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Abstract

The primary factor limiting the success of chemotherapy in cancer treatment is the
phenomenon of drug resistance. We have recently introduced a framework for quantifying
the effects of induced and non-induced resistance to cancer chemotherapy [8, 7]. In this
work, we expound on the details relating to an optimal control problem outlined in [7].
The control structure is precisely characterized as a concatenation of bang-bang and path-
constrained arcs via the Pontryagin Maximum Principle and differential Lie techniques.
A structural identifiability analysis is also presented, demonstrating that patient-specific
parameters may be measured and thus utilized in the design of optimal therapies prior to
the commencement of therapy. For completeness, a detailed analysis of existence results
is also included.
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1 Mathematical Modeling of Induced Drug Resistance

We briefly review the model presented in [8] and analyzed in [7]. In that work, we have
constructed a simple dynamical model which describes the evolution of drug resistance through
both drug-independent (e.g. random point mutations, gene amplification) and drug-dependent
(e.g. mutagenicity, epigenetic modifications) mechanisms. To our knowledge, this is the first
theoretical study of the phenomena of drug-induced resistance, which although experimentally
observed remains poorly understood. It is our hope that a mathematical analysis will provide
mechanistic insight and produce a more complete understanding of this process by which cancer
cells inhibit treatment efficacy.

Specifically, we assume that the cancer population is composed of two types of cells: sensi-
tive (S) and resistant (R). For simplicity, the drug is taken as completely ineffective against the
resistant population, while the log-kill hypothesis [25] is assumed for the sensitive cells. Com-
plete resistance is of course unrealistic, but can serve as a reasonable approximation, especially
when toxicity constraints are considered, and hence limit the total amount of drug that may
be administered. Furthermore, this assumption permits a natural metric on treatment efficacy
that may not be present otherwise (see Section 3). The effect of treatment is considered as a
control agent u(t), which we assume is a locally bounded Lebesgue measurable function taking
values in R+. Here u(t) is directly related to the applied drug dosage D(t), and in the present
work we assume that we have explicit control over u(t). Later, during the formulation of the
optimal control problem (Section 3), we will make precise specifications on the control set U .
Obviously, an arbitrary function of time is unrealistic as a treatment strategy, due to practi-
cal constraints. Our objective, however, is not quantitatively precise modeling, but rather an
analysis of the fundamental mathematical questions associated to drug-induced resistance.

Sensitive and resistant cells are assumed to compete for resources in the tumor microenviron-
ment; this is modeled via a joint carrying capacity, which we have scaled to one. Furthermore,
cells are allowed to transition between the two phenotypes in both a drug-independent and drug-
dependent manner. All random transitions to the resistant phenotype are modeled utilizing a
common term, εS, which accounts for both genetic mutations and epigenetic events occurring
independently of the application of treatment. Drug-induced transitions are assumed of the
form αu(t)S, which implies that the per-capita drug-induced transition rate is directly propor-
tional to the dosage (as we assume full control on u(t), i.e. pharmacokinetics are ignored). Of
course, other functional relationships may exist, but since the problem is not well-studied, we
consider it reasonable to begin our analysis in this simple framework. The above assumptions
then yield the following system of ordinary differential equations (ODEs):

dS

dt
= (1− (S +R))S − (ε+ αu(t))S − du(t)S

dR

dt
= pr (1− (S +R))R + (ε+ αu(t))S.

(1)

All parameters are taken as non-negative, and 0 ≤ pr < 1. The restriction on pr emerges
due to (1) already being non-dimensionalized, as pr represents the relative growth rate of the
resistant population with respect to that of the sensitive cells. The condition pr < 1 thus
assumes that the resistant cells divide more slowly than their sensitive counterparts, which
is both observed experimentally [11, 16, 3], and necessary for our mathematical framework.
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Indeed, the condition pr ≥ 1 would imply that u(t) ≡ 0 is optimal under any clinically realistic
objective.

As mentioned previously, many simplifying assumptions are made in system (1). Specifically,
both types of resistance (random genetic and epigenetic) are modeled as dynamically equivalent;
both possess the same division rate pr and spontaneous (i.e. drug-independent) transition rate
ε. Thus, the resistant compartment R denotes the total resistant subpopulation, both genetic
and epigenetic.

The region Ω = {(S,R) | 0 ≤ S+R ≤ 1} in the first quadrant is forward invariant for any lo-
cally bounded Lebesgue measurable treatment function u(t) taking values in R+. Furthermore,
if ε > 0, the population of (1) becomes asymptotically resistant:(

S(t)
R(t)

)
t→∞−−−→

(
0
1

)
. (2)

For a proof, see Theorem 2 in SI A in [8]. Thus, in our model, the phenomenon of drug
resistance is inevitable. However, we may still implement control strategies which, for example,
may increase patient survival time. Such aspects will inform the objective introduced in the
following section. For more details on the formulation and dynamics of system (1), we refer the
reader to [8].

2 Structural Identifiability

Before beginning a discussion of the optimal control problem, we first discuss the identifiability
of system (1). Our focus in the remainder of the work is on control structures based on the
presence of drug-induced resistance, and thus relies on the ability to determine whether, and
to what degree, the specific chemotherapeutic treatment is generating resistance. Ideally, we
envision a clinical scenario in which cancer cells from a patient are cultured in an ex vivo assay
(for example, see [17]) prior to treatment. Parameter values are then calculated from treatment
response dynamics in the assay, and an optimal therapy regime is implemented based on the
theoretical work described below. Thus, identifying patient-specific model parameters, specially
the induced-resistance rate α, is a necessary step in determining control structures to apply. In
this section, we address this issue, and prove that all parameters are structurally identifiable,
as well as demonstrate a specific set of controls that may be utilized to determine α. A self-
contained discussion is presented; for more details on theoretical aspects, see [19] and the
references therein. Other recent works related to identifiability in the biological sciences (as
well as practical identifiability) can be found in [4, 26].

We first formulate our dynamical system, and specify the input and output variables.
Clearly, the treatment u(t) is the sole input. Furthermore, we assume that the only clinically
observable output is the entire tumor volume V (t):

V (t) := S(t) +R(t). (3)

That is, we do not assume real-time measurements of the individual sensitive and resistant
sub-populations. We note that in some instances, such measurements may be possible; however
for a general chemotherapy, the precise resistance mechanism may be unknown a priori, and
hence no biomarker with the ability to differentiate cell types may be available.
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Treatment is initiated at time t = 0, at which we assume an entirely sensitive population:

S(0) = S0, R(0) = 0. (4)

Here 0 < S0 < 1, so that (S(t), R(t)) ∈ Ω for all t ≥ 0. We note that R(0) = 0 is not
restrictive, and similar results may derived under the more general assumption 0 ≤ R0 < 1.
The condition R(0) = 0 is utilized both for computational simplicity and since R(0) is generally
small (assuming a non-zero detection time, and small random mutation parameter ε; see [8] for
a discussion).

The above then allows us to formulate our system (1) in input/output form, where the input
u(t) appears affinely:

ẋ(t) = f(x(t)) + u(t)g(x(t)),

x(0) = x0,
(5)

where f and g are

f(x) =

(
(1− (x1 + x2))x1 − εx1

pr(1− (x1 + x2))x2 + εx1

)
, (6)

g(x) =

(
−(α + d)

α

)
x1, (7)

and x(t) = (S(t), R(t)). As is standard in control theory, the output is denoted by the vari-
able y, which in this work corresponds to the total tumor volume. A system in form (5) is
said to be uniquely structurally identifiable if the map p 7→ (u(t), x(t, p)) is injective almost
everywhere [4, 13]. Local identifiability and non-identifiability correspond to the map being
finite-to-one and infinite-to-one, respectively. Our objective is then to demonstrate unique
structural identifiability for model system (5) (or equivalently (1)), and hence recover all pa-
rameter values p from only measurements of the tumor volume y. We also note that the notion
of identifiability is closely related to that of observability ; for details [1, 18] are a good reference.

To analyze identifiability, we utilize results appearing in [9, 27, 20], and hence frame the
issue from a differential-geometric perspective. Our hypothesis is that perfect (hence noise-free)
input-output data is available in the form of y and its derivatives on any interval of time. We
thus, for example, make measurements of

y(0) = h(x(0)),

ẏ(0) =
d

dt

∣∣∣∣
t=0

h(x(t))
(8)

and relate their values to the unknown parameter values p. If there exist inputs u(t) such that
the above system of equations may be solved for p, the system is identifiable. The right-hand
sides of (8) may be computed in terms of the Lie derivatives of the vector fields f and g in
system (5). We recall that Lie differentiation LXH of a Cω function H by a Cω vector field X:

LXH(x) := ∇H(x) ·X(x). (9)

Here the domain of both X and H is the first-quadrant triangular region Ω, seen as a subset
of the plane, and the vector fields and output function are Cω on an open set containing Ω (in

4

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/475533doi: bioRxiv preprint first posted online Nov. 22, 2018; 



fact, they are given by polynomials, so they extend as analytic functions to the entire plane).
Recall that set Cω consists of all analytic functions. Iterated Lie derivatives are well-defined,
and should be interpreted as function composition, so that for example LYLXH = LY (LXH),
and L2

XH = LX(LXH).
More formally, defining observable quantities as the zero-time derivatives of the output

y = h(x),

Y (x0, U) =
dk

dtk

∣∣∣∣
t=0

h(x(t)), (10)

where U ∈ Rk is the value of the control u(t) and its derivatives evaluated at t = 0: U =(
u(0), u

′
(0), ..., u(k−1)(0)

)
. Here k ≥ 0, indicating that the kth-order derivative Y may ex-

pressed as a polynomial in the components of U [20]. The initial conditions x0 appear due
to evaluation at t = 0. The observation space is then defined as the span of the Y (x0, U)
elements: F1 := spanR

{
Y (x0, U) |U ∈ Rk, k ≥ 0

}
. Conversely, we also define span of iter-

ated Lie derivatives with respect to the output h and vector fields f(x) and g(x): F2 :=
spanR

{
Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g, f}k, k ≥ 0

}
. Wang and Sontag [27] proved that F1 =

F2, so that the set of “elementary observables” may be considered as the set of all iterated
Lie derivatives F2. Hence, identifiability may be formulated in terms of the reconstruction of
parameters p from elements in F2. Parameters p are then identifiable if the map

p 7→
(
Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g, f}k, k ≥ 0

)
(11)

is one-to-one. For the remainder of this section, we investigate the mapping defined in (11).
Computing the Lie derivatives and recalling that x0 = (S0, 0) we can recursively determine

the parameters p:

S0 = h(x0),

d = −Lgh(x0)

S0

,

α =
L2
gh(x0)

dS0

− d,

ε =
LfLgh(x0)

dS0

+ 1− S0,

pr =
S0

1− S0

+
LgLfh(x0)

αS0(1− S0)
−
(

1 +
d

α

)(
1− S0

1− S0

)
.

(12)

Since F1 = F2, all of the above Lie derivatives are observable via appropriate treatment pro-
tocols. For an explicit set of controls and corresponding relations to measurable quantities
(elements of the form (10)), see [8]. Thus, we conclude that all parameters in system (1) are
identifiable, which allows us to investigate optimal therapies dependent upon a priori knowledge
of the drug-induced resistance rate α.

3 Optimal Control Formulation

As discussed in Section 1, all treatment strategies u(t) result in an entirely resistant tumor:
(S∗, R∗) = (0, 1) is globally asymptotically stable for all initial conditions in region Ω. Thus,
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any chemotherapeutic protocol will eventually fail, and a new drug must be introduced (not
modeled in this work, but the subject of future study). Therefore, selecting an objective which
minimizes tumor volume (S+R) or resistant fraction (R/(S+R)) at a fixed time horizon would
be specious for our modeling framework. However, one can still combine therapeutic efficacy
and clonal competition to influence transient dynamics and possibly prolong patient life, as has
been shown clinically utilizing real-time patient data [6]. Motivated by this observation, we
define an objective based on maximizing time until treatment failure, as described below.

Let

Vc ∈ (0, 1− ε) (13)

be a critical tumor volume at which treatment, by definition, has failed. The upper bound is
a technical constraint that will be needed in Section 6; note that this is not prohibitive, as the
genetic mutation rate ε is generally small [12], and our interest is on the impact of induced
resistance. Recall that populations have been normalized to lie in [0, 1]. Our interpretation is
that a tumor volume larger than Vc interferes with normal biological function, while S+R ≤ Vc
indicates a clinically acceptable state. Different diseases will have different Vc values. Define tc
as the time at which the tumor increases above size Vc for the first time. To be precise, tc is
the maximal time for which S + R ≤ Vc. Since all treatments approach the state (0, 1), tc is
well defined for each u(t) : tc = tc(u). Time tc is then a measure of treatment efficacy, and our
goal is then to determine u∗ which maximizes tc(u).

Toxicity as well as pharmacokinetic constraints limit the amount of drug to be applied at
any given instant. Thus, we assume that there exists M > 0 such that u(t) ≤ M for all t ≥ 0.
Any other Lebesgue measurable treatment regime u(t) is then considered, so that the control
set U = [0,M ] and the set of admissible controls U is

U = {u : [0,∞)→ [0,M ] |u is Lebesgue measurable}.

We are thus seeking a control u∗(t) ∈ U which maximizes tc, i.e. solves the time-optimal
minimization problem

min
u∈U
{J(u)} = min

u∈U

{
−
∫ tc

0

1 dt

}
, (14)

restricted to the dynamic state equations given by the system described previously in (5). Note
that the above is formulated as a minimization problem to be consistent with previous literature
and results related to the Pontryagin Maximum Principle (PMP) [10]. Note that maximization
is still utilized in Sections 4 and 5.1, and we believe that the objective will be clear from context.

The time tc must satisfy the terminal condition (tc, x(tc)) ∈ N , whereN is the line S+R = Vc
in Ω, i.e. N = ψ−1(0) ∩ Ω, where ψ(S,R) := S +R− Vc. Furthermore, the path-constraint

ψ(S(t), R(t)) ≤ 0 (15)

must also hold for 0 ≤ t ≤ tc. Equation (15) ensures that the tumor remains below critical
volume Vc for the duration of treatment. Equivalently, the dynamics are restricted to lie in the
set Ωc ⊆ Ω, where

Ωc := {(S,R) | 0 ≤ S +R ≤ Vc}, (16)
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for times t such that t ∈ [0, tc]. The initial state

x0 = (S0, R0) (17)

is also assumed to lie in Ωc. We not longer restrict to the case R0 = 0 as was assumed for
simplicity in Section 2.

4 Existence Results

Before characterizing the structure of the desired optimal control for the problem presented in
Section 3, we must first verify that the supremum of times tc(u) for u ∈ U is obtained by some
u∗ ∈ U , i.e. that the optimal control exists. This involves two distinct steps: proving that
the supremum is both finite and that it is obtained by at least one admissible control. The
following two subsections verify these claims.

4.1 Finiteness of the Supremum

We prove that

sup
u∈U

tc(u) <∞ (18)

for a more general control system. The result depends crucially on (2), and the fact that asymp-
totically stable state (0, 1) is disjoint from the dynamic constraint x ∈ Ωc (see equation (15)).
That is, Vc < 1 is necessary for the following subsequent result to hold, and generally an optimal
control will not exist if Vc = 1 or the path constraint is removed.

Consider a control system of the form

ẋ = f̃(t, x, u), (19)

where x ∈ Ω, u ∈ U := {u : R+ → U |u measurable}, and f̃ : R × Ω × U → Ω, where Ω is an
open subset of Rn, U ⊆ R. Fix the initial conditions

x(0) = x0, (20)

with x0 ∈ Ω, and assume that all solutions of (19) and (20) approach a fixed point x̄ ∈ Ω. That
is, for all u ∈ U ,

xu(t)
t→∞−−−→ x̄. (21)

Note that we explicitly denote the dependence of the trajectory on the control u, and the above
point x̄ is independent of the control u.

Fix a closed subset L of Ω such that x0 ∈ L, x̄ /∈ L. Associate to each control (and hence
corresponding trajectory) a time tc(u) such that

tc(u) = min{T |xu(t) /∈ L for all t > T}. (22)

Note that the above is well-defined (as a minimum) for each control u, since by assumption
x0 ∈ L and each trajectory asymptotically approaches x̄ /∈ L.
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Theorem 1. Define

T∗ = sup
u∈U

tc(u). (23)

With the above construction, T∗ is finite.

Proof. Fix an open set K of Ω containing x̄ such that K ∩Ω = ∅. Note that this is possible, as
L is closed and x̄ /∈ L. Suppose, by contradiction, that T∗ =∞. We construct a trajectory that
remains in L for all time t, thus contradicting the fact that every trajectory must eventually
enter K. By definition of the supremum, there exists a sequence of controls un ∈ U such that
xun ∈ L for t ∈ [0, tn], with tn

n→∞−−−→ ∞. By taking a subsequence, we assume that tn is
increasing. Note that each un is defined on [0,∞), and the initial condition (20) is fixed for all
pairs (xun , un).

We construct a new control u∗ inductively as follows. Define a sequence of controls on [0, t1]:

un,1 = {un|[0,t1]}∞n=1. (24)

Since the time interval [0, t1] is compact, there exists a convergence subsequence {unk,1}
nk→∞−−−−→

u∗,1 in the weak topology. As a subsequence, the corresponding trajectory x∗,1 remains in L for
t ∈ [0, t1]. Similarly, define subsequence un,2 on [t1, t2] as

un,2 = {unk,1|[t1,t2]}, (25)

where we begin the sequence at the maximum of n1 and 2, to ensure that all controls in the
sequence correspond to trajectories entirely inside of L. Again, since the interval is compact,
there exists a convergence subsequence (in the weak topology) of un,2, say u∗,2, with, by con-
tinuity of the state with respect to the control, the corresponding trajectory lies entirely in
L. Continue in this manner, constructing a sequence of controls u∗,i, i = 1, 2, ..., where u∗,i is
defined on [ti−1, ti], with t0 = 0. Define u∗ on [0,∞) as the concatenation of the u∗,i:

u∗ = u1,∗ ∗ u2,∗ ∗ · · · (26)

As the pointwise limit of measurable functions, u∗ is measurable. Clearly, u ∈ U by construc-
tion, so that u ∈ U . The corresponding trajectory xu∗ thus lies entirely in L for t ∈ [0,∞), and
hence never enters K. This the desired contradiction, so that T∗ must be finite, as desired.

For the system and control problem defined in Sections 1 and 3, the above theorem implies
that supu∈U tc(u) is finite by taking L = Ωc.

4.2 Supremum as a Maximum

Here we provide a general proof for the existence of optimal controls for systems of our form,
assuming the set of maximal times is bounded above, which has been proven in Section 4.1. For
convenience, we make the proof as self-contained as possible (one well-known result of Filippov
will be cited), and state the results in generality which I will later apply to the model of induced
resistance. Arguments are adapted primarily from the textbook of Bressan and Piccoli [2].
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Consider again general control systems as in Section 4.1. Solutions (or trajectories) of (19)
will be defined as absolutely continuous functions for which a control u ∈ U exists such that
(x(t), u(t)) satisfy (19) a.e. in their (common) domain [a, b].

It is easier and classical to formulate existence with respect to differential inclusions. That
is, define the multi-function

F (t, x) = {f̃(t, x, ω) |ω ∈ U}. (27)

Thus, the control system (19) is clearly related to the inclusion

ẋ ∈ F (t, x). (28)

The following theorem (see [5]) makes this relationship precise.

Theorem 2. An absolutely continuous function x : [a, b] 7→ Rn is a solution of (19) if and only
if it satisfies (28) almost everywhere.

We first prove a lemma demonstrating that the set of trajectories is closed w.r.t. to the
sup-norm || · ||∞ if the set of velocities F (t, x) are all convex.

Lemma 3. Let xk be a sequence of solutions of (19) converging to x uniformly on [0, T ]. If
the graph of (t, x(t)) is entirely contained in Ω, and the F (t, x) are all convex, then x is also a
solution of (19).

Proof. By the assumptions on f̃ , the sets F (t, x) are uniformly bounded as (t, x) range in a
compact domain, so that xk are uniformly Lipschitz, and hence x is Lipschitz as the uniform
limit. Thus x is differentiable a.e., and by Theorem 2, it is enough to show that

ẋ(t) ∈ F (t, x(t)) (29)

for all t such that the derivative exists.
Assume not, i.e. that the derivative exists at some τ , but ẋ(τ) /∈ F (τ, x(τ)). Since F (τ, x(τ))

is compact and convex, and ẋ(τ) is closed, the Hyperplane Separation Theorem implies that
there exists a hyperplane separating F (τ, x(τ)) and ẋ(τ). That is, there exists an ε > 0 and a
(WLOG) unit-vector p ∈ Rn such that

〈p, y〉 ≤ 〈p, ẋ(τ)〉 − 3ε, (30)

for all y ∈ F (τ, x(τ)). By continuity, there exists δ > 0 such that for |t− t′| ≤ δ, |x′− x(τ)| ≤ δ

〈p, y〉 ≤ 〈p, ẋ(τ)〉 − 2ε, (31)

for all y ∈ F (τ, x′). Since x is differentiable at τ , we can choose τ ′ ∈ (τ, τ + δ] such that∣∣∣∣x(τ ′)− x(τ)

τ ′ − τ
− ẋ(τ)

∣∣∣∣ < ε,

|x(t)− x(τ)| < δ,

(32)

9
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for all t ∈ [τ, τ ′]. Equation (32) and uniform convergence then implies that〈
p,
xk(τ

′)− xk(τ)

τ ′ − τ

〉
k→∞−−−→ =

〈
p,
x(τ ′)− x(τ)

τ ′ − τ

〉
> 〈p, ẋ(τ)〉 − ε.

(33)

On the other hand, since ẋ ∈ F (t, x′) for t ∈ [τ, τ ′], equation (31) implies that for k sufficiently
large, 〈

p,
xk(τ

′)− xk(τ)

τ ′ − τ

〉
=

1

τ ′ − τ

∫ τ ′

τ

〈p, ẋ(t)〉 dt

≤ 〈p, ẋ(τ)〉 − 2ε.

(34)

Clearly, (33) and (34) contradict one another, so that (29) must be true, as desired.

An optimal control problem associated to (19) may now be formulated. Suppose x0 ∈ Ω is
an initial condition for the corresponding system, so that

x(0) = x0. (35)

Let S denote the set of admissible terminal conditions, S ⊂ R × Rn, and φ : R × Rn 7→ R a
cost function. We would like to maximize φ(T, x(T )) over admissible controls with initial and
terminal constraints:

max
u∈U ,T≥0

φ(T, x(T, u)),

x(0) = x0, (T, x(T )) ∈ S.
(36)

We now state sufficient conditions for such an optimal control to exist.

Theorem 4. Consider the control system (19) and corresponding optimal control problem (36).
Assume the following:

1. The objective φ is continuous.

2. The sets of velocities F (t, x) are convex.

3. The trajectories x remain uniformly bounded.

4. The target set S is closed.

5. A trajectory satisfying the constraints in (36) exists.

6. S is contained in some strip [0, T ] × Rn, i.e. the set of final times (for free-endpoint
problems) can be uniformly bounded.

If the above items are all satisfied, an optimal control exists.

10
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Proof. By assumption, there is at least one admissible trajectory reaching the target set S.
Thus, we can construct a sequence of controls uk : [0, Tk] 7→ U whose corresponding trajectories
xk satisfy

xk(0) = x0,

(Tk, xk(Tk)) ∈ S,

φ(Tk, x(Tk))
k→∞−−−→ sup

u∈U ,T̄≥0

φ(T̄ , x(T̄ , u)).
(37)

Since S ⊂ [0, T ]× Rn, we know that Tk ≤ T for all k. Each function xk can then be extended
to the entire interval [0, T ] by setting xk(t) = xk(Tk) for t ∈ [Tk, T ].

The sequence xk is uniformly Lipschitz continuous, as f is uniformly bounded on bounded
sets. This then implies equicontinuity of {xk}∞k=1. By the Arzela-Ascoli Theorem, there exists
a subsequence xnk

such that Tnk
→ T∗, T∗ ≤ T , and xnk

→ x∗ uniformly on [0, T∗].
Lemma 3 implies that x∗ is admissible, so that there exists a control u∗ : [0, T∗] 7→ U such

that

ẋ∗(t) = f(t, x∗(t), u∗(t)) (38)

for almost all t ∈ [0, T∗]. Equations (37) imply that

x∗(0) = x0

(T∗, x∗(T∗)) = lim
nk→∞

φ(Tnk
, xnk

(Tnk
)) ∈ S. (39)

Note that the second of (39) relies on S being closed. Continuity of φ and (37) implies that

φ(T∗, x∗(T∗)) = lim
nk→∞

φ(Tnk
, xnk

(Tnk
)) = sup

u∈U ,T∗≥0
φ(T∗, x(T∗, u)). (40)

Thus, u∗ is optimal, as desired.

For the model of drug-induced resistance, the right-hand side f̃ takes the form (5) where f
and g are smooth on the domain Ω. Here the control set U is the compact set U = [0,M ], and
for such control-affine systems, convexity of F (t, x) is implied by the convexity of U . Existence
of a trajectory satisfying the constraints is clear; for example, take u(t) ≡ 0. Our objective is
to maximize the time to reach the critical tumor volume S = N . Note that N is a closed subset
of R2, and that

φ(T̄ , x(T̄ , u)) = T̄ . (41)

is continuous. Lastly, we have seen that all solutions remain in the closure Ω̄, so that |x(t)| ≤ 1
for all u ∈ U and hence solutions are uniformly bounded. Existence is then reduced to Item 6
in the previous theorem. Since the supremum was shown to be finite, an Theorem 4 together
with Theorem 1 imply that the optimal control for the problem presented in Section 3 exists.
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5 Maximum Principle

The results of Section 4 imply that the optimal control problem introduced in Section 3 has at
least one solution u∗ ∈ U . We now characterize this control utilizing the Pontryagin Maximum
Principle (PMP). We envision a clinical scenario in which cancer cells from a patient are cultured
in an ex vivo assay (for example, see [17]) prior to treatment. Parameter values are then
calculated from treatment response dynamics in the assay, and an optimal therapy regime is
implemented based on the theoretical work of this section. Thus, identifying patient-specific
model parameters, specially the induced-resistance rate α, is a necessary step in determining
control structures to apply. This issue was addressed partially in Section 2; for further in vitro
results, see [8]. Hence, for the remainder of this work, we assume that prior to the onset of
treatment, all patient-specific parameters are known. We now analyze behavior and response
of system (1) to applied treatment strategies u(t) utilizing geometric methods. The subsequent
analysis is strongly influenced by the Lie-derivative techniques introduced by Sussmann [21, 23,
22, 24]. For an excellent source on both the general theory and applications to cancer biology,
see the textbooks by Schättler and Ledzewicz [10, 15].

5.1 Elimination of Path Constraints

We begin our analysis by separating interior controls from those determined by the path-
constraint (15) (equivalently, x ∈ Ωc). The following theorem implies that outside of the man-
ifold N , the optimal pair (x∗, u∗) solves the same local optimization problem without the path
and terminal constraints. More precisely, the necessary conditions of the PMP (see Section 5.2)
at states not on N are exactly the conditions of the corresponding maximization problem with
no path or terminal constraints.

Theorem 5. Suppose that x∗ is an optimal trajectory. Let T be the first time such that x(t) ∈
N . Fix ε > 0 such that T − ε > 0, and

ξ = x(T − ε). (42)

Define z(t) := x∗(t)|t∈[0,T−ε]. Then the trajectory z is a local solution of the corresponding time
maximization problem tf with boundary conditions x(0) = x0, x(tf ) = ξ, and no additional path
constraints. Hence at all times t, z (together with the corresponding control and adjoint) must
satisfy the corresponding unconstrained Pontryagin Maximum Principle.

Proof. We first claim that z satisfies the path-constrained maximization problem with boundary
conditions x(0) = x0, x(tf ) = ξ. Otherwise, if there exists a trajectory z̄ such that z̄(τ) = ξ,
τ > T−ε, concatenate z̄ with x∗ at t = τ to obtain a feasible trajectory satisfying all constraints.
This trajectory then has total time τ + ε + tc − T > tc, contradicting the global optimality of
x∗.

Recall that T was the first time that x∗(t) ∈ N . Since z is compact, we can find a neigh-
borhood of z that lies entirely in {x |x /∈ N}. As the Maximum Principle is a local condition
with respect to the state, this completes the proof.

Theorem 5 then tells us that for states x = (S,R) such that S +R < Vc, the corresponding
unconstrained PMP must be satisfied by any extremal lift of the original problem. Furthermore,
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there exists a unique feedback law for trajectories to remain on the boundary of (42):

up(S,R) =
1

d

(1− (S +R))(S + prR)

S
. (43)

Thus, we have shown that the optimal control consists of concatenations of controls obtained
from the unconstrained necessary conditions and controls of the form (43). In the next section,
we analyze the Maximum Principle in the region S +R < Vc.

5.2 Maximum Principle and Necessary Conditions at Interior Points

Necessary conditions for the optimization problem discussed in Section 3 without path or termi-
nal constraints are derived from the Pontryagin Maximum Principle [14, 10]. The corresponding
Hamiltonian function H is defined as

H(λ0, λ, x, u) = −λ0 + 〈λ, f(x)〉+ uΦ(x), (44)

where λ0 ≥ 0 and λ ∈ R2. Here 〈·, ·〉 denotes the standard inner product on R2 and, since the
dynamics are affine in the control u, Φ(x, λ) is the switching function:

Φ(x, λ) = 〈λ, g(x)〉. (45)

The Maximum Principle then yields the following theorem:

Theorem 6. If the extremal (x∗, u∗) is optimal, there exists λ0 ≥ 0 and a covector (adjoint)
λ : [0, tc]→ (R2)∗, such that the following hold:

1. (λ0, λ(t)) 6= 0 for all t ∈ [0, tc].

2. λ(t) = (λS(t), λR(t)) satisfies the second-order differential equation

λ̇(t) =

(
2S +R + ε− 1 prR− ε

S pr(2R + S − 1)

)
λ(t)

+ u(t)

(
α + d −α

0 0

)
λ(t)

(46)

3. u∗(t) minimizes H pointwise over the control set U :

H(λ0, λ, x∗(t), u∗(t)) = min
v∈U

H(λ0, λ, x∗(t), v).

Thus, the control u∗(t) must satisfy

u∗(t) =

{
0 Φ(t) > 0,

M Φ(t) < 0.
(47)

where

Φ(t) := Φ(x∗(t), λ(t)). (48)

13

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/475533doi: bioRxiv preprint first posted online Nov. 22, 2018; 



4. The Hamiltonian H is identically zero along the extremal lift (x∗(t), u∗(t), λ(t)):

H(λ0, λ(t), x∗(t), u∗(t)) ≡ 0. (49)

Proof. Most statements of Theorem 6 follow directly from the Maximum Principle, so proofs are
omitted. In particular, items (1), (2) and the first part of (3) are immediate consequences [10].
Equation (47) follows directly since we minimize the function H, which is affine in u (see
equation (44)). The Hamiltonian vanishes along (x∗(t), u∗(t), λ(t)) since it is independent of an
explicit time t dependence and the final time tc is free, the latter being part of the transversality
condition.

For completeness, we state the following proposition.

Proposition 7. For all t ∈ [0, tc], the adjoint λ(t) corresponding to the extremal lift (x∗(t), u∗(t), λ(t))
is nonzero.

Proof. This is a general result relating to free end time problems. We include a proof here
for completeness. Suppose that there exists a time t ∈ [0, tc] such that λ(t) = 0. By (44),
the corresponding value of the Hamiltonian is H(λ0, λ(t), x∗(t), u∗(t)) = −λ0. By item (4) in
Theorem 6, H ≡ 0, which implies that λ0 = 0. This contradicts item (1) in Theorem 6. Hence,
λ(t) 6= 0 on [0, tc].

5.3 Geometric Properties and Existence of Singular Arcs

We now undertake a geometric analysis of the optimal control problem utilizing the affine
structure of system (5) for interior states (i.e. controls which satisfy Theorem 6). We call such
controls interior extremals, and all extremals in this section are assumed to be interior. The
following results depend on the independence of the vector fields f and g, which we use to both
classify the control structure for abnormal extremal lifts (extremal lifts with λ0 = 0), as well
as characterize the switching function dynamics via the Lie bracket.

Proposition 8. For all S ∈ Ω, S > 0, the vector fields f(x) and g(x) are linearly independent.

Proof. Define A(x) = A(S,R) to be the matrix

A(S,R) =
(
f(x) g(x)

)
=

(
(1− (S +R)− ε)S −(α + d)S

pr(1− (S +R))R + εS αS

)
.

(50)

The determinant of A can calculated as

detA(x) = αS2κ(x) + pr(α + d)RSκ(x) + εdS2 (51)

where

κ(x) := 1− (S +R). (52)

As S(t) + R(t) ≤ 1 for all t ≥ 0, κ(x(t)) ≥ 0, and we see that detA(x) = 0 in Ω if and only if
S = 0, completing the proof.
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The line S = 0 is invariant in Ω, and furthermore the dynamics in the set are independent
of the control u(t). Conversely, S0 > 0 implies that S(t) > 0 for all t ≥ 0. We concern our
analysis only in this latter case, and so without loss of generality, f(x) and g(x) are linearly
independent in the region of interest Ωc.

We begin by showing that abnormal extremal lifts are easily characterized. We recall that
an extremal lift is abnormal if λ0 = 0, i.e. if the Hamiltonian is independent of the objective.

Theorem 9. Abnormal extremal lifts at interior points, i.e. extremal lifts corresponding to
λ0 = 0, are constant and given by the maximal (M) or minimal (0) dosage.

Proof. Assume that u∗ switches values at some time t. From (47), we must have that Φ(t) = 0.
Since λ0 = 0 and Φ(t) = 〈λ(t), g(x∗(t))〉, equation (44) reduces to

H(t) = 〈λ(t), f(x∗(t))〉 = 0. (53)

Thus, λ(t) is orthogonal to both f(x∗(t)) and g(x∗(t)). Since f and g are linearly independent
(Proposition 8), this implies that λ(t) = 0. But this contradicts Proposition 7. Hence, no such
time t exists, and u∗(t) is constant. The constant sign of Φ thus corresponds to u = 0 or u = M
(see equation (47)).

The control structure for abnormal extremal lifts is then completely understood via Theo-
rem 9. To analyze the corresponding behavior for normal extremal lifts, without loss of general-
ity we assume that λ0 = 1. Indeed, λ(t) may be rescaled by λ0 > 0 to yield an equivalent version
of Theorem 6. We thus assume that the Hamiltonian H(t) evaluated along (λ(t), x∗(t), u∗(t))
is of the form

H(t) = −1 + 〈λ(t), f(x∗(t))〉+ u∗(t)Φ(t) ≡ 0. (54)

We recall the Lie bracket as the first-order differential operator between two vector fields
X1 and X2:

[X1, X2](z) = DX2(z)X1(z)−DX1(z)X2(z), (55)

where, for example, DX2(z) denotes the Jacobian of X2 evaluated at z. As f and g are linearly
independent in Ω, there exist γ, β ∈ C∞(Ω) such that

[f, g](x) = γ(x)f(x) + β(x)g(x), (56)

for all x ∈ Ω. In fact, we can compute γ and β explicitly:

γ(x) = −(α + d)S2

detA(x)
(aS + bR− c) , (57)

β(x) =
S2

detA(x)

(
α(1− pr)κ(x)(κ(x)− ε) + εd(S + prR + κ(x)− ε)

)
, (58)

where

a = α

(
(1− pr) +

d

α + d

)
, (59)

b = α(1− pr) + dpr, (60)

c = α(1− pr) + εd. (61)
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Clearly, for parameter values of interest, a, b, c > 0. The assumption (13) guarantees that
β(x) > 0 on 0 < S +R < Vc.

From (47), the sign of the switching function Φ determines the value of the control u∗. As
λ and x∗ are solutions of differential equations, Φ is differentiable. The dynamics of Φ can be
understood in terms of the Lie bracket [f, g]:

Φ̇(t) =
d

dt
〈λ(t), g(x∗(t))〉 (62)

= γ(x∗(t))〈λ(t), f(x∗(t))〉+ β(x∗(t))Φ(t). (63)

The last lines of the above follow from (56) as well as the linearity of the inner product. We
are then able to derive an ODE system for x∗ and Φ. Equation (54) allows us to solve for
〈λ(t), f(x∗(t))〉:

〈λ(t), f(x∗(t))〉 = 1− u∗(t)Φ(t). (64)

Substituting the above into (63) then yields the following ODE for Φ(t), which we view as
coupled to system (5) via (47):

Φ̇(t) = γ(x∗(t)) +
(
β(x∗(t))− u∗(t)γ(x∗(t))

)
Φ(t). (65)

The structure of the optimal control at interior points may now be characterized as a com-
bination of bang-bang and singular arcs. We recall that the control (or, more precisely, the
extremal lift) u∗ is singular on an open interval I ⊂ [0, tc] if the switching function Φ(t) and all
its derivatives are identically zero on I. On such intervals, equation (47) does not determine
the value of u∗, and a more thorough analysis of the zero set of Φ(t) is necessary. Indeed, for
a problem such as ours, singular arcs are the only candidates for optimal controls that may
take values outside of the set {0,M}. Conversely, times t where Φ(t) = 0 but Φ(n)(t) 6= 0 for
some n ≥ 1 denote candidate bang-bang junctions, where the control may switch between the
vertices 0 and M of the control set U . Note that the parity of the smallest such n determines
whether a switch actually occurs: n odd implies a switch, while for n even u∗ remains con-
stant. Equation (65) allows us to completely characterize the regions in the (S,R) plane where
singular arcs are attainable, as demonstrated in the following proposition.

Proposition 10. Singular arcs are only possible in regions of the (S,R) plane where γ(x) = 0.
Furthermore, as S(t) > 0 for all t ≥ 0, the region {x ∈ R2 | γ(x) = 0} ∩ Ω is the line

aS + bR− c = 0, (66)

where a, b, c are defined in (59)-(61).

Proof. As discussed prior to the statement of Proposition 10, a singular arc must occur on a
region where both Φ(t) and Φ̇(t) are identically zero (as well as all higher-order derivatives).
Denoting by x∗(t) the corresponding trajectory in the (S,R) phase plane, we may calculate
Φ̇(t) from equation (65):

Φ̇(t) = γ(x∗(t)). (67)

Note we have substituted the assumption Φ(t) = 0. Clearly we must also have that γ(x∗(t)) = 0,
thus implying that x∗(t) ∈ γ−1(0), as desired. The last statement of the proposition follows
immediately from equation (57).

16

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/475533doi: bioRxiv preprint first posted online Nov. 22, 2018; 



Proposition 10 implies that singular solutions can only occur along the line aS+ bR− c = 0.
Thus, define regions in the first quadrant as follows:

Ω+
c := {x ∈ Ω | γ(x) > 0} , (68)

Ω−c := {x ∈ Ω | γ(x) < 0} , (69)

L = {x ∈ Ω | γ(x) = 0} . (70)

Recall that Ωc is simply the region in Ω prior to treatment failure, i.e. 0 ≤ V ≤ Vc. From (57),
Ωc is partitioned as in Figure 1(a). From (57) and (59)-(61), L is a line with negative slope
−b/a. Furthermore, necessary and sufficient conditions for L to lie interior to Ω0 are c

a
, c
b
≤ Vc.

From (59)-(61), this occurs if and only if

ε ≤ min

{
α

α + d
− 1− Vc

d

(
α(1− pr) +

αd

α + d

)
, pr −

1− Vc
d

(
α(1− pr) + dpr

)}
. (71)

As ε is generally assumed small (recall that it represents the drug-independent mutation rate)
and Vc ≈ 1, this inequality is not restrictive, and we assume it is satisfied for the remainder
of the work. We note an important exception below: when α = 0 the inequality is never
satisfied with ε > 0; for such parameter values, line L is horizontal. We note that this does
not change the qualitative results presented below. Of course, other configurations of the line
aS + bR = c and hence precise optimal syntheses may exist, but we believe the situation
illustrated in Figure 1(a) is sufficiently generic for present purposes.

𝑹

𝑺

𝛾 < 0

𝛾 > 0

(a)

𝑹

𝑺

𝛾 < 0

𝛾 > 0

𝑋

𝑌 𝑥

(b)

Figure 1: Domain in (S,R) plane. (a) Region where γ changes sign. We see that inside
the triangular region S + R ≤ 1 of the first quadrant, γ changes sign only along the line
aS + bR − c = 0. For this line to be interior to Ωc as depicted, we must be in the parameter
regime indicated in (71). (b) X and Y vector fields corresponding to vertices of control set U .
For singular controls to lie in U , X and Y must point to opposite sides along L.

With the existence of singular arcs restricted to the line γ = 0 by Proposition 66, we now
investigate the feasibility of such solutions. Recall that the treatment u(t) must lie in the
control set U = [0,M ], for some M > 0 corresponding to the maximally tolerated applied
dosage. Defining the vector field X(x) and Y (x) as the vector fields corresponding to the
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vertices of U ,

X(x) = f(x),

Y (x) = f(x) +Mg(x),
(72)

a singular control takes values in U at x ∈ L if and only if X(x) and Y (y) point in different
directions along L. More precisely, the corresponding Lie derivatives LXγ(x) and LY γ(x) must
have opposite signs; see Figure 1(b). The following proposition determines parameter values
where this occurs.

Proposition 11. Suppose that α > 0, so that drug has the potential to induce drug resistance.
Also, let the maximally tolerated dosage M satisfy

M >
α + d

α(α + d) + αd

(
d

(
α

α + d
− ε
)

+ εd(pr − α)− 2αd(1− pr)

)
. (73)

Then the following hold along L:

1. LXγ < 0,

2. LY γ < 0 as (S,R)→
(
0, c

b

)
in Ω0,

3. LY γ > 0 at (S,R) =
(
c
a
, 0
)
, and

4. LY γ is monotonically decreasing as a function of S.

Thus, L contains a segment L̄ ⊂ L which is a singular arc. Note that L̄ is precisely the region
in L where LY γ is negative.

Proof. The proof is purely computational.

The geometry of Proposition 11 is illustrated in Figure 2. Thus, assuming α > 0 and M as
in (73), singular arcs exist along the segment L̄ ⊂ L. Furthermore, the corresponding control
has a unique solution us, which may be computed explicitly. Indeed, as the solution must
remain on the line L, or equivalently, aS + bR = c, taking the time derivative of this equation
yields aṠ + bṘ = 0, and substituting the expressions (1) we compute us as

us(t) =
κ
(
x(t)

)(
aS(t) + prbR(t)

)
+ ε(b− a)S(t)

2α(1− pr)dS(t)
, (74)

where a, b, c are given by (59)-(61) and R and S satisfy aS + bR = c. As discussed previously,
S(t) > 0 for S0 > 0, so this formula is well-defined. Proposition 11 implies that it is possible
to simplify equation (74) as a function of S (i.e. as a feedback law) for S ∈

(
S̄, c

a

)
, for some

S̄ > 0, but since its value will not be needed, we do not provide its explicit form. Note that
the maximal dose M is achieved precisely at S = S̄ where vector field Y is parallel to L. Thus,
at this S̄, the trajectory must leave the singular arc, and enter the region Ω+

0 . As Ṙ ≥ 0,
trajectories must follow L in the direction of decreasing S; see Figure 2. We summarize these
results in the following theorem.
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𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

𝑺
∗

R∗
 ℒ

𝒀𝑿

𝑿𝒀

𝒖 = 𝒖 𝒙

⟺  ℒ

Figure 2: Geometry of vector fields X and Y with α > 0 and M satisfying (73). As in
Proposition 11, this can be understood via the corresponding Lie derivatives of γ. Note that
near R = 0, X and Y point to opposite sides of L, while at (S,R) =

(
0, c

b

)
, both X and Y

point away from γ > 0. The line L̄ is the unique singular arc in Ωc.

Theorem 12. If α > 0, and M satisfies (73), a singular arc exists in the (S,R) plane as a
segment of the line L. Along this singular arc, the control is given by equation (74), where
aS + bR = c. Therefore, in this case the necessary minimum conditions on u∗ from (47) can
be updated as follows:

u∗(t) =


0 Φ(t) > 0,

M Φ(t) < 0,

us(t), Φ(t) ≡ 0 for t ∈ I,
(75)

where I is an open interval. Recall again that this is the optimal control at points interior to
Ωc.

Proof. See the discussion immediately preceding Theorem 12.

In the case α = 0, the line L is horizontal, and as R is increasing, no segment L̄ ⊆ L is
admissible in phase space. Thus, the interior controls in this case are bang-bang.

Theorem 13. If α = 0, there are no singular arcs for the optimal time problem presented in
Section 3. Thus, the interior control structure is bang-bang.

Outside of the singular arc L̄, the control structure is completely determined by (47)
and (65). The precise result, utilized later for optimal synthesis presented in Section 6, is
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stated in the following theorem. We first introduce a convenient (and standard) notation. Let
finite words on X and Y denote the concatenation of controls corresponding to vector fields X
(u ≡ 0) and Y (u ≡M), respectively. The order of application is read left-to-right, and an arc
appearing in a word may not actually be applied (e.g. XY denotes an X arc followed by a Y
arc or a Y arc alone).

Theorem 14. Consider an extremal lift Γ = ((x, u), λ). Trajectories x remaining entirely in
Ω+
c or Ω−c can have at most one switch point. Furthermore, if x ∈ Ω+

c , then the corresponding
control is of the form Y X. Similarly, x ∈ Ω−c implies that u = Y X. Hence multiple switch
points must occur across the singular arc L̄.

Proof. If τ is a switching time, so that Φ(τ) = 0, equation (65) allows us to calculate Φ̇(τ) as

Φ̇(τ) = γ(x(τ)). (76)

Thus, in Ω+
c where γ > 0, Φ̇(τ) > 0, and hence Φ must increase through τ . The expression for

the control (47) then implies that a transition from a Y -arc to an X-arc occurs at τ (i.e. a Y X
arc). Furthermore, another switching time cannot occur unless x leaves Ω+

0 , since otherwise
there would exist a τ̄ > τ such that Φ(τ̄) = 0, Φ̇(τ̄) < 0 which is impossible in Ω+

c . Similarly,
only XY -arcs are possible in Ω−c .

The structure implies by Theorem 14 is illustrated in Figure 2. Note that outside inside
the sets Ω+

c ,Ω
−
c , and L̄, extremal lifts are precisely characterized. Furthermore, the results of

Section 5.1 (and particularly equation (43)) yield the characterization only the boundary N .
What remains is then to determine the synthesis of these controls to the entire domain Ωc, as
well as to determine the order local optimality of the singular arc L̄. The latter is addressed in
the following section.

5.4 Optimality of Singular Arcs

We begin by proving that the singular arc is extremal, i.e. that it satisfies the necessary
conditions presented in Section 5.2 (note that it is interior by assumption). This is intuitively
clear from Figure 2, since X and Y point to opposite sides along L̄ by the construction of L̄.

Theorem 15. The line segment L̄ ⊂ L is a singular arc.

Proof. We find an expression for u = u(x) such that the vector f(x) + u(x)g(x) is tangent to
L̄ at x, i.e. we find the unique solution to

Lf+ug(γ) = 0 (77)

Note that we can invert (72):

f(x) = X(x)

g(x) =
1

M
(Y (x)−X(x))

(78)
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so that f + ug =
(
1− u

M

)
X + u

M
Y . Thus,

Lf+ug(γ) =
(

1− u

M

)
LXγ +

u

M
LY γ

Setting the above equal to zero, and solving for u = u(x) yields

u(x) = M
LXγ(x)

LXγ(x)− LY γ(x)
(79)

As LXγ < 0 and LY γ > 0 on L̄ by Proposition 11, we see that 0 < u(x) < M . We must also
verify that the associated controlled trajectory (79) is extremal by constructing a corresponding
lift. Suppose that x(t) solves

ẋ = f(x) + u(x)g(x),

x(0) = q,

for q ∈ L̄. Let φ ∈ (R2)∗ such that

〈φ, g(q)〉 = 0, 〈φ, f(q)〉 = 1.

Let λ(t) solve the corresponding adjoint equation (46) with initial condition λ(0) = φ. Then
the extremal lift Γ = ((x, u), λ) is singular if Φ(t) = 〈λ(t), g(x(t))〉 ≡ 0. By construction of
u(x), the trajectory remains on L̄ on some interval containing zero, and we can compute Φ̇ as
(using (56))

Φ̇(t) = 〈λ(t), [f, g](x(t))〉
= γ(x(t))〈λ(t), f(x(t)〉+ β(x(t))〈λ(t), g(x(t))〉
= β(x(t))Φ(t),

Note that we have used (65) and the fact that γ = 0 by our choice of u. Since Φ(0) = 0 by
hypothesis, this implies that Φ(t) ≡ 0, as desired.

The above then verifies that L̄ is a singular arc. Note that an explicit expression for u = u(x)
was given in (74), which can be shown to be equivalent to (79).

Having shown that the singular arc L̄ is extremal, we now investigate whether it is locally
optimal for our time-optimization problem. The singular arc is of intrinsic order k if the first
2k − 1 derivatives of the switching function are independent of u and vanish identically on an
interval I, while the 2kth derivative has a linear factor of u. We can compute (this is standard
for control-affine systems (5)) that

Φ2k(t) = 〈λ(t), ad2k
f (g)(x(t))〉+ u(t)〈λ(t), [g, ad2k−1

f (g)](x(t))〉, (80)

where adZ is the adjoint endomorphism for a fixed vector field Z:

adZ(V ) = [Z, V ], (81)

and powers of this operator are defined as composition. Fix an extremal lift Γ = ((x, u), λ) of a
singular arc of order k. The Generalized Legendre-Clebsch condition (also known as the Kelley
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condition) [10] states that a necessary condition for Γ to satisfy a minimization problem with
corresponding Hamiltonian H is that

(−1)k
∂

∂u

d2k

dt2k
∂H

∂u
(λ0, λ(t), x(t), u(t)) ≥ 0 (82)

along the arc. Note that ∂H
∂u

= Φ, so that the above is simply the u coefficient of the 2kth time
derivative of the switching function (multiplied by (−1)k). The order of the arc, as well as the
Legendre-Clebsch condition, are addressed in Theorem 16.

Theorem 16. The singular control is of order one. Furthermore, for all times t such that
x(t) ∈ L̄, 〈λ(t), [g, [f, g]](x(t))〉 > 0. Thus, the Legendre-Clebsch condition is violated, and the
singular arc L̄ is not optimal.

Proof. Along singular arcs we must have Φ(t), Φ̇(t), Φ̈(t) ≡ 0, and we can compute these deriva-
tives using iterated Lie brackets as follows:

Φ(t) = 〈λ(t), g(x(t))〉,
Φ̇(t) = 〈λ(t), [f, g](x(t))〉,
Φ̈(t) = 〈λ(t), [f + ug, [f, g]](x(t))〉.

(83)

The final of the above in (83) can be simplified as

Φ̈(t) = 〈λ(t), [f, [f, g]](x(t))〉+ u(t)〈λ(t), [g, [f, g]](x(t))〉 ≡ 0, (84)

which is precisely (80) for k = 1. Order one is then equivalent to being able to solve this
equation for u(t). Thus, 〈λ(t), [g, [f, g]](x(t))〉 > 0 will imply that the arc is singular of order
one. We directly compute 〈λ(t), [g, [f, g]](x(t))〉 = 〈λ(t), [g, adf (g)](x(t))〉. Using equation (56)
and recalling properties of the singular arc (γ = 0 and the remaining relations in (83), as well
as basic “product rule” properties of the Lie bracket), we can show that

[g, [f, g]] = (Lgγ)f − γ[f, g] + (Lgβ)g. (85)

Recall that for extremal lift along the arc L̄,

〈λ(t), g(x(t))〉 ≡ 0,

〈λ(t), [f, g](x(t))〉 ≡ 0

〈λ(t), f(x(t))〉 ≡ 1.

(86)

The first two of the above follow from Φ, Φ̇ ≡ 0, and the third is a consequence of H ≡ 0
(see (44)). Equations (85) and (86) together imply that

〈λ(t), [g, [f, g]](x(t))〉 = Lgγ〈λ(t), f(x(t))〉 − γ〈λ(t), [f, g](x(t))〉+ Lgβ〈λ(t), g(x(t))〉
= Lgγ(x(t))

=
1

M
(LY γ(x(t))− LXγ(x(t))) .

(87)
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The last equality is due to (78). As LY γ > 0 and LXγ < 0 along L̄ (Proposition 11),
〈λ(t), [g, [f, g]](x(t))〉 > 0, as desired. Furthermore,

−〈λ(t), [g, [f, g]](x(t))〉 < 0, or equivalently (88)

(−1)1 ∂

∂u

d2

dt2
∂H

∂u
< 0, (89)

showing that (82) is violated (substituting k = 1). Thus, L̄ is not optimal.

Theorem 16 then implies that the singular arc is suboptimal, i.e. that L̄ is “fast” with respect
to the dynamics. In fact, comparing time along the trajectories can be computed explicitly using
the “clock form,” a one-form on Ω. As one-forms correspond to linear functional on the tangent
space, and f and g are linearly independent, there exists a unique ω ∈ (TΩ)vee such that

ωx(f(x)) ≡ 1, ωx(g(x)) ≡ 0. (90)

In fact, we compute it explicitly:

ωx =
g2(x)dx1 − g1(x)dx2

det(f(x), g(x))
. (91)

Then, along any controlled trajectory (x, u) defined on [t0, t1], the integral of ω computes the
time t1 − t0: ∫

x

ω =

∫ t1

t0

ωx(t)(ẋ(t)) dt

=

∫ t1

t0

ωx(t)(f(x(t)) + u(t)g(x(t)))) dt

=

∫ t1

t0

ωx(t)(f(x(t)) dt+

∫ t1

t0

u(t)ωx(t)(g(x(t)))) dt

=

∫ t1

t0

dt

= t1 − t0.

(92)

We can then use ω and Stokes’ Theorem to compare bang-bang trajectories with those on
the singular arc. See Figure 3 below for a visualization of a singular trajectory connecting
q1, q2 ∈ L̄ and the corresponding unique XY trajectory connecting these points in Ω−c (note
that uniqueness is guaranteed as long as q1 and q2 are sufficiently close).

Let τ denote the time spent along the singular arc, s the time spent along the X arc, and t
the time spent along the Y arc. Denote by ∆ the curve traversing the X and Y arcs positively,
and the singular arc negatively, and R its interior. As X and Y are positively oriented (they
have the same orientation as f and g), Stokes’ Theorem yields

s+ t− τ =

∫
∆

ω =

∫
R

dω (93)
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𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

 ℒ

𝒀𝑿

𝑿𝒀
⟺  ℒ

𝒒𝟏

𝒒𝟐

⟺ 𝑢𝑠

𝝙

𝑹

Figure 3: Both XY and singular trajectories taking q1 to q2.

A straightforward calculation yields the two-form dω:

dω = − γ

det(f, g)
. (94)

As the determinant is everywhere positive (see the proof of Proposition 8), and R lies entirely
in γ < 0, the integral on the right-hand side of (93) is positive, so that we have

τ < s+ t (95)

Thus, time taken along the singular arc is shorter than that along the XY trajectory, implying
that the singular arc is locally suboptimal for our problem (recall that we want to maximize
time). Since local optimality is necessary for global optimality, trajectories should never remain
on the singular arc for a measurable set of time points. This reaffirms the results of Theorem 16.
A completely analogous statement holds for Y X trajectories in the region γ > 0. We can also
demonstrate, utilizing the same techniques, that increasing the number of switchings at the
singular arc speeds up the trajectory; see Figure 4. This again reinforces Theorem 16, and
implies that trajectories should avoid the singular arc to maximize the time spent in Ωc.
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𝑹 = 𝒙𝟐

𝑺 = 𝒙𝟏

𝛾 < 0

𝛾 > 0

⟺ 𝑋 = 𝑓

⟺ 𝑌 = 𝑓 +𝑀𝑔

 ℒ

𝒀𝑿

𝑿𝒀
⟺  ℒ

𝒒𝟏

𝒒𝟐

⟺ 𝑢𝑠

𝝙𝑹

Figure 4: XY (solid) and XYXY (dashed) trajectories taking q1 to q2 in the region γ > 0.
The time difference between the two trajectories can again be related to the surface integral in
the region R, where γ < 0. The XY trajectory can then be seen to be slower in comparison.

6 Characterization of Optimal Control

The results of Section 5.1, 5.2, 5.3, and 5.4 may now be combined to synthesize the optimal
control introduced in Section 3.

Theorem 17. For any α ≥ 0, the optimal control to maximize the time to reach a critical
time is a concatenation of bang-bang and path-constraint controls. In fact, the general control
structure takes the form

(Y X)n(upY )m, (96)

where (Y X)n := (Y X)n−1Y X and similarly for (upY )m, for n,m ∈ N, and the order should be
interpreted left to right. Here up is defined in (43).

Proof. Formula (96) is simply a combination of the results presented previously. Note that
singular arcs are never (locally) optimal, and hence do not appear in the equation. We also
observe that X arcs are not admissible once the boundary N has been obtained, as an X arc
always decreases γ (see Figure 2). A Y arc may bring the trajectory back into int(Ωc), but an
XY trajectory is no longer admissible, as the switching structure in Ω− is XY .
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Note that in Theorem 17, the switchings must occur across the singular arc L̄, if it exists
(recall that it is not admissible if α = 0). The control up is determined along the boundary of
Ωc, and provides the synthesis between exterior and boundary controls.

7 Conclusions and Future Work

We have provided the mathematical details presented in [7]. Specifically, proofs relating to
identifiability and the optimal synthesis are detailed.
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