserved in the reactions. Given a

particular total number, β, the differential equations can be reduced to just one equa-

tion, say for x1: ẋ1 = κ2(β − x1) − κ1x1 = −(κ1 + κ2)x1 + κ2β, which has the affine

form ẋ = Ax + b. At steady state, we have the unique solution ξ̄1 = βκ2/(κ1 + κ2),

ξ̄2 = βκ1/(κ1 + κ2) obtained by imposing the constraint ξ̄1 + ξ̄2 = β. It can easily

be proved (see e.g. [13]) that at steady state, S1 is a binomial random variable B(β, p)

with p = 1
1+µ

, where µ = κ1/κ2. We later discuss further conservation laws.

A Worked Example. For networks with only zero and first-order reactions, which

are feedforward, it is well known that one may compute all moments in closed form.

For example, start with a reversible reaction S1

κ
−⇀↽−
δ

S2 with mass-action propensities,

thinking of S1 as the active form of a certain gene and S2 as the inactive form of this

gene. Transcription and translation are summarized, for simplicity, as one reaction

S1

ρ
−→ S1 + S3 and degradation or dilution of the gene product S3 is a linear reaction

S3

η
−→ ∅ . The stoichiometry matrix is Γ = [−1, 1, 0, 0; 1,−1, 0, 0; 0, 0, 1,−1].

Suppose, we are interested in the mean and variance of S3 subject to the conserva-

tion law S1 + S2 = β, for some fixed positive integer β. A linear differential equation

for these second-order moments: M = (E[S1], E[S2
1 ], E[S1S3], E[S3], E[S2

3 ])′ is

Ṁ = AM + b, where A = [−δ − κ, 0, 0, 0, 0; κ − δ + 2 δ β,−2 δ − 2 κ, 0, 0, 0;

0, ρ,−δ − η − κ, δ β, 0; ρ, 0, 0,−η, 0; ρ, 0, 2 ρ, η,−2 η] and b = [δ β; δ β; 0;

0; 0]. One can then solve AM + b = 0 to obtain steady state moments.
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A Simple Nonlinear Example. We consider a feedforward system with three species;

S1 catalyzes production S2, and S1 and S2 are both needed to produce S3: 0
κ1
−→ S1

δ1
−→

0, S1
κ2
−→ S1 + S2, S2

δ2
−→ 0, S1 + S2

κ3
−→ S1 + S2 + S3, S3

δ3
−→ 0. Computing E[S3], the

mean of S3, requires a minimal differential equation of order 5, for the moments M =

(E[S3], E[S1S2], E[S2], E[S2
1 ], E[S1])

′ and has form Ṁ = AM + b, where A =

[−δ2, κ3, 0, 0, 0; 0,−δ1 − δ2, κ1, κ2, 0; 0, 0,−δ2, 0, κ2; 0, 0, 0,−2 δ1, 2 κ1 + δ1; 0,

0, 0, 0,−δ1] and b = [0; 0; 0; κ1; κ1],

22.4 Poisson-Like Solutions and Complex Balanced

Networks

We observe that for any given positive vector λ̄ ∈ Rn
>0, the set of numbers

Π =
{

pk = λ̄k/k! , k ∈ Zn
≥0

}
(22.11)

satisfies the ssCME equations (22.10) if and only if

m∑

j=1

κ̃ j

λ̄k−γ j

(
k − b j

)
!
H (k − b j ) =

m∑

j=1

κ̃ j

λ̄k

(
k − a j

)
!
H (k − a j ) , k ∈ Zn

≥0 ,

(22.12)

Rewriting this as:

∑

c∈C

∑

{ j |b j =c}

κ̃ j

λ̄k−γ j

(
k − b j

)
!
H (k − b j ) =

∑

c∈C

∑

{ j |a j =c}

κ̃ j

λ̄k

(k − c)!
H (k − a j ), k ∈ Zn

≥0,

(22.13)

a sufficient condition for (22.11) to be a solution is that

∑

{ j |b j =c}

κ̃ j

λ̄k−γ j

(k − c)!
H (k − b j ) =

∑

{ j |a j =c}

κ̃ j

λ̄k

(k − c)!
H (k − a j ) , k ∈ Zn

≥0

for each individual complex c ∈ C , or, equivalently,

H (k − c)

(k − c)!

∑

{ j |b j =c}

κ̃ j λ̄k−γ j =
H (k − c)

(k − c)!

∑

{ j |a j =c}

κ̃ j λ̄k , k ∈ Zn
≥0 .

A sufficient condition for this to hold is that, for all complexes:

∑

{ j |b j =c}

κ̃ j λ̄a j =
∑

{ j |a j =c}

κ̃ j λ̄a j , k ∈ Zn
≥0 (22.14)



22 Examples of Computation of Exact Moment Dynamics … 303

Fig. 22.1 Complex

balancing: outflows and

inflows must balance at each

complex c. The left-hand

side of (22.14) is

κ̃3λ̄
a3 + κ̃4λ̄

a4 and the

right-hand side is

κ̃1λ̄
a1 + κ̃2λ̄

a2

(conversely, this last condition is necessary for all complexes for which k ≥ c). One

can write “λ̄c” and bring this term outside of the sum, in the right-hand side.

When property (22.14) holds for every complex, one says that λ̄ is a complex

balanced steady state of the associated deterministic chemical reaction network.

(That is, the system of differential equations ẋ = Γ Q(x), where Q(x) is a column

vector of size m whose j th entry isρ j (x) and x(t) ∈ Rn
≥0 for all t .) Complex balancing

means that, for each complex, outflows and inflows balance out. This is a Kirschoff

current law (in-flux = out-flux, at each node). See Fig. 22.1.

Foundational results in deterministic chemical network theory were obtained by

Horn, Jackson, and Feinberg ([2, 3]). One of the key theorems is that a sufficient

condition for the existence of a complex balanced steady state is that the network be

weakly reversible and have deficiency zero. The deficiency is computed as nc − ℓ − r ,

where nc is the number of complexes, r is the rank of the matrix Γ , and ℓ is the

number of “linkage classes” (connected components of the reaction graph). Weak

reversibility means that each connected component of the reaction graph must be

strongly connected. One of the most interesting features of this theorem is that no

assumptions need to be made about the kinetic constants. (Of course, the choice

of the vector λ̄ will depend on the kinetic constants.) We refer the reader to the

citations for details on deficiency theory, as well as, of interest in the present context,

several examples discussed in [13]. The theorems for weakly reversible deficiency

zero networks are actually far stronger, and they show that every possible steady state

of the corresponding deterministic network is complex balanced, and that they are

asymptotically stable relative to stoichiometry classes. The connection with ssCME

solutions was a beautiful observation made in [1], but can be traced to the “nonlinear

traffic equations” from queuing theory, described in Kelly’s textbook [7], Chap. 8

(see also [8] for a discussion),

The elements of Π given by formula (22.11) add up to:

∑

k∈Z
n
≥0

pk =

∞∑

k1=0

. . .

∞∑

kn=0

λ̄k
1

k1!
. . .

λ̄k
n

kn!
= Z := eλ̄1 . . . eλ̄n

Thus, normalizing by the total, {pk/Z , k ∈ Zn
≥0} is a probability distribution. How-

ever, because of stoichiometric constraints, solutions are typically not unique, and

general solutions appear as convex combinations of solutions corresponding to invari-

ant subsets of states. A solution with only a finite number of nonzero pk’s will then

have a different normalization factor Z .
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Conservation Laws, Complex Balanced Case. When steady states do not form an

irreducible Markov chain, the solutions of the form (22.11) are not the only solutions

in the complex balanced case. Restrictions to each component of the Markov chain

are also solutions, as are convex combinations of such restrictions. To formalize

this idea, suppose that there is some subset Z0 ⊆ Zn with the following stoichio-

metric invariance property: k ∈ Z0 ⇒ k ± γ j ∈ Z0 for all j = 1, . . . , m. (The same

property is then true for the complement of Z0.) Consider, the set Z := Z0

⋂
Zn

≥0.

For each k ∈ Z , the left-hand side term in Eq. (22.12) either involves an index

k − γ j > 0, and hence, in Z , or it is zero (because k − b j ≥ 0 implies k − γ j ≥ 0)

and so it does not matter that k − γ j /∈ Z . Thus,

pk =
λ̄k

k!
if k ∈ Z , = 0 if k ∈ Zn

≥0 \ Z (22.15)

is also a solution, in the complex balanced case (observe that, for indices in Zn
≥0 \ Z ,

Eq. (22.12) is trivially satisfied, since both sides vanish). So we need to divide

by the sum Z of the elements in (22.15) in order to normalize to a probability

distribution. The restriction to Z will the unique steady-state distribution provided

that the restricted Markov chain has appropriate irreducibility properties.

In particular, suppose that the nullspace of A = (αi j ) ∈ Rm×n includes C (for

example, A could be the orthogonal complement of the “stoichiometric subspace”

spanned by C ), and pick any vector β = (β1, . . . , βq)
′ ∈ Rq . Then Z0 = {k| A k =

β} has the invariance property, and the sum of the elements in (22.15) is:

Z(β1, . . . , βq) =
∑

k1 ,...,kn≥0

A k=β

λ
k1

1

k1!

λ
k2

2

k2!
. . .

λkn
n

kn!

(zero if sum empty). The normalized form of (22.15) has pk = 0 for k ∈ Zn
≥0 \ Z ,

and

pk =
1

Z(β1, . . . , βq)

λ
k1

1

k1!

λ
k2

2

k2!
. . .

λkn
n

kn!
(22.16)

for k ∈ Z . A probabilistic interpretation is as follows. Suppose given n independent

Poisson random variables, Si , i = 1, . . . , n, with parameters λi respectively, so

P [S1 = k1, S2 = k2, . . . , Sn = kn] = e−(λ1+...+λn)
λ

k1

1

k1!

λ
k2

2

k2!
. . .

λkn
n

kn!
(22.17)

for k ≥ 0 (and zero otherwise). Let us introduce the following new random variables:

Y j :=
∑n

i=1 α j i Si , j = 1, . . . , q . Observe that P
[
Y1 = β1, . . . , Ym = βq

]
equals

∑

k1,...,kn≥0

α11k1+...+α1n kn=β1 , ..., αq1k1+...+αqn kn=βq

P [S1 = k1, S2 = k2, . . . , Sn = kn]



22 Examples of Computation of Exact Moment Dynamics … 305

which is e−(λ1+...+λn) Z(β1, . . . , βq) . Therefore, for each k ∈ Z , pk in (22.16) equals

the conditional probability P [S1=k1,S2=k2,...,Sn=kn ]

P [Y1=β1,...,Yq=βq]
, which is the same as

P
[
S1 = k1, S2 = k2, . . . , Sn = kn

∣∣ Y1 = β1, . . . , Yq = βq

]
.

If our interest is in computing this conditional probability, the main effort goes into

computing Z(β1, . . . , βq). The main contribution of the paper [13] was to provide

effective algorithms for the computation of Z(β1, . . . , βq) recursively on the βi ’s. A

package for that purpose, called MVPoisson, was included with that paper.

Conditional moments E[Sr
j

∣∣ Y1 = β1, . . . , Ym = βq ] , r ≥ 1 , including the con-

ditional expectation (when r = 1), as well as centered moments such as the con-

ditional variance, can be computed once that these conditional probabilities are

known. It is convenient for that purpose to first compute the factorial moments.

Recall that, the r th factorial moment E[W (r)] of a random variable W is defined as

the expectation of W !/(W − r)!. For example, when r = 1, E[W (r)] = E[W ], and

for r = 2, E[W (r)] = E[W 2] − E[W ], and thus, the mean and variance of W can be

obtained from these. We denote the conditional factorial moment of Si given Y = β,

as E[S
(r)
j

∣∣ Y ]. It is not difficult to see (Theorem 2 in [13]) that:

E[S
(r)
j

∣∣ Y ] = λr
j ·

Z(β1 − rα1 j , β2 − rα2 j , . . . , βq − rαq j )

Z(β1, . . . , βq)

when all βi − rαi j ≥ 0 and zero otherwise. The paper [13] discusses mixed moments

such as covariances too. For example, for r = 1 we have the conditional mean:

E[S j

∣∣ Y ] = λ j ·
Z(β1 − α1 j , β2 − α2 j , . . . , βq − αq j )

Z(β1, . . . , βq)
(22.18)

when all βi ≥ αi j , and zero otherwise, and for r = 2 the conditional second moment:

E[S2
j

∣∣ Y ] = λ2
j ·

Z(β1 − 2α1 j , β2 − 2α2 j , . . . , βq − 2αq j )

Z(β1, . . . , βq)
+ E[S j

∣∣ Y ]

when all βi ≥ 2αi j , and zero otherwise. We next work out a concrete example.

Worked Example: Simple Binding. Suppose that two molecules of species S1 and

S2 can reversibly combine through a bimolecular reaction to produce a molecule of

species S3: S1 + S2

κ1

−⇀↽−
κ2

S3 . Since the deficiency of this network is nc − ℓ − r =

2 − 1 − 1 = 0 and it is reversible and hence weakly reversible as well, we know

that there is a complex balanced equilibrium (and every equilibrium is complex

balanced). We may pick, for example, λ̄ = (1, 1, K ), where K := κ1/κ2. The count

of S1 molecules goes down by one every time that a reaction takes place, at which

time the count of S3 molecules goes up by one. Thus, the sum of the number of

S1 molecules plus the number of S3 molecules remains constant in time, equal to
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their starting value, which we denote as p. Similarly, the sum of the number of S2

molecules plus the number of S3 molecules remains constant, equal to some number

n. (In the general notations, we have a11 = a13 = 1, a22 = a23 = 1, a12 = a21 = 0,

β1 = p,β2 = n.) In the steady-state limit as t → ∞, these constraints persist. In other

words, all pk should vanish except those corresponding to vectors k = (k1, k2, k3)

such that k1 + k3 = p and k2 + k3 = n. The set consisting of all such vectors is

invariant, so

pk =





λ̄
k1

1

k1!

λ̄
k2

2

k2!

λ̄
k3

3

k3!
if k1 + k3 = p and k2 + k3 = n

0 otherwise

is a solution of the ssCME. In order to obtain a probability density, we must normalize

by the sum Z(p, n) of these pk’s. Because of the two constraints, the sum can be

expressed in terms of just one of the indices, let us say k1. Observe that, since

k + k3 = p and k3 ≥ 0, necessarily k ≤ p. Since k2 = n − k3 = n + k − p must be

nonnegative, we also have the constraint k ≥ max{0, p − n}. So the only nonzero

terms are for k ∈ {max{0, p − n}, . . . , p}. With k3 = p − k, k2 = n − k3 = n + k −

p, we have:

Z(p, n) =

p∑

ℓ=max{0,p−n}

K p−ℓ

ℓ! (n + ℓ − p)! (p − ℓ)!
=

min{p,n}∑

ℓ=0

K ℓ

(p − ℓ)! (n − ℓ)! ℓ!

(22.19)

The second form if the summation makes it obvious that Z(p, n) = Z(n, p).

When n ≥ p, we can also write

Z(p, n) =
1

n!p!

p∑

ℓ=0

n!

(n − p + ℓ)!

(
p

ℓ

)
K p−ℓ (22.20)

which shows the expression as a rational function in which the numerator is a poly-

nomial of degree p on n. This was derived assuming that n ≥ p, and the factorials

in the denominator do not make sense otherwise. However, let us think of each term
n!

(n−p+ℓ)!
as the product n(n − 1) . . . (n − p + ℓ + 1), which may include zero as well

as negative numbers. With this understanding, the formula in (22.20) makes sense

even when n < p. Observe that such a term vanishes for any index ℓ < p − n. Thus,

for n < p, (22.20) reduces to: 1
p!

∑p

ℓ=p−n
1

(n−p+ℓ)!

(
p

ℓ

)
K p−ℓ or equivalently, with a

change of indices ℓ = p − ℓ and then using
(

p

p−ℓ

)
=

(
p

ℓ

)
:

1

p!

n∑

ℓ=0

1

(n − ℓ)!

(
p

p − ℓ

)
K ℓ =

1

p!

n∑

ℓ=0

1

(n − ℓ)!

(
p

ℓ

)
K ℓ =

n∑

ℓ=0

K ℓ

(n − ℓ)!(p − ℓ)!ℓ!
.

In this last form, we have the same expression as the last one in (22.19). In conclu-

sion, provided that we interpret the quotient of combinatorial numbers in (22.20)
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as a product that may be zero, formula (22.20) is valid for all n and p, not

just for n ≥ p. In particular, we have; Z(0, n) = 1
n!

, Z(1, n) = 1
n!

(K n + 1) ,

Z(2, n) = 1
2n!

(
K 2n2 +

(
−K 2 + 2 K

)
n + 1

)
, etc. In terms of the Gauss’s hyper-

geometric function 2F0, we can also write: Z(p, n) = 1
p! n! 2F0(−n,−p; ; K ) . The

recursion on n obtained by using the package MVPoisson from [13] is as follows

(by symmetry, a recursion on p can be found by exchanging n and p):

Z(p, n + 2) =
K

n + 2
Z(p, n) +

−K n + K p − K + 1

n + 2
Z(p, n + 1) .

Now (22.18) gives the conditional mean of the first species, S1 ( j = 1 for this

index, r = 1 for the first moment, and λ1
1 = 11 = 1) as zero if p < 1 or n < 0 and

otherwise

ϕ(p, n) := E[S1

∣∣ S1 + S3 = p, S2 + S3 = n] =
Z(p − 1, n)

Z(p, n)
.

For example, ϕ(1, n) = 1
K n+1

, ϕ(2, n) = 2(K n+1)

K 2n2+(−K 2+2 K)n+1
.

Worked Example: Synthesis and Degradation, and Binding. Suppose molecules

of species S1 can be randomly created and degraded, and they can also reversibly

combine with molecules of S2 through a bimolecular reaction to produce molecules

of species S3: ∅
κ1
−→ S1

κ2
−→ ∅, S1 + S2

κ3

−⇀↽−
κ4

S3. There are nc = 4 complexes: ∅, S1, S1 +

S2, and S3, and ℓ = 2 linkage classes. The stoichiometry matrix Γ = [1,−1,−1, 1;

0, 0,−1, 1; 0, 0, 1,−1] has rank r = 2, so the deficiency of this weakly reversible

network is nc − ℓ − r = 4 − 2 − 2 = 0. Thus, there is a complex balanced equi-

librium (and every equilibrium is complex balanced). We may pick, for example,

λ̄ = (λ, 1, µ), where λ := κ1

κ2
and µ := κ1κ3

κ2κ4
. Notice that, there is only one nontrivial

conserved quantity, S2 + S3 = n, since S1 is not conserved. We have:

Z(n) =
∑

k1,k2 ,k3≥0

k2+k3=n

λ
k1

1

k1!

λ
k2

2

k2!

λ
k3

3

k3!
=

∞∑

k1=0

λk1

k1!

n∑

k2=0

µn−k2

k2!(n − k2)!
=

eλ

n!
(1 + µ)n .

The normalized probability (22.15), for k = (k1, k2, k3) ≥ 0 with k2 + k3 = n, is:

pk = 1
Z(n)

λk1

k1!
1

k2!

µk3

k3!
= n!

eλ(1+µ)n

λk1 µk3

k1!k2!k3!
and as discussed earlier, this is the condi-

tional probability P
[
S1 = k1, S2 = k2, S3 = k3

∣∣ S2 + S3 = n
]
. Using this expres-

sion, we may compute, for example, the conditional marginal distribution of S2:

P
[
S2 = r

∣∣ S2 + S3 = n
]

=

∞∑

k1=0

n!

eλ(1 + µ)n

λk1µ(n−r)

k1!r !(n − r)!
=

(
n

r

)
pr (1 − p)(n−r)
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(where we use p := 1/(1 + µ), so µ =
1−p

p
), which shows this conditional marginal

distribution is a binomial random variable with parameters n and p = κ2κ4

κ2κ4+κ1κ3
.

Worked Example: Competitive Binding. We consider the following example

(using now A, B, . . . for species to simplify notations):

A + B
κB,+

−−⇀↽−−
κB,−

D A + C
κC,+

−−⇀↽−−
κC,−

E

so for the associated deterministic system, the steady states satisfy κB,+ AB = κB,− D

and κC,+ AC = κC,−E , so one such equilibrium is (1, 1, 1, λ, µ) where λ :=
κB,+

κB,−
,

µ :=
κC,+

κC,−
. The following quantities are conserved: A + D + E = n A, B + D = nB ,

C + E = nC and subject to these constraints, one may pick the partition function:

Z(n A, nB, nC ) =
∑

(kA,kB ,kC ,kD ,kE )∈S

1

kA!

1

kB !

1

kC !

λkD

kD!

µkE

kE !

S = {(kA, kB , kC , kD, kE ) ≥ 0 | kA + kD + kE = n A, kB + kD = nB , kC + kE = nC } .

In order to rewrite this function as a double sum, we first show that S is equal to the

following set:

S
′ = {(kA, kB, kC , kD, kE ) | 0 ≤ kD ≤ nB, 0 ≤ kE ≤ min{n A − kD, nC },

kA = n A − (kD + kE ), kB = nB − kD, kC = nC − kE } .

Indeed, suppose that (kA, kB, kC , kD, kE ) ∈ S . Then kD ≥ 0 and from kB + kD =

nB we have that kD = nB − kB ≤ nB . Also, kE ≥ 0, and from kC + kE = nC we

have that kE = nC − kC ≤ nC and from kA + kD + kE = n A we have that kD +

kE = n A − kA ≤ n A and hence, kE ≤ n A − kD , so kE ≤ min{n A − kD, nC }. Thus,

(kA, kB, kC , kD, kE ) ∈ S ′.

Conversely, suppose that (kA, kB, kC , kD, kE ) ∈ S ′. We have that kD and kE are

nonnegative. From kE ≤ n A − kD , it follows that kA = n A − (kD + kE ) ≥ 0, from

kD ≤ nB , it follows kB = nB − kD ≥ 0, and from kE ≤ nC , we have kC = nC −

kE > 0.

Therefore, we may rewrite the partition function as follows (using (i, j) instead

of (kD, kE ) as indices):

Z(n A, nB , nC ) =

nB∑

i=0

λi

(nB − i)! i !

min{n A−i,nC }∑

j=0

µ j

((n A − i) − j)! (nC − j)! j !

=

nB∑

i=0

λi

(nB − i)! i !
Q(n A − i, nC ) =

1

n A!

nB∑

i=0

(
n A

i

)
λi

(nB − i)!
Q̃(n A − i, nC ).
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where

Q(p, n) :=

min{p,n}∑

ℓ=0

µℓ

(p − ℓ)!(n − ℓ)!ℓ!
, Q̃(p, n) := p!Q(p, n) =

min{p,n}∑

ℓ=0

(
p

ℓ

)
µℓ

(n − ℓ)!
.

The sum in Q̃ is numerically better behaved than that in Q when p is large

and n is small. We find that Q is itself the partition function Z(p, n) given by

formula (22.19) for the simpler binding example S1 + S2 −⇀↽− S3 and can also be

written as 1
p! n! 2F0(−p,−n; ; µ) , in terms of 2F0, Gauss’s hypergeometric function.

For example, when nB = 0 or 1, the formula specializes to: Z(n A, 0, nC ) =

Q(n A, nC), Z(n A, 1, nC ) = Q(n A, nC ) + λ Q(n A − 1, nC ) (the first of these is not

surprising, as when nB = 0 the species B can only be zero, so the system reduces to

the previous example, with S1 = A, S2 = C , and S3 = E), and the mean of species

D given the constraints (n A, 1, nC ) is by Eq. (22.18):

E[D | n A, 1, nC ] = λ
Z(n A − 1, 0, nC )

Z(n A, 1, nC )
= λ

Q(n A − 1, nC )

Q(n A, nC ) + λ Q(n A − 1, nC )
.

Using Q̃, we may write, alternatively, Z(n A, 0, nC ) = 1
n A !

Q̃(n A, nC ), Z(n A, 1, nC )

= 1
n A !

(
Q̃(n A, nC ) + λ n A Q̃(n A − 1, nC )

)
and thus, cancelling the n A! terms,

and using that Z(n A − 1, 0, nC ) = n A

n A !
Q̃(n A − 1, nC ), E[D | n A, 1, nC ] =

λ n A Q̃(n A−1,nC )

Q̃(n A,nC )+ λ n A Q̃(n A−1,nC )
, which is far better behaved numerically when n A is large.

We also remark that there is a third-order recursion for Z , obtained by the algorithm

MVPoisson from [13].

In order to conveniently display the recurrences, let us use the following notations.

We will write Z instead of Z(b1, b2, b3), and a notation like Z+···+
i means a shift of

the i th argument by the indicated number of plus signs. For example, Z++
3 means

Z(b1, b2, b3 + 2). There are three recurrences of order three, as follows, for each of

the three arguments: (3 + b1)Z+++
1 = λµZ − (λµb1 − λµb2 − λµb3 + λµ − λ −

µ)Z+
1 − (λb1 − λb2 + µb1 − µb3 + 2 λ + 2 µ − 1)Z++

1 , M(3 + b3)(b2 + 2)Z+++
2

= (λ2 − λµ)Z + (λ2b1 − λ2b2 − λµb1 + 2 λµb2 + λµb3 − λ2 + 3 λµ + λ − µ)

Z+
2 + (λµb1 b2 − λµb2

2 − λµb2 b3 + 2 λµb1 − 4 λµb2 − 2 λµb3 − 4 λµ − λb2 +

2 µb2 − 2 λ + 4 µ)Z++
2 , L(3 + b3)(b3 + 2)Z+++

3 = (−λµ + µ2)Z + (−λµb1 +

λµb2 + 2 λµb3 + µ2b1 − µ2b3 + 3 λµ − µ2 − λ + µ)Z+
3 + (λµb1 b3 − λµb2 b3

− λµb3
2 + 2 λµb1 − 2 λµb2 − 4 λµb3 − 4 λµ + 2 λb3 − µb3 + 4 λ − 2 µ)Z++

3 .

The algorithm provides 27 initial conditions, the values of Z for the triples (1, 1, 1),

(1, 1, 2), (1, 1, 3), …(3, 3, 3) listed in that order. We display them as three matrices,

respectively shown below. The first matrix lists the elements of the form (1, ⋆, ⋆),

the next one (2, ⋆, ⋆), and the last one (3, ⋆, ⋆). In each matrix, elements are listed in

the usual matrix order: (⋆, i, j) is the (i, j)th entry of the matrix.
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


λ + µ + 1 λ
2

+ µ + 1
2

λ
6

+ µ

2
+ 1

6

λ + µ

2
+ 1

2
λ
2

+ µ

2
+ 1

4
λ
6

+ µ

4
+ 1

12
λ
2

+
µ

6
+ 1

6
λ
4

+
µ

6
+ 1

12
λ
12

+
µ

12
+ 1

36







(µ + 1)λ + µ + 1
2

(µ + 1
2
)λ + 1

2
µ2 + µ + 1

4
κ1

1
2
λ2 + (µ + 1)λ + µ

2
+ 1

4
1
4
λ2 + (µ + 1

2
)λ + 1

4
µ2 + µ

2
+ 1

8
κ2

1
2
λ2 + 1

2
(µ + 1)λ + µ

6
+ 1

12
1
4
λ2 + 1

2
(µ + 1

2
)λ + 1

12
µ2 + µ

6
+ 1

24
κ3







1
2
(2µ + 1)λ +

µ

2
+ 1

6
γ1 γ2

1
2
(µ + 1)λ2 + 1

2
(2µ + 1)λ +

µ

4
+ 1

12
β1 β2

1
6
λ3 + 1

2
(µ + 1)λ2 + 1

4
(2µ + 1)λ + µ

12
+ 1

36
α1 α2




where we are using these notations:

κ1 = (
µ

2
+

1

6
)λ +

1

2
µ2 +

µ

2
+

1

12

κ2 =
1

12
λ2 + (

µ

2
+

1

6
)λ +

1

4
µ2 +

µ

4
+

1

24

κ3 =
1

12
λ2 +

1

2
(
µ

2
+

1

6
)λ +

1

12
µ2 +

µ

12
+

1

72

γ1 =
1

2
(µ2 + 2µ +

1

2
)λ +

1

2
µ2 +

µ

2
+

1

12

γ2 =
1

2
(µ2 + µ +

1

6
)λ +

1

6
µ3 +

1

2
µ2 +

µ

4
+

1

36

β1 =
1

2
(µ +

1

2
)λ2 +

1

2
(µ2 + 2µ +

1

2
)λ +

1

4
µ2 +

µ

4
+

1

24

β2 =
1

2
(
µ

2
+

1

6
)λ2 +

1

2
(µ2 + µ +

1

6
)λ +

1

12
µ3 +

1

4
µ2 +

µ

8
+

1

72

α1 =
1

12
λ3 +

1

2
(µ +

1

2
)λ2 +

1

4
(µ2 + 2µ +

1

2
)λ +

1

12
µ2 +

µ

12
+

1

72

α2 =
1

36
λ3 +

1

2
(
µ

2
+

1

6
)λ2 +

1

4
(µ2 + µ +

1

6
)λ +

1

36
µ3 +

1

12
µ2 +

µ

24
+

1

216

so, reading-out entries from the matrices above we have, for example:

Z(1, 1, 1) = λ + µ + 1 , Z(2, 2, 2) = λ2/4 + (µ + 1/2)λ + µ2/4 + µ/2 + 1/8 , Z(3, 2, 3) = β2 .
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We remark that the reduced indices for the sums defining the partition function

can be obtained in a more systematic form, through the use of Smith canonical

forms. Suppose that P is a matrix in Zq×n that represents q conservation laws on

n species. For instance, P = [1, 0, 0, 1, 1; 0, 1, 0, 1, 0; 0, 0, 1, 0, 1] in the compet-

itive binding example. We assume, as in this and other examples, that q ≤ n and

that the matrix P has full row rank q. Under this assumption, the integer matrix P

can be represented in Smith canonical form (see, for example, [6]), meaning that

there exist two unimodular (that is to say, invertible over the ring of integers) matri-

ces U ∈ Zq×q and V ∈ Zn×n so that U PV = [∆ 0], where ∆ = diag (δ1, . . . , δq),

0 is a q × (n − q) matrix of zeroes, and the δi ’s are the elementary divisors of

the matrix P . The elementary divisors are unique up to sign change, there are

formulas that express then in terms of the minors of P (see [6] for details). For

example, for the above example, we have U = I (3 × 3 identity matrix), V =

[1, 0, 0,−1,−1; 0, 1, 0,−1, 0; 0, 0, 1, 0,−1; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1] and δ1 =

δ2 = δ = 3 = 1, so U PV = [I 0]. In general, if we wish to find nonnegative inte-

ger solutions of Ak = b, for a given (nonnegative) integer vector b, we use that

U PV V −1k = Ub, so, using the indices ℓ = V −1k, [∆ 0]ℓ = Ub, which means that

the last n − q indices ℓ are free, and the constraint V ℓ ≥ 0 is imposed to insure

nonnegativity of k. For instance, in the competitive binding example, and recall-

ing that U = I and ∆ = I , the equation [∆ 0]ℓ = Ub gives that ℓ1 = b1, ℓ2 = b2,

ℓ3 = b3, and ℓ4 = i , ℓ5 = j are arbitrary. Thus, we can express the sum as a sum

over the two indices k4 = i and k5 = j , with k1 = b1 − (i + j), k2 = b2 − i , and

k3 = b3 − j . The nonnegativity condition V ℓ ≥ 0, applied with the above matrix V ,

says that these expressions must be nonnegative: which means that the sum can be

reexpressed as a sum over i ≥ 0, j ≥ 0, subject to i ≤ b2, j ≤ b3, and i + j ≤ b1.

This is exactly the same as the set S ′ computed by hand.
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