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Abstract—

This note analyzes incoherent feedforward loops in signal
processing and control. It studies the response properties of
IFFL’s to exponentially growing inputs, both for a standard
version of the IFFL and for a variation in which the output
variable has a positive self-feedback term. It also considers
a negative feedback configuration, using such a device as a
controller. It uncovers a somewhat surprising phenomenon in
which stabilization is only possible in disconnected regions
of parameter space, as the controlled system’s growth rate
is varied. This phenomenological setup might explain some
interesting and apparently contradictory features of immune
regulation of cancer and infections.

I. INTRODUCTION

This note derives several theoretical results regarding the use
of incoherent feedforward loops (IFFL’s) in signal processing
and control. We will study the system:

ẋ = −ax+bu (1a)

ẏ = c
u
x
−δy (1b)

u̇ = (λ −κy)u (1c)

as well as a modified system in which there is also an
autocatalytic term in (1b):

ẏ = c
u
x
− δy +

V yn

Kn + yn (1b’)

which represents a positive feedback of the y variable on
itself. The constants

a,b,c,δ ,κ,V,K

are positive (but λ is allowed to be negative), dot indicates
d/dt, n is typically an integer> 1 that represents molecular
cooperativity, and the scalar functions of time x = x(t),
y= y(t), and u= u(t) take positive values. (It is easy to verify
that, for any positive initial conditions, solutions remain
positive for all times.) Of course, setting V = 0 allows seeing
(1b’) as a special case of (1b), but it is more interesting to
treat the non-autocatalytic case by itself.

We will separately study the first two equations (1ab) (or
(1ab’) when there is an autocatalytic term), viewing u = u(t)
as an external input to the IFFL described by (1ab) (or
(1ab’)), and viewing y = y(t) as an output or response of the
system. Later, we “close the loop” by letting u be described
by (1c), thinking of it as a variable that is controlled by
y through a negative feedback with gain κ , and which,
conversely, feeds back into the IFFL through the x variable.
In that context, we study the full system (1abc) (or (1ab’c)).
The motivation for this work is explained in detail in the
preprint [3], but we summarize some of the main points in the

last section of this extended abstract. For reasons of space, we
do not include many of the proofs here nor generalizations
to more abstract equations; these can be found in [4] as well
as a journal paper in preparation.

Remark 1.1: In the system (1abc), and in particular in the
system (1ab), one may assume without loss of generality
that a = b = c = 1. This is because we may eliminate these
parameters by rescaling variables. Indeed, substituting

x =
b
a

x∗ , y =
c
b

y∗ , t =
1
a

t∗ ,

δ
∗ =

δ

a
, λ
∗ =

λ

a
, κ
∗ =

cκ

ab
,

into system (1abc), one obtains:

dx∗

dt∗
= −x∗+u (2a)

dy∗

dt∗
=

u
x∗
−δ

∗y∗ (2b)

du
dt∗

= (λ −κy∗)u . (2c)

2

II. IFFL’S RESPONSES TO VARIOUS CLASSES OF INPUTS

Let us consider the system (1ab), a differentiable function
u = u(t) viewed as an external input or forcing function,
and any (positive) solution (x(t),y(t)) corresponding to this
input. We are interested first in understanding how the growth
rate of the input affects the asymptotic values of the output
variable y.

We denote the derivative of lnu(t) with respect to t as
follows:

v(t) :=
u̇(t)
u(t)

and its limsup and liminf as t→ ∞

µ = liminf
t→∞

v(t) , µ = limsup
t→∞

v(t) .

We assume that v is bounded, and thus both of these numbers
are finite. We also introduce the following function:

p(t) :=
u(t)
x(t)

.

One may show that p satisfies the following ODE with input
v:

ṗ = p(a+ v−bp) . (3)

Lemma 2.1: Let u be a differentiable input to system (1ab)
with a = b = c = 1. With the above notations,

max{0,1+µ} ≤ liminf
t→∞

p(t)
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≤ limsup
t→∞

p(t) ≤ max{0,1+µ}

Proof: Since a = b = c = 1,

ṗ = p(1+ v− p) .

To prove the upper bound, we consider two cases,

1+µ < 0 and1+µ ≥ 0.

In the first case, let

ε :=−(1+µ)> 0;

the definition of µ gives that, for some T ≥ 0,

1+ v(t)<−ε/2 for all t ≥ T .

It follows that

ṗ≤ p(−ε/2− p) for all t ≥ T .

Thus, ṗ < 0 whenever p > 0, from which it follows that

limsup
t→∞

p(t) = lim
t→∞

p(t) = 0.

Suppose now that 1 + µ ≥ 0. Pick any ε > 0 and a T =
T (ε)≥ 0 such that

v(t)≤ µ + ε for all t ≥ T .

For such t,

ṗ = p(1+ v− p)≤ p(1+µ + ε− p).

This implies that ṗ < 0 whenever p(t) > 1+ µ + ε , which
implies that

limsup
t→∞

p(t)≤ 1+µ + ε.

Letting ε → 0, we conclude that

limsup
t→∞

p(t)≤ 1+µ.

We next prove the lower bound. Pick any ε > 0 and a T =
T (ε)≥ 0 such that

v(t)≥ µ− ε for all t ≥ T .

Thus

ṗ = p(1+ v− p)≥ p(1+µ− ε− p) for all t ≥ T .

This implies that ṗ> 0 whenever p(t)< 1+µ−ε (recall that
p(t)> 0 for all t, since by assumption u(t)> 0 and x(t)> 0
for all t). Therefore liminft→∞ p(t) ≥ 1+ µ − ε , and letting
ε → 0 we have

liminf
t→∞

p(t)≥ 1+µ.

Since p(t)≥ 0 for all t, we also have

liminf
t→∞

p(t)≥max{0,1+µ}.

This completes the proof.

In particular, if v(t)→ µ as t → ∞ then µ = µ = µ , so we
have as follows.

Corollary 2.2: If v(t)→ µ as t→ ∞ then

lim
t→∞

p(t) = max{0,1+µ}.

2

For the original system (1ab), we have as follows.

Proposition 2.3: Consider a solution of (1ab), with a differ-
entiable u(t) > 0 as input and x(t) > 0, y(t) > 0. Assuming
that v = u̇/u is bounded, we have:

c
bδ

max
{

0,a+µ

}
≤ liminf

t→∞
y(t) ≤ limsup

t→∞

y(t)

≤ c
bδ

max{0,a+µ}

Proof: We first assume that a=b=c=1. Let p :=
liminft→∞ p(t) and p := limsupt→∞ p(t). Equation (1b) can
be written as ẏ= p−δy. This is a linear system forced by the
input p = p(t). Pick any ε > 0. Then there is some T = T (ε)
such that p− ε < p(t) < p+ ε for all t ≥ T . For such t,
ẏ(t)> 0 whenever y(t)< (1/δ )(p−ε) and ẏ(t)< 0 whenever
y(t) > (1/δ )(p+ ε). It follows that (1/δ )(p− ε) ≤ y(t) ≤
(1/δ )(p+ ε) for all t ≥ T . Letting ε → 0 we conclude that

p/δ ≤ liminf
t→∞

y(t) ≤ limsup
t→∞

y(t) ≤ p/δ (4)

and the desired inequalities follow when a=b=c=1. To deal
with general parameters, we recall that are obtained with
x = b

a x∗, y = c
b y∗, t = 1

a t∗, and δ ∗ = δ

a . Note that t∗→ ∞ if
and only if t → ∞. Thus (4) holds for p∗ = u/x∗ = (b/a)p,
y∗, and δ ? in place of p, y, and δ . Similarly, the inequalities
in Lemma 2.1 hold for p∗ = u/x∗ and

µ
∗ = liminf

t→∞
v∗(t∗) , µ = limsup

t→∞

v∗(t∗) ,

where v∗ = du/dt∗

u = (1/a)v, so µ∗ = (1/a)µ and µ
∗ =

(1/a)µ . Therefore,

liminf
t→∞

y(t) = liminf
t∗→∞

c
b

y∗(t∗) ≥ c
b

p∗

δ ?
=

c
b

p∗

δ/a

=
ac
bδ

p∗ =
ac
bδ

max
{

0,1+µ
∗
}

=
c

bδ
max

{
a+µ

}
.

A similar remark applies to limsup, and the result follows.

The proof using p(t) is convenient, because the Theorem
stated later uses the same constructions for a closed-loop
feedback control problem.

Corollary 2.4: If v(t)→ µ as t→ ∞ then

lim
t→∞

y(t) =
c

bδ
max{0,a+µ}.

2

Three particular cases are:

• When u(t) has sub-exponential growth, meaning that
d lnu/dt ≤ 0, then limsup

t→∞

y(t)≤ ac
bδ

.
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• In particular, if u(t) = α +β t is linear, then µ = 0 and
thus lim

t→∞
y(t) =

ac
bδ

.
• If u(t) = βeµt is exponential, then lim

t→∞
y(t) =

c
bδ

max{0,a+µ}.

In conclusion, when u is constant, or even with linear growth,
the value of the output y(t) converges to a constant, which
does not depend on the actual constant value, or even the
growth rate, of the input. For constant inputs, this is called
the “perfect adaptation” property (i.e., rejection of constant
disturbances). If, instead, u grows exponentially, then y(t)
converges to a steady state value that is a linear function
of the logarithmic growth rate. (Note that x = beµt/(a+ µ)
is a particular solution of ẋ = −ax+ bu when u = eµt , so
u/x=(a+µ)/b for this solution, which explains the formula;
however this solution is not positive when a+ µ < 0.) In
[2], we study a general theoretical framework regarding the
response of IFFL’s, as well as other scale-invariant systems,
to exponential inputs, and specifically the fact that –under
mild conditions– the output converges to a steady state value
that is a function of the logarithmic growth rate.

Remark 2.5: A possible alternative IFFL model is that in
which y follows this equation:

ẏ = cu−δxy . (5)

instead of (1b). This model represents a different way of
implementing the negative effect of x on y, through degra-
dation instead of inhibition of production. A reduction to
a = b = c = 1 is again possible. Now the substitutions

x =
b
a

x∗ , y =
c
a

y∗ , t =
1
a

t∗ ,

δ
∗ =

bδ

a2 , λ
∗ =

λ

a
, κ
∗ =

cκ

a2 ,

into (1a-5-1c) transform the system into:

dx∗

dt∗
= −x∗+u (6a)

dy∗

dt∗
= u−δ

∗x∗y∗ (6b)

du
dt∗

= (λ ∗−κ
∗y∗)u (6c)

Consider a model that uses (5) instead of equation (1b) and
suppose that, for some γ > 0, u(t)≥ γ > 0 for all t ≥ 0 (for
example, u(t) = βeµt or u(t) =α+β t). Then the inequalities
in Proposition 2.3 again hold, as does Corollary 2.4. This is
because we one may rewrite ẏ= cu−cδy as ẏ= x(cu/x−δy),
and, provided that, for some ξ > 0, x(t) > ξ > 0 for all t,
solutions have the same asymptotic behavior as for (1b). On
the other hand, from the fact that p(t)= u(t)/x(t) is bounded,
we know that, for some γ ′ > 0, for all t, x(t)≥ γ ′u(t)> γ ′γ >
0. 2

III. IFFL’S AS FEEDBACK CONTROLLERS

As we remarked, in the case of exponential inputs u(t) =
βeµt , lim

t→∞
y(t) = ȳ =

c
bδ

max{0,a+ µ}. This holds both for
(1ab) and for the combination (1a)-(5). Now suppose that,
in turn, u(t) satisfies equation (1c), which means that v(t) =
λ−κy(t), and therefore µ = limt→∞ v(t)= λ−κ ȳ. This gives
an implicit equation for the rate µ:

µ = λ − cκ

bδ
max{0,a+µ} . (7)

We now solve this equation.

Denote
F(λ ) =

λbδ − cκa
bδ + cκ

.

Suppose first that λ ≤ a. Then, since a+F(λ ) = (a+λ )θ
(where θ = bδ/(bδ + cκ)), µ = F(λ ) satisfies a + µ ≥ 0
and also, rewriting µ = F(λ ), µ is the unique solution of
(7) with a+ µ ≥ 0. There are no solutions with a+ µ < 0,
because such a solution would have to satisfy µ = λ , but
a+λ ≥ 0. Suppose instead that λ > a. Then µ = λ is the
unique solution of (7) with a+µ < 0. There are no solutions
with a+µ ≥ 0, because such a solution would have to satisfy
µ = F(λ ) and therefore have a+µ = a+F(λ ) = (a+λ )θ <
0, a contradiction. In summary, when λ ≥ −a, the unique
solution of (7) is µ = F(λ ), and when λ <−a it is µ = λ .

Note that when
caκ > bδλ (8)

(which happens automatically when λ < 0) the formula
µ = F(λ ) gives that µ < 0, that is, u(t)→ 0 as t → +∞.
Conversely, if caκ < bδλ , then µ > 0 and so u(t)→ ∞ as
t → +∞. Qualitatively, this makes sense: a large feedback
gain κ , or a small growth rate λ in the absence of feedback,
leads to the asymptotic vanishing of the u variable.

In addition, from the formula ȳ = c
bδ

max{0,a + µ} we
conclude the following piecewise linear formula for the
dependence of the limit of the output on the parameter λ

that gives the growth rate of u when there is no feedback:

ȳ =

 0 if λ <−a
c(a+λ )

bδ + cκ
if λ ≥−a .

(9)

These considerations provide helpful intuition about the
closed-loop system, but they do not prove that (8) is nec-
essary and sufficient for stability, nor do they show the
validity of (9) for the closed-loop system. The reason that
the argument is incomplete is that there is no a priori reason
for u(t) to have the exponential form u(t) = βeµt .

The precise theorem is as follows:

Theorem 1: Suppose that (x(t),y(t),u(t) is a (positive) solu-
tion of (1abc), and define

v(t) := u̇(t)/u(t) = λ −κy(t) ,

p(t) := u(t)/x(t) ,
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ȳ by formula (9), which we repeat here:

ȳ =

 0 if a+λ < 0
c(a+λ )

bδ + cκ
if a+λ ≥ 0

p̄ := (δ/c)ȳ. and

v̄ =

 λ if a+λ < 0

λ −κ
c(a+λ )

bδ + cκ
if a+λ ≥ 0 .

Then:

lim
t→∞

y(t) = ȳ

lim
t→∞

p(t) = p̄

lim
t→∞

v(t) = v̄ .

lim
t→∞

u(t) =

{
0 if acκ > bδλ

∞ if acκ < bδλ .

For a detailed proof of this theorem, see [4]. It is based on
the existence of a nonlinear transformation that brings the
third order system into a cascade form, in which a second
order system described by p and y drives a linear system. The
second order system, which is a variant of a predator-prey
system, is analyzed using phase-plane techniques (Poincaré-
Bendixson Theorem combined with the Dulac-Bendixson
criterion), by first finding a compact forward-invariant region
that attracts all trajectories.

IV. ADDING POSITIVE FEEDBACK

We now study a model in which there is an additional auto-
catalytic positive feedback on y variable. We first consider the
open loop system (1ab’), and then discuss the full feedback
system (1ab’c), which we repeat here for convenience:

ẋ = −ax+bu (10a)

ẏ = c
u
x
− δy +

V yn

Kn + yn (10b)

u̇ = (λ −κy)u (10c)

A. Open-loop system with autocatalysis

We first consider only the open-loop system (10ab), in which
u = u(t) is seen as an input function (stimulus) and y as an
output (response).

For appropriate parameters, and assuming that the Hill expo-
nent (cooperativity index) n is greater than one, the system

ẏ = q − δy +
V yn

Kn + yn (11)

admits more than one steady state. (In contrast, if there is no
autocatalytic feedback, V = 0, then there is a unique steady
state, ȳ = q/δ .) Let us fix all parameters except q, which
we temporarily view as a bifurcation parameter. Adjusting
the value of q, one may obtain a low steady state, multiple
steady states, or a higher steady state. As an illustration, pick

a = b = c = 1, δ = 3, n = 2, V = 10, and K = 2.

Fig, 1 shows the right-hand side of (11) plotted for q = 0.8
and q = 1.1. For the latter value of q, there is larger steady
state. (Intermediate values typically give a system with two
stable states and one unstable state.)

Fig. 1. Plots of f (y) = q−δy+ V yn

Kn+yn , with a = b = c = 1, δ = 3, n = 2,
V = 10, and K = 2, comparing q = 0.8 (brown) and q = 1.1 (blue). The
steady state changes from a low to a high value.

Let us now write
q(t) = c

u(t)
x(t)

in the system (10ab). Suppose that we consider an input u
which has a step increase at time t = 0, from u(t) = u− for
t < 0 to u(t) = u+ for t ≥ 0. Suppose also that

x(0) = x0 = (b/a)u−,

that is, that the system at time t = 0 has an internal steady
state preadapted to u−. Since x(t) is a continuous function
of time, we have that, for small times t > 0, x(t) ≈ x0 and
u(t) = u0, and thus q(t) ≈ αu+/u−, where α = ac/b. This
means that the value of q(t) for 0 ≤ t � 1 is proportional
to the “fold change” in the input. On the other hand, as
t→∞, x(t)→ b/a, so q(t)→ ac/b=α . In the system with no
autocatalytic effect (V = 0), the differential equation ẏ = q−
δy has a unique globally asymptotically stable equilibrium,
and therefore

y(t)→ q/δ = α/δ .

That is to say, there is complete adaptation: after a step
increase in the input u, y responds in a way that transiently
depends on the fold change, but it eventually returns to its
adapted value.

On the other hand, if there is an autocatalytic feedback term
(V 6= 0), the initial input q(t) to the y-subsystem may trigger
an irreversible transition to a different state y than the adapted
value. Since the initial value of q(t) depends on the fold
change of the input, this implies that for different ranges of
fold-change magnitudes, y might switch to different states,
and remain there. As an example, using the same parameters

a = b = c = 1, δ = 3, n = 2, V = 10, and K = 2

as earlier, Fig, 2 shows how a step change in the input can
result in an irreversible locking to a higher activation state,
for the system with feedback, compared with the system
without feedback, which does not switch but has only a
transient change in activity.
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Fig. 2. Response to an input stepping from u=1 to u=2 (fold change of
input is 2). Comparing system with no positive feedback to system with
positive feedback. State x(t) is the same in both systems, so only one panel
is shown. Parameters are a = b = c = 1, δ = 3, n = 2, V = 10, and K = 2
in system with feedback, substituting V = 0 in system without feedback.

B. Closed-loop system with autocatalysis

We now turn to the full feedback system (10abc). Just as in
the case in which there was no autocatalytic terms, we may
again reduce to a two-dimensional system written in terms
of p = u/x and y. The system is now:

ṗ = p(a+λ −κy−bp) (12a)

ẏ = cp−δy+
V yn

Kn + yn . (12b)

For appropriate parameter regimes, there is a unique positive
steady state (p̄, ȳ). Specifically, for n > 1 the derivative of

V yn

Kn+yn attains its maximum at y =
( n−1

n+1

)1/n
K = K/

√
3 when

n = 2, and the derivative is 3V
√

3
8K there. Thus, the function

g(y) = a+λ −κy− (b/c)
(

δy− V yn

Kn + yn

)
,

whose roots determine the nonzero equilibrium values of y,
has derivative ≤−κ−bδ/c+ 3V

√
3

8K . Thus, when

3V
√

3
8K

< κ +bδ/c

the function g is strictly decreasing and therefore (in the
nontrivial case a+λ > 0), since g(0)> 0 and g(y)→−∞ as
y→ ∞, there is a unique zero ȳ. See for example the phase
plane drawn in Fig. 3. and globally asymptotically stable

A remarkable feature emerges for this system. When does
u(t) → 0 as t → ∞, corresponding to elimination of a
pathogen or tumor, in the motivating context of immunology?
When does u(t)→ ∞ as t → ∞, corresponding to prolifera-
tion? Note that, if

(p(t),y(t))→ (p̄, ȳ) as t→ ∞,

then, since u̇ = (λ −κy)u, u(t) behaves like αeµt for large
t. On the other hand, at steady state a+ λ − κ ȳ− bp̄ = 0,
which means that

µ−λ −κ ȳ = bp̄−a.

Therefore:

p̄ <
a
b
⇒ u(t)→ 0 as t→ ∞

p̄ >
a
b
⇒ u(t)→ ∞ as t→ ∞ .

Note that (p̄, ȳ) is a positive equilibrium if and only if bp̄ =
a+λ −κ ȳ and cp̄ = − f (ȳ) where f (y) = −δy+ V yn

Kn+yn . To

Fig. 3. Phase-plane for system (12), with a= 0.8, b= 1, c= 0.1, δ = 1, n=
2, V = 1.95, K = 1, κ = 20, λ = 25. The y-nullcline is cp−δy+ V yn

Kn+yn = 0
(dot-dashed orange). The p-nullcline has two components: p = 0 (the y-
axis) and the line y = (a+ λ − bp)/κ (dashed red). Three representative
trajectories are shown (solid blue). Notice the vertical-looking motion of
one trajectory near the y-axis: along such solutions, p(t) = u(t)/x(t) stays
≈ 0 for a time interval, after which this ratio converges to p̄. Gray arrows
indicate directions of movement in phase plane. The equilibrium point (p̄, ȳ)
is such that p< 0.8 and thus, since u̇= (λ−κy)u, u(t) behaves like αeµt for
large t, where µ = λ −κ ȳ = bp−a = p−0.8, we have µ < 0 (elimination).

find equilibria, we can first solve a+λ −κ ȳ = −(b/c) f (ȳ)
for ȳ, and then obtain

p̄ = (1/b)(a+λ −κ ȳ).

Note that µ = λ − κ ȳ < 0 is equivalent to p̄ > a/b, or
−(1/c) f (ȳ)> a/b, and µ = λ −κ ȳ < 0 is equivalent to p̄ <
a/b, or −(1/c) f (ȳ) < a/b. Therefore, leaving all other pa-
rameters constant, µ switches sign whenever f (ȳ) =−ac/b.
The formula λ = κ ȳ− (b/c) f (ȳ)−a gives those values of
λ where there is change from µ < 0 (which means u(t)→ 0
as t → ∞) to µ > 0 (u(t) → ∞ as t → ∞), or viceversa.
As λ increases, we may expect several such switches, as
may be seen graphically as one draws parallel nullclines
corresponding to different values of λ . For the example in
Fig. 3, several of these are shown in Fig. 4. Simulations
confirm these predictions, see Fig. 5.

DISCUSSION

The immune system is now recognized as playing an im-
portant role in tumor control. Our very simple phenomeno-
logical model recapitulates some of the basic features of
immunoediting. Our model employs both feedforward and
feedback regulation (which play roles vaguely analogous to
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Fig. 4. Phase plane for system (12), with same parameters as in Fig. 3, but
now with with several values of λ . The y-nullcline is cp−δy+ V yn

Kn+yn = 0
(dot-dashed orange). The p-nullcline has two components: one is p = 0
(the y-axis, dashed magenta) and the second component is the line y =
(a+λ −bp)/κ which depends on the value of λ , and is shown for λ = 1
(green), λ = 5 (blue), λ = 15 (red), λ = 25 (magenta), and λ = 30 (black).
Gray arrows indicate directions of movement in phase plane for λ = 25.
Observe that the equilibrium point (p̄, ȳ) is such that p < 0.8 for λ = 1,
p > 0.8 for λ = 5, p < 0.8 for λ = 15 and λ = 25, and p > 0.8 for λ = 30.
Since u̇= (λ−κy)u, u(t) behaves like αeµt for large t, where µ = λ−κ ȳ=
bp− a = p− 0.8, these growth rates λ corresponds respectively to µ < 0
(elimination), µ < 0 (proliferation), again µ < 0 (elimination, two nullclines
values shown), and yet again µ > 0 (proliferation).

innate and adaptive responses), and leads to perhaps unex-
pected conclusions regarding transitions between tolerance
and elimination. In that context, one might view the x variable
as representing the level of activity of a regulatory inhibitory
component (such as a population of Treg cells at a particular
infection site or in a certain tumor microenvironment), y as
the level of activity of an immune response component (such
as cytotoxic T cells), and u as a population of pathogens or
the volume of a tumor, which might grow exponentially (if
λ > 0) in the absence of immune action, but which is killed
at a rate proportional to the immune response. The feedback
into x and y represents the activation of both the response
and of the regulatory mechanism in response to the infection
or tumor.

In an immunological context, autocatalytic feedback might
be implemented by a cytokine-mediated recruiting of addi-
tional immune components, or by autocrine stimulation. This
results in an excitable system, which allows y to “lock” into a
high state of activity given a sufficiently rapid rate of change
in its input. Changing the growth rate λ of the pathogen or
tumor, while fixing all other parameters, results in elimination
of u for small growth rates λ , and in proliferation as λ

increases. This is, of course, obvious. However, and very

Fig. 5. Simulations of system (10), with same parameters as in Fig. 3,
but now with with several values of λ . Initial states x(0) = y(0) = u(0) = 1.
Left to right: λ = 1,5,15,30. As the growth rate λ increases, we obtain
elimination (for λ = 1), proliferation (λ = 5), elimination (λ = 15; plot for
λ = 25 not shown but similar), and again proliferation (λ = 30)

surprisingly, it may happen in this model that further increase
of the growth rate λ , that is, when presented with a more
aggressive pathogen or tumor, leads to the eventual elimi-
nation of the pathogen or tumor. This might be intuitively
interpreted as a higher growth rate triggering locking of the
immune response at a higher value. An even larger increase
in λ leads again to proliferation. In other words, the pattern
“elimination, proliferation, elimination, proliferation” can be
obtained simply by gradually increasing λ . This is consistent
with experimental results, going back to the 1980 and eariler.
We do not further discuss these potential applications here,
but we mention that this approach helps extend and unify
several threads in the theoretical immunology literature that
deal with the role of dynamics in self/nonself discrimination,
as well as tumor dormancy and the tolerance of slow-
growing tumors and chronic infections, and is related to the
“sneaking-through” phenomenon in tumor immunology [1]
(which has been mathematically modeled using alternative
aproaches). See [3] (and journal paper to be published) for
details and many references to a very active literature, as
well as Weber-like logarithmic sensing and “fold change
detection” of inputs.
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