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Abstract: The phenomenon of fold-change detection, or scale-invariance, is exhibited by a variety of sensory systems, in both
bacterial and eukaryotic signalling pathways. It has been often remarked in the systems biology literature that certain systems
whose output variables respond at a faster time scale than internal components give rise to an approximate scale-invariant
behaviour, allowing approximate fold-change detection in stimuli. This study establishes a fundamental limitation of such a
mechanism, showing that there is a minimal fold-change detection error that cannot be overcome, no matter how large the
separation of time scales is. To illustrate this theoretically predicted limitation, the authors discuss two common biomolecular
network motifs, an incoherent feedforward loop and a feedback system, as well as a published model of the chemotaxis
signalling pathway of Dictyostelium discoideum.
responses in this paper, but similar questions can be studied
1 Introduction

An important phenomenon in biology is that in which
physiological signal returns to a pre-stimulus or ‘defaul
value after a transient (impulse or pulse) input has bee
sensed. This input might be physical or biochemical, suc
as a light input to a photoreceptor, or a ligand to a
olfactory receptor. Often, a return to such steady-sta
values of outputs occurs even in the face of a sustained ste
or periodic excitation: the study of such exact (or at lea
approximate) adaptation to a persistent input has been th
subject of extensive investigations in both the experiment
and the modelling literature [1–3]. Physiological adaptatio
is a trait of many sensory systems, allowing them t
accurately detect changes in input signals and distinguis
meaningful information from background through a shiftin
of dynamic range. Thus, the human eye distinguishe
features across nine orders of magnitude, even though i
sensors can only detect a three order of magnitude contras
this is achieved through both the pupillary light reflex an
the adjustment of sensitivity of rods and cones [4
Similarly, humans adapt to constant touches, smells o
background noises, detecting new information only when
substantial change occurs. At a different scale of behaviou
a particularly well-studied example of physiologic
adaptation is that of the response of the Escherichia co
(E. coli) chemotatic pathway response to stepwise additio
and subsequent removal of attractant [3, 5]. In contro
theory, perfect adaptation is also called ‘disturbanc
rejection’ and is associated to ‘internal models’ of inpu
and specifically, for linear systems, zero gain at zero o
other frequencies [2, 6, 7]. For simplicity, we restrict to ste
for persistent oscillatory inputs.

1.1 Scale-invariance

Specifically, we are interested here in a finer property than
mere adaptation, namely scale-invariance of responses. To
explain this property intuitively (we later define what we
mean by ‘input’ and ‘output’ precisely), consider two step
inputs u1 and u2 which are scaled versions of each other:
u2(t) = pu1(t), for some positive number or ‘scale factor’ p,
see Fig. 1a. Adaptation means that, whether excited by u1
or u2, the output signal will return to the same value, as
shown in Fig. 1b. On the other hand, scale-invariance
means that the entire actual transient response will be the
same under either excitation, as shown in Fig. 1d. An
intermediate property between mere adaptation and
scale-invariance is the ‘Weber-like’ property from
biophysics and psychophysics [8–11], in which the
temporal, transient response may be different, but the peak
intensities are the same, as shown in Fig. 1c.
Recent interest in scale-invariance was triggered by a pair

of papers [12, 13] published in late 2009, in which
scale-invariant behaviour was experimentally observed in a
Wnt signalling pathway and an EGF pathway, respectively.
These are highly conserved eukaryotic signalling pathways
that play roles in embryonic patterning, stem cell
homeostasis, cell division and other central processes, and
their misregulation results in diseases including several
types of cancer. Scale-invariance is also found in certain
bacterial signalling systems. A prediction, for the E. coli
1
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Fig. 1 Responses to scaled inputs
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chemotaxis sensory circuit in response to the ligan
α-methylaspartate, was made in [14], based on a mod
proposed by Tu et al. [15]. This prediction was lat
verified in a microfluics population experiment carried ou
in Stocker’s lab as well as an in FRET measurements o
genetically altered bacteria in Shimizu’s lab [16].

1.2 Robustness to total protein levels is
guaranteed by scale invariance of downstream
components

Scaled inputs in molecular sensing may arise as follow
Suppose P is a signalling protein, whose total concentratio
PT is assumed to be constant at the signalling timescal
This protein can be found in inactive or active forms Pi an
Pa, respectively. The active form Pa is a transcription facto
that controls the level of expression of a target gene an
can be thus viewed as an input to a downstream system
The rates of transition between these two forms depend, i
turn, on a signal w(t) (e.g. an extracellular ligan
concentration) through functions kon(w(t)) and koff(w(t))

PiO
kon(w(t))

koff (w(t))

Pa (1

as shown in the diagram in Fig. 2.
The simplest differential equation model describing th

temporal dynamics of this process would be given by

u̇(t) = kon(w(t))(PT − u(t))− koff (w(t))u(t)

(dot indicates time derivative), where we denote by u(t) th
amount of active protein Pa at time t; we use this notatio
to emphasise that this function u(t) is what will be sense

a Scaled step inputs and corresponding responses
b Perfect adaptation
c Weber-like (same peak amplitude responses)
d Scale-invariance (same transient responses)
by the downstream system as an input. The key observation

Fig. 2 Activation and inactivation of a protein by an external
signal

Active form is input to downstream gene expression

2
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is that, for any number p > 0, the function v(t) := pu(t)
satisfies

v̇(t) = kon(w(t))(pPT − v(t))− koff (w(t))v(t)

which means that v(t) solves the new differential equation in
which the total protein level PT has been scaled by p. Another
way to say this is that if PT changes to some other value P′T,
then the temporal signal u(t), the input to a downstream
system, will be scaled by the constant factor p = P′T/PT.
This implies that the cell’s response to w(t) will be robust
to uncertainty in PT provided that the response to u be
scale-invariant. (A similar discussion, but based on a much
more restrictive Michaelis–Menten quasi-steady-state
approximation, can be found in [17].) As total protein
concentrations are highly variable from cell to cell, and
even in the same cell over time [18–22], this robustness
might explain the experimental results in [12, 13].
Scale-invariance means that the downstream system cannot

distinguish between an input u(t) and a scaled version pu(t).
For step inputs that jump at t = 0, we can reformulate this
property by saying that the response can only depend on the
fold change of the input at time 0:

v(t)

v(0)
= pu(t)

pu(0)
= u(t)

u(0)

hence motivating the terminology ‘fold change detection’
(FCD), which we will use interchangeably from now on.

1.3 Feedforward circuits

Feedforward motifs have been the subject of extensive
research in systems biology for the last decade [3]. They
play a central role in metabolic pathways, signalling
networks and genetic circuits in systems ranging from
microRNA regulation [23] to bacterial carbohydrate uptake
via the carbohydrate phosphotransferase system [24], and
control mechanisms in mammalian cells [25] that regulate
stress responses to free radicals, bacterial or viral infections
and cancer, and in the regulation of meiosis, mitosis and
post-mitotic functions in differentiated cells, including, for
example, the ATP-induced release of intracellular calcium
[26], the epidermal growth factor-mediated activation of
extracellular-signal-regulated kinases [27, 28], the activation
of the NF-κB protein complex [29, 30], and the
glucose-induced release of insulin produced by β-cells of
the pancreas, central to regulating carbohydrate and fat
metabolism in the body [31, 32].
In particular, the IFFL (incoherent feedforward loop) motif,

as represented generically by the directed graphs in Fig. 3, has
IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
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Fig. 4 Two realisations of the ‘input repressing output’ motif in
Fig. 3b

Fig. 3 Two incoherent feedforward motifs

a Input activates and intermediate species represses output
b Input represses and intermediate species activates output
been proposed as one of the two main biomolecula
mechanisms (the other is integral feedback) that can hel
produce scale-invariance or FCD [14, 17, 33].
In IFFL’s, an external cue or stimulus u activates

molecular species x which, in turn, activates or represses
downstream species y. Through a different path, the sign
u represses or activates, respectively, the species y. Th
antagonistic (‘incoherent’) effect endows the IFFL mot
with powerful signal processing properties [3].
The conceptual diagrams shown in Fig. 3 describe, in fac

various alternative molecular realisations. Different molecula
realisations of the given motif can differ significantly in the
dynamic response and, ultimately, biological function. Tw
realisations of the diagram in Fig. 3b are shown in Fig.
and similar alternatives exist for the diagram in Fig. 3a.
These two realisations differ in a fundamental way i

regards to their scale-invariance (FCD) properties. Th
biological mechanism in Fig. 4a exhibits FCD, but the on
in Fig. 4b does not. To be more precise, we study th
simplest ordinary differential equation (ODE) models fo

a Input inhibits the formation of output
b Input enhances the degradation of output
these processes, in which the concentrations of the input u

Fig. 5 Dynamic response of the circuit in Fig. 4a and described by t

Pre-adaptation value of input is u0 = 0.1, stepping to u* = 0.5 at t = 0
Original and p-scaled responses (p = 20) overlap perfectly
Here, α = β = δ = γ = 1

IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
and species x and y are described by scalar time-dependent
quantities.
Suppose that (x(t), y(t)) is any solution corresponding to

the input u(t), for the system described by Fig. 4a. Then,
(px(t), y(t)) is a solution corresponding to the input pu(t):

ẋ = au− dx ⇒ ( px
·
) = a(pu)− d(px)

ẏ = b
x

u
− gy ⇒ ẏ = b

x

u
− gy

(2)

In particular, given a step input that jumps at time t = 0 and an
initial state at time t = 0 that has been pre-adapted to the input
u(t) for t < 0 (i.e. x(0) = αu0/δ, where u0 is the value of u for
t < 0), the solution is the same as when instead applying pu(t)
for t > 0, but starting from the respective pre-adapted state
pαu0/δ. A simulation showing this effect is shown in Fig. 5.
On the other hand, the FCD property fails for the system in

which the input enhances the degradation of output, shown in
Fig. 4b. The same ‘trick’ of scaling states x by p does not
work for this second system, when modelled in the obvious
manner:

ẋ = au− dx

ẏ = bx− guy

because the scaling x 7! px and u 7! pu does not leave the y
equation invariant. Moreover, one can prove that no possible
equivariant group action on states is compatible with output
invariance, which means that no possible symmetries are
satisfied by the input/output behaviour of this system. These
issues are carefully discussed in [14], which carried out a
systematic analysis of the FCD property. (Presenting these
results would entail formulating rigorously a general
invariance problem, which is not needed for the purposes of
this paper.)

1.4 Time-scale separation provides approximate
FCD

The above negative remarks notwithstanding, it has been
observed that systems such as the one in Fig. 4b satisfy an
approximate FCD property provided that the parameters β

www.ietdl.org
and γ are large enough so that a time-scale separation

he model (2) and all parameters set to 1

3
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property holds. Multiple time scales, corresponding to slo
and fast subsystems, are typically inherent in cellula
systems [34, 35].
To introduce multiple time scales, corresponding to slo

and fast subsystems, we carry out a standar
non-dimensionalisation procedure which is routinely used i
chemical kinetic modelling to justify the validity of th
quasi-steady state assumption of enzyme kinetics [34, 35]

x = X0�x, y = Y0�y, u = U0�u, t = X0

a0U0

�t, a = a0�a

b = b0
�b, �d = dX0

a0U0
, �g = gU0Y0

b0X0
, 1 = a0

b0
· Y0U0

X 2
0

(3

Here, X0, Y0 and U0 are some mean or typical values of th
variables x, y and u, respectively, and �x, �y and �u are th
corresponding dimensionless variables. The parameters
and �b can be interpreted as the dimensionless rates o
formation or activation, while �d and �g can be interpreted a
the dimensionless rates of degradation or inactivation of th
species x and y, respectively. In what follows, we omit th
bar from all notations and think of �t as our original tim
scale, so we simply write our system in the followin
singular perturbation form:

ẋ = au− dx

1ẏ = bx− guy
(4

Assuming that the corresponding pairs of kinetic parameter
α∼ δ and β∼ γ, are of the same order of magnitude, we ca
think of ε as a small parameter, that is, 0 , 1 ≪ 1 in (3
and (4), where the remaining parameters are all O(1). Sma
values of ε can be attributed to various important factor
For example, suppose that the values of X0 and

������
U0Y0

√
a

of the same order of magnitude in (3). The
1 � a0/b0 ≪ 1 means that the species y is activated muc
faster comparing with the rate of the activation of th
species x. Another example corresponds to the situatio
where the rates of activation are of the same order o
magnitude, that is, a0 � b0, while the concentrations of th
corresponding species differ in several orders of magnitud
for example, Y0 ≪ X0 while U0∼ Y0 (or U0∼ X0).
When viewed at a slow time-scale, we may assume that y(

quickly equilibrates (set ε = 0 in the second equation) so tha
in effect, the resulting system is given by a one-dimension
(1D) differential equation together with a readout which
an instantaneous ratio of states and inputs:

ẋ = au− dx

y(t) ≃ bx(t)

gu(t)

(we include the time argument in y to emphasise th
instantaneous nature of the quasi-steady-state dependence
Now a scaling u 7! pu and x 7! px results i
(approximately) the same output, since

y = b x

g u

The property of time-scale separation for IFFL’s can be trace
back to work in [33, 36, 37], and systems of this form we

www.ietdl.org
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theoretically analysed in [38]; see also the ‘sniffer’ circuit
in [39]. We were particularly motivated to look at this
question by the analysis in [40], which concluded, through
a combination of theoretical analysis and numerical
exploration that every three node enzymatic network (as
studied in [41]) which has an approximate FCD property
must rely upon this mechanism of time scale separation.
The study of this time-scale separation for FCD, and the

dependence of the magnitude of the FCD-error on the input
scaling, not only for feedforward systems but in a general
context, is the topic of the current paper.

1.5 Limitations of time-scale-based
scale-invariance

Our main result is that, no matter how small ε is, there is
always an irreducible minimal possible difference in
instantaneous values of outputs when comparing the
response to an input u(t) and to a scaled version of this
input, pu(t).
This is illustrated by the simulation shown in Fig. 6.
We call such an irreducible difference an FCD-error. As a

matter of fact, one can show that the FCD-error (difference
between the original output y1(t) and the output yp(t) arising
from a p-scaled input) is not merely non-zero, but is in fact
bounded below by a positive number that is independent of
the value of the small parameter ε. Fig. 7 shows this effect.
An entirely analogous situation holds for systems in which

the state degrades the output, modelled by switching the roles
of u and x in the y equation

ẋ = au− dx

1ẏ = bu− gxy
(5)

and error behaviour is illustrated by Fig. 8.
This irreducible error, no matter how small ε > 0 is,

establishes a fundamental limitation to fold-sensing systems
based on time-scale separation, such as those proposed in
the context of state-degradation or input-degradation
feedforward systems. The existence of such an irreducible
error can also be understood through a geometric
interpretation based on singular perturbation theory [42–
44]: a step change in the input changes the ODE, with the
net result that, even though the output remains the same,
the internal state, whose activity is hidden from the output
measurement, has in fact ‘jumped’ away from the slow
manifold. A derivation of estimates from that point of view,
establishing asymptotic expansions to obtain precise bounds
on the error for specific systems, will be conducted in
future work. In this paper, we use more general techniques
in order to rigorously prove the phenomenon in very
general systems, and illustrate our results on examples of
biological interest.
It is important to emphasise that scale invariance is by

definition a transient notion. All the systems that we study
in this paper have the perfect adaptation property, and thus,
in particular, scale perfectly for large times. It is precisely
the short-term behaviour that is of interest in the study of
the FCD property. That said, our results focus on the initial
part of the response. This means that systems that are
driven by the output of the system in question, but react
slowly, might not be noticeably affected by this error. We
present in the paper a basic mathematical principle, and
make no claims regarding its relevance to specific
biological systems. As the FCD field is rapidly developing,
IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006



Fig. 7 System with input-dependent degradation

(a) Heat-map and (b) 3D plot representing the largest absolute value of the difference between the two outputs yp(t) and y1(t)
Observe that, for any fixed p, except for the trivial case p = 1, the values approach a positive number as ε→ 0
Pre-adaptation value of input is u0 = 1, stepping to u* = 2 at t = 0
Parameter ε was sampled in the range [0.0005, 0.002]
Parameter p was sampled in the range [0.5, 3.5]
Hundred different samples for each were selected
Here, α = β = δ = γ = 1

Fig. 6 Dynamic response of the circuit in Fig. 4b and described by the model (4) with all parameters except ε set to 1

Original (blue) and p-scaled (red) responses
Pre-adaptation value of input is u0 = 0.1, stepping to u* = 0.5 at t = 0
The p-scaled output is denoted by yp(t)
Here, ε = 0.01 and p = 20
Maximal magnitude of the FCD-error is depicted by a black segment (inset)
Here, α = β = δ = γ = 1

www.ietdl.org
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Fig. 8 System with state-dependent degradation

(a) Heat-map and (b) 3D plot representing the largest absolute value of the difference between the two outputs yp(t) and y1(t)
Pre-adaptation value of input is u0 = 1, stepping to u* = 2 at t = 0
Observe that, for any fixed p, except for the trivial case p = 1, the values approach a positive number as ε→ 0
Parameter ε was sampled in the range [0.0005, 0.002]

www.ietdl.org
one may speculate, however, that examples will be discovere
where this phenomenon is of importance.
The rest of this paper is organised as follows. In Section

we present rigorous results, using a general mathematic
treatment without any a priori assumption on the smallnes
of the parameter ε. We first discuss an IFFL, for whic
explicit bounds can be given. That example reveals th
complexity of the effect and motivates the need for gener
theory. We follow with a general comparison theorem fo
two arbitrary singularly-perturbed systems. The theorem
states that the maximal difference between th
corresponding solutions of such singularly-perturbe
systems is always bounded below by a non-zero quantit
even though the value of the small parameter can be chose
arbitrarily small. In Section 3, we discuss several example
as illustrations of the main theorem. Finally, Section

Parameter p was sampled in the range [0.5, 3.5]
Hundred different samples for each were selected
Here, α = β = δ = γ = 1
contains details of proofs.
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2 Lower bounds on scale-invariance error

2.1 Concrete example

We start by considering the input-induced degradation IFF
circuit under time-scale separation described in (4), th
ODE model which we repeat here for convenience:

ẋ = au− dx

1ẏ = bx− guy

where α, β, δ and γ are the positive constants, and we think o
ε as a small parameter. We wish to study the response of th
system to a step input u(t) which switches from the valu
u(t) = u0 for t≤ 0 to a different value u(t) = u* for t >
under the assumption (‘pre-adaptation’) that the states x an
y had converged to a steady state by time t = 0, and want t
compare this response to the response to the input pu(t). I
the first case, the steady state at time t = 0 can be found b
setting αu0− δx = 0 and βx− γuy = 0, and then solving fo
6
& The Institution of Engineering and Technology 2015
(x, y). The response for t > 0 will be, therefore given by the
solution of the ODE with initial condition x(0) = (α/δ)u0 and
y(0) = (αβ/δγ), and input u(t)≡ u* for t > 0. In the second
(p-scaled) case, the initial state will be x(0) = (α/δ)pu0, and
the same y(0), now using the input u(t)≡ pu* for t > 0. We
will take α = β = δ = γ = 1 in our subsequent analysis. This
involves no loss of generality, because a change of scale in
x, u, y and time via: u = δu′/γ, x = αx′/γ, y = αβy′/(δγ) and
t = t′/δ reduces to that case. The main result for this
example given in Proposition 1.
We use the notation y− w

∥∥ ∥∥
[0,T ] = maxt[[0,T ] y(t)− w(t)

∣∣ ∣∣
to denote the largest possible value of the difference |y(t)−w(t)|
between two functions defined on an interval [0, T ]. In
particular, when quantifying FCD-error, w will be the
output when the input is scaled.

Proposition 1: Consider solutions (x1i (t), y
1
i (t)) of the

following two initial value problems

ẋ1 = u∗ − x1, x1(0)= u0 ẋ2 = pu∗ − x2, x2(0)= pu0
1 ẏ1 = x1− u∗y1, y1(0)= 1 1 ẏ2 = x2− pu∗y2, y2(0)= 1

(6)

where ε, u*, u0 and p are non-zero positive numbers, and we
assume that p≠ 1, u0≠ u*. Define M =M(u*, u0, p) > 0 by

M := 1− u0
u∗

∣∣∣ ∣∣∣p(p/(1−p)) 1− p
∣∣ ∣∣ (7)

Then, for any 0 <M′ <M <M′′, there exist two numbers ε0 =
ε0(u*, u0, p, M′, M″), and δ = δ(u*, u0, p, M′, M″) > 0, such
that

M ′ ≤ y11 − y12
∥∥ ∥∥

[0,d] ≤ M ′′, ∀0 , 1 ≤ 10 (8)

The proof of Proposition 1 can be found in Section 4. Since
M′ and M″ can be taken arbitrarily close to M, this result
tells us, in particular, that y11 − y12

∥∥ ∥∥
[0,d] ≃ M for all
IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
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by the properties of the fast subsystem.
0 , 1 ≪ 1, and δ small. In other words, the positive numbe
given in formula (7), which does not depend on ε, provides
fundamentally irreducible error as ε→ 0, for any non-trivi
scaling (p≠ 1) and any nontrivial step input (u0 ≠ u*).

2.2 General comparison theorem

We now formulate a general comparison theorem th
generalises Proposition 1 to arbitrary systems. The bound
obtained are not as explicit as with the example, yet the
again show the existence of a positive number M th
lower-bounds the difference between outputs under scalin
of inputs. To achieve the greatest possible generality, ou
theorem will be formulated and proved for two arbitrar
singularly-perturbed non-autonomous initial-value problem
(IVPs), as follows:

(S1)
ẋ1 = f1(x1, y1, t), x1(0) = j1
1 ẏ1 = g1(x1, y1, t), y1(0) = k1

{

(S2)
ẋ2 = f2(x2, y2, t), x2(0) = j2

1 ẏ2 = g2(x2, y2, t), y2(0) = k2

{ (9

Here (xi, yi), (ji, κi)∈ X × Y, where X and Y are open set
X # Rn and Y # Rs. The functions fi and gi are of class C
with respect to x, y and t, i = 1, 2.
The main result will be that a minimal difference exis

between y1 and y2, independently of ε > 0, provided onl
that the following two associated ODE systems

(A1) Y ′
1 = g1(j1, Y1, 0), Y1(0) = k1

(A2) Y ′
2 = g2(j2, Y2, 0), Y2(0) = k2

(10

have different solutions. These are the systems obtained whe
ε is ignored but x1 and x2 are replaced by their initial values j
and j1 in S1 and S2, respectively. (We use primes ′ instead o
dots to indicate time derivatives, for reasons to be clea
below.) We now explain how we can apply the theorem t
scale-invariance. Suppose given a system of the generic form

ẋ = f (x, y, u)

1ẏ = g(x, y, u)

where generally speaking, the input as well as the state vecto
(x, y) are of arbitrary dimensions. We think of the componen
of y as an output, and want to compare the outputs associate
to two inputs u(t) and pu(t), for t > 0, when initial states migh
themselves depend on the values of u(t) and pu(t) for t <
This latter dependence is encapsulated in the initial state
(j1, κ1) and (j2, κ2), respectively. To apply the theorem, w
let f1(x1, y1, t) := f (x1, y1, u(t)), g1(x1, y1, t) := g(x1, y1, u(t)
f2(x2, y2, t) := f(x2, y2, pu(t)) and g2(x2, y2, t) := g(x2, y
pu(t)). The systems considered are quite arbitrary, and allo
for feedback and not merely feedforward structures, as wi
be evident when we study examples.
Our analysis starts from the observation that the transien

FCD-error occurs within a thin boundary layer adjacent t
the perturbation moment t = 0, as can be seen in th
example shown in Fig. 6. To analyse non-linear effec
occurring within small time intervals, it is convenient to us
the stretched time t = t/ε. Substituting t = εt into (9), w
IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
obtain

(R1)
X ′
1 = 1f1(X1, Y1, 1t), X1(0) = j1

Y ′
1 = g1(X1, Y1, 1t), Y1(0) = k1

{

(R2)
X ′
2 = 1f (X2, Y2, 1t), X (0) = j2
Y ′
2 = g(X2, Y2, 1t), Y (0) = k2

{ (11)

where (·)′ = d(·)/dt, and all functions are
continuously-differentiable with respect to the variables, the
initial conditions and the parameter ε > 0 as discussed above.
In contrast to the singularly-perturbed systems (S1) and

(S2), both systems (R1) and (R2) are regularly-perturbed
with respect to ε. It follows that the FCD-error should be
already detected at ε = 0 in which case the systems (R1) and
(R2) can be further reduced to the associated systems (10).
Observe that the system (Ai) is obtained from (Ri), where Xi

is replaced by its initial condition ji, using the reference
IVP X′i = 0, X(0) = ji at ε = 0, i = 1, 2. We will denote the
solutions of the systems (Ri) by X 1

i (t) and Y 1
i (t), i = 1, 2.

Theorem 1: Assume that the solution (x1i (t), y
1
i (t)) of the

system (Si) is defined on [0, ∞) for all ε∈ (0, ε0] with
some ε0 > 0, i = 1, 2. Let Y 0

i (t) be the solution of the
associated system (Ai), i = 1, 2. Then, for each ε∈ (0, ε0]
and each 0≤ t0 <∞, we have

Mt0
− 1Nt0

≤ y11 − y12
∥∥ ∥∥

[0,1t0]
≤ Mt0

+ 1Nt0
(12)

where Mt0
and Nt0

are defined as follows:

Mt0
= Y 0

2 (t0)− Y 0
1 (t0)

∣∣ ∣∣,
Nt0

= max
0≤1≤10

∂Y 1
1 (·)
∂1

∥∥∥∥
∥∥∥∥
[0,t0]

+ max
0≤1≤10

∂Y 1
2 (·)
∂1

∥∥∥∥
∥∥∥∥
[0,t0]

(13)

Theorem 1, which is proved in Section 4, implies that if the
solutions of the associated IVP (10) are different, that is, if
Y 0
1 (t0) = Y 0

2 (t0) for some t0, then as ε→ 0 there will
always exist a minimal possible non-zero difference (in
supremum norm) between the solutions of the
corresponding singularly-perturbed problems (S1) and (S2),
approximately equal to Mt0

. The effect is solely determined

www.ietdl.org
3 Examples

To illustrate Theorem 1, we consider three examples of
increasing complexity: first, we revisit the example of an
IFFL, then study a more complicated system in which there
is feedback, and finally we look at a published model of the
chemotaxis signalling pathway of Dictyostelium discoideum
(D. discoideum).
3.1 Applying the general theorem to the IFFL

We begin our analytical study with the application of
Theorem 1 to the input-induced degradation IFFL circuit
under time-scale separation described in (4). To emphasise
the value of the scaling p, we shall denote the solution of
the p-scaled system by (xp(t), yp(t)). The systems (S1) and
7
& The Institution of Engineering and Technology 2015
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Table 1 Numerical estimation of the magnitude Eε of the
FCD-error, as a function of the parameter ε, and its comparison
with the theoretical prediction lower bound Mt0

− 1Nt0
, where

the values of Mt0
and Nt0

are given in (24)

ε Eε M−Nε

10−2 0.19803 −0.03636
10−3 0.199800 0.176364
10−4 0.199980 0.197636
10−5 0.199997 0.199763
10−6 0.199999 0.199976

The scaling is p = 2

Table 2 Numerical estimation of the magnitude Eε of the
FCD-error, as a function of the parameter ε, and its comparison
with the theoretical prediction lower bound Mt0

− 1Nt0
, where

the values of Mt0
and Nt0

are given in (24)

ε Eε M−Nε

10−2 0.647580 0.517450
10−3 0.648983 0.635971
10−4 0.649124 0.647823
10−5 0.649138 0.649008
10−6 0.649139 0.649126

The parameter p is selected as p = 20
(S2) from (9) become, in this example

(S1)
ẋ1 = u∗ − x1, x1(0) = u0
1 ẏ1 = x1 − u∗y1, y1(0) = 1

{

(S2)
ẋp = pu∗ − xp, xp(0) = pu0
1 ẏp = xp − pu∗yp, yp(0) = 1

{ (14

Here u0 = u(0−) and u* = u(0+) = u(t), t≥ 0. The associate
systems (A1) and (A2) in (10) are

(A1) Y ′
1 = u0 − u∗Y1, Y1(0) = 1

(A2) Y ′
p = p(u0 − u∗Yp), Yp(0) = 1

(15

In what follows we will apply Theorem 1 to the systems (R
and (R2) in (11) with the fixed values for ε0 and t0 given b

10 = min {u∗, u∗p}/2, t0 =
ln p

(p− 1)u∗
(16

The constants Mt0
and Nt0

in (13) guaranteed by Theorem
satisfy, for these choices of ε0 and t0

Mt0
= 1− u0

u∗

∣∣∣ ∣∣∣ p− 1
∣∣ ∣∣p(p/(1−p)) (17a

Nt0
≤ Ñ t0

= 4

u∗
1− u0

u∗

∣∣∣ ∣∣∣ 2(p+ 1)

p
+ ln p

p− 1

( )
(17b

The expression forMt0
in (17a) is obtained in Lemma 1. Nex

we compute Nt0
, using the fact that, for this example, whe

the dynamics are linear, each system (Ri) in (11) can be solve
analytically.
Denote by (x1(t;ε), y1(t; ε)) and (xp(t; ε, p), yp(t; ε, p)) th

solutions of the systems (S1) and (S2), respectively. We ca
find the solutions of (Ri) as

X 1
1 (t) = u∗ + (u0 − u∗)e−1t,

Y 1
1 (t) = 1+ (u0 − u∗)

u∗ − 1
(e−u∗t − e−1t)

(18a

X 1
2 (t) = p(u∗ + (u0 − u∗)e−1t),

Y 1
2 (t) = 1+ p(u0 − u∗)

pu∗ − 1
(e−pu∗t − e−1t)

(18b

Differentiating Y 1
2 (t) by ε yields

∂Y 1
2 (t)

∂1
= p(u0 − u∗)

pu∗ − 1

e−pu∗t − e−1t

pu∗ − 1
+ te−1t

( )
(19

and hence when p = 1 we have

∂Y 1
1 (t)

∂1
= (u0 − u∗)

u∗ − 1

e−u∗t − e−1t

u∗ − 1
+ te−1t

( )
(20

Observe that

www.ietdl.org
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∂Y 1
1 (t)

∂1

∥∥∥∥
∥∥∥∥
[0,t0]

≤ 1− u0/u
∗∣∣ ∣∣

1− 1/u∗
2

u∗(1− 1/u∗)
+ t0

( )
(21a)

∂Y 1
2 (t)

∂1

∥∥∥∥
∥∥∥∥
[0,t0]

≤ 1− u0/u
∗∣∣ ∣∣

1− 1/(pu∗)
2

pu∗(1− 1/(pu∗))
+ t0

( )
(21b)

Since ε0 is fixed according to (16), then, for all 0≤ ε≤ ε0, we
obtain 1− ε/u*≤ 1/2 and 1− ε/(pu*)≤ 1/2, and, hence, the
estimates (21) can be simplified as

∂Y 1
1 (t)

∂1

∥∥∥∥
∥∥∥∥
[0,t0]

≤ 2 1− u0
u∗

∣∣∣ ∣∣∣ 4

u∗
+ t0

( )
(22a)

∂Y 1
2 (t)

∂1

∥∥∥∥
∥∥∥∥
[0,t0]

≤ 2 1− u0
u∗

∣∣∣ ∣∣∣ 4

pu∗
+ t0

( )
(22b)

Finally, we can use the sum of the right-hand sides from (22)
to obtain Ñ t0

as

Nt0
≤ Ñ t0

:= 4 1− u0
u∗

∣∣∣ ∣∣∣ 2

u∗
(p+ 1)

p
+ t0

( )
(23)

Using (16) in (23) followed by simple algebraic
rearrangements, we obtain (17b). Note that Theorem 1 gives
y11 − y12

∥∥ ∥∥1 ≥ Mt0
− 1Nt0

≥ Mt0
− 1 Ñ t0

.
Let us next analyse this example numerically, to see how

tight the estimate from the theorem is. With the values of u0
and u* used in Fig. 5, we have

Mt0
= 0.2 and Ñ t0

= 23.636, for p = 2

Mt0
= 0.64914 and Ñ t0

= 13.169, for p = 20
IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
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Tables 1 and 2 show numerically computed estimates o
maximal error obtained by simulation of the system. Th
numerically computed magnitude of the FCD-error belong
to the interval

Mt0
− 1 Ñ t0

≤ E1 ≤ Mt0
(25

where Eε is the magnitude of the FCD-error, that i
E1 = y11 − y12

∥∥ ∥∥
[0,T ] on a short time interval. We see th

E1 = Mt0
+O(1). The theoretical prediction is see

numerically to be very tight.

3.2 Simple feedback system

Our next example is the non-linear system (26) obtained b
adding a feedback term to the IFFL already analysed, in th
form of a y-dependent degradation of x

ẋ = −xy+ u∗, x(0) = u0 (26a

1ẏ = x− u∗y, y(0) = 1 (26b

Since an analytical solution cannot be obtained for th
non-linear system (26), we perform a numerical study. W
wish to compute the FCD-error as a function of th
parameter ε at the given fixed value of the scaling factor
As the FCD-error is a function of two equally importan
parameters ε and p, the values of ε and p have bee
sampled in the ranges [0.0005, 0.002] and [0.5, 3.5
respectively. The corresponding 2D and 3D plots a
presented in Fig. 9.
We observe from Fig. 9 that independently of the value o

the parameter ε, the magnitude of the FCD-error remain
finite as ε→ 0, as predicted by the theorem.

3.3 Chemotaxis signalling pathway
of D. discoideum

The analysis of the approximate FCD property can also b
carried out for a more complex mathematical mod
describing the adaptation kinetics in a eukaryot
chemotaxis signalling pathway of D. discoideum [45].

(a) Heatmap and (b) 3D plot representing the largest absolute value of the
Parameter ε was sampled in the range [0.0005, 0.002] and p was sampled
Hundred different parameters for each were selected
IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
The authors in [45] analysed the dynamics of activated Ras
(Ras-GTP) to changes in chemoeffector cyclic adenosine
monophosphate (cAMP), and then proposed alternative
models for adaptation. The model that was identified as
providing the best fit among several plausible models is
given by the following system of six differential equations

Ṙ1 = kR1 (v+ r1)(R
tot
1 − R1)− k−R1

R1

Ṙ2 = kR2 (v+ r2)(R
tot
2 − R2)− k−R2

R2

GĖF = kGEF(R1 + R2)− k−GEFGEF

GȦP = kGAP(R1 + R2)− k−GAPGAP

RḂD
CYT = koffRBD(RBD

tot − RBDcyt)− konRBDRas
GTPRBDcyt

RȦSGTP = kRASGEF(RAS
tot − RasGTP)− k−RASGAPRas

GTP

The symbol v stands for the chemoeffector cAMP, and the
authors assumed the existence of two different receptor
populations (R1 and R2, with very different Kd’s) which
when bound pool their signals to downstream components
(through u). RBD-GFP (the Ras binding domain of
fluorescently tagged human Raf1), is a reporter for Ras-GTP,
and also shows almost perfect adaptation of previously
unstimulated cells to cAMP concentrations ranging from
10−2 nM to 1 μM. The constants r1 and r2 represent levels of
constitutive activation. The variables GEF and GAP
represent activation and deactivation of RasGEF and
RasGAP, RasGTP represents the activated Ras and RBDcyt

describes the cytosolic reporter molecule RBD-GFP.
The best-fit parameters obtained in [45], and which we use

in simulations, are as follows: Rtot
1 = 0.1, Rtot

2 = 0.9, r1 =
0.012 nM, r2 = 0.115 nM, kR1 = 0.00267 nM−1 s−1,

k−R1
= 0.16 s−1, kR2 = 0.00244 nM−1 s−1, k−R2

=
1.1 s−1 , kGEF = 0.04 s−1, k−GEF = 0.4 s−1, kGAP = 0.01 s−1,
k−GAP = 0.1 s−1, RAStot = 1, kRAS = 390 s−1, k−RAS = 3126
s−1, RBDtot = 1, koffRBD = 0.53 s−1 and konRBD = 1.0 s−1.
With these parameters, and cAMP concentrations which are
small yet also satisfy r1 ≪ v(t) and r2 ≪ v(t), it follows
that Ṙ1 ≃ kR1R

tot
1 v− k−R1

R1 and Ṙ2 ≃ kR2R
tot
2 v− k−R2

R2.

rence between the two outputs y2(t) and y1(t)
e range [0.5, 3.5]
9
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Since R1(t) and R2(t) are linearly dependent on the extern
v(t), and hence scale in the same manner as v(t) (cAMP
does, we may think of u(t) = R1(t) + R2(t) as an input to th
three-variable system described by GEF, GAP and RasGT

Since RBDcyt depends only on RasGTP, we may vie
RasGTP as the output y(t). Based on the results from [4
45], we expect scale-invariant behaviour, provided that th
dynamics of RasGTP are fast compared with GEF and GAP
which the identified parameters insure. Conceptually, an
ignoring intermediates, we may think of this signallin
pathway as an IFFL as shown in Fig. 10.
As the parameter ε is not explicitly given, we sample

parameters kRAS and k−RAS in the range [100, 5000] s−

and simulated the 6D system when using a step from 1 t
2 nM of cAMP, and also when stepping from 2 to 4 nM
For the sampled parameters, we computed |y1(t)− y2(t)
where y1(t) is a response of RasGTP when stepping from

Fig. 10 Simplified representation of the adaptation signallin
pathway for D. discoideum
to 2 nM and y2(t) stepping from 2 to 4 nM (scale factor p =
2). The numerical results are shown on Figs. 11 and 12.

Fig. 11 3D plot representing the largest absolute value of the differe

Parameters kRAS and k−RAS were each sampled in a manner described in Fig. 12

10
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Observe that, as expected from theory, there is a minimal
value of the error, for each fixed p, as ε→ 0.

4 Proofs

4.1 Proof of Proposition 1

We start with a number of technical results leading to the
Proof of Proposition 1.

Lemma 1: For any non-zero positive numbers u*, u0, p
such that p≠ 1 and u0≠ u*, define M =M(u*, u0, p) > 0 and
T = T(p, u*) > 0 by

M := 1− u0
u∗

∣∣∣ ∣∣∣p(p/(1−p)) 1− p
∣∣ ∣∣, T := ln p

(p− 1)u∗
(27)

Consider the initial value problems:

1 ẇ1 = u0 − u∗w1, w1(0) = 1

1 ẇ2 = pu0 − pu∗w2, w2(0) = 1
(28)

Then

w1 − w2

∥∥ ∥∥
1 = w1(1T )− w2(1T )

∣∣ ∣∣ = M (29)

Proof: The solutions of (28) can be found in an explicit
form as

w1(t) =
u0
u∗

+ 1− u0
u∗

( )
e−u∗t/1,

u0 u0
( )

−pu∗t/1
(30)
w2(t) = u∗
+ 1−

u∗
e

nce between the two outputs y1(t) and y2(t)

IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
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Top and bottom corners were plotted separately to demonstrate the effect of no-zero FCD-error
The parameters kRAS and k−RAS were each sampled in the range [100, 5000], with a sampling rate (5000− 100/400)
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Using (30), we obtain

w1(t)− w2(t)
∣∣ ∣∣ = 1− u0

u∗

∣∣∣ ∣∣∣ · w(t; 1, p)
∣∣ ∣∣ (31

where

w(t; 1, p) = e−u∗t/1 − e−pu∗t/1 (32

We see that j(0; ε, p) = 0 and j(t; ε, p)→ 0 as t→∞. Then
follows that j(t; ε, p) has its absolute extrema at 0 < t* <∞
which can be found using the derivative tests, j′(t*; ε, p) =
0, and j″(t*; ε, p)≠ 0.
IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
From the first derivative test j′(t; ε, p) = 0, we obtain

w′(t; 1, p) = − u∗

1
e−u∗t/1 + pu∗

1
e−pu∗t/1 = 0

t∗ = 1
ln p

(p− 1)u∗
= 1T

(33)

Using the value for t* in (32), we obtain

w(t∗; 1, p) = p(p/(1−p)) · (p− 1) (34)
11
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Using the second derivative test, we obtain

w′′(t∗; 1, p) = u∗

1

( )2

p(1/(1−p)) · (1− p) (35

From (35), it follows that j″(t*; ε, p) > 0 if p < 1, and j″(t*
ε,p) < 0 if p > 1, which correspond, respectively, to th
absolute minimum, j(t*; ε,p) < 0, and the absolu
maximum, j(t*; ε,p) > 0, of the function j(t; ε,p). In bot
cases, |j(t*; ε, p)| is the absolute maximum of j(t; ε, p). □

The following two results allow one to obtain tighte
bounds, for the special example of the IFFL in Propositio
1, and also for generalisations in which the scalar x
subsystem is replaced by a generic linear system, than thos
assured by Theorem 1.

Proposition 2: Consider a system

ẋ = qAx+ qBv, x(0) = 0

y = Cx
(36

where A [ Rn×n is Hurwitz, B [ Rn×r, C [ R p×n, q >
S > 0 and v(t)

∣∣ ∣∣ ≤ �D for all t∈ [0, S]. Then, there exists
c > 0 independent of q such that

max
t[[0,S]

y(t)
∣∣ ∣∣ ≤ �D · c (37

In fact, we may pick c = �1
0 CeAsB
∥∥ ∥∥ ds.

Proof: From (36)

y(t)
∣∣ ∣∣ ≤ �D

∫t
0
CeqA(t−t)B

∥∥ ∥∥q dt, ∀t [ [0, S]

Introducing the change of variables s = q(t− t), the previou
expression becomes

y(t)
∣∣ ∣∣ ≤ �D

∫qt
0

CeAsB
∥∥ ∥∥ ds ≤ �D

∫1
0

K(s)
∥∥ ∥∥ ds = �D · K‖ ‖1

Define c = K‖ ‖1 , 1. Then

sup
t[[0,S]

y(t)
∣∣ ∣∣ ≤ �D · c

as desired. □

Proposition 3: For any non-zero positive numbers u*, u0, r,
such that r < 1, p < 1 and u0 ≠ u*, letM =M(u*, u0, p) > 0 an
T = T(p, u*) > 0 be as defined as earlier, and let δ = δ(u*, u
p, r) > 0 be given by (see (38))

www.ietdl.org
d :=
min ln

2 u∗ − u0
∣∣ ∣∣

2 u∗ − u0
∣∣ ∣∣−M (1− r

({

ln p

p− 1
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

12
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Finally, define ε0 = ε0(u*, u0, p, r) > 0 by

10 := d/T

Consider any solution (x(t),y1(t),y2(t)), t≥ 0, of the following
initial-value system of three differential equations

ẋ = −x+ u∗, x(0) = u0
1 ẏ1 = x− u∗y1, y1(0) = 1

1 ẏ2 = px− pu∗y2, y2(0) = 1

(39)

where 0 < ε≤ ε0. Then

rM ≤ y1 − y2
∥∥ ∥∥

[0,d] ≤ (2− r)M

Proof: Consider the following equations

1 ẇ1 = u0 − u∗w1, w1(0) = 1

1 ẇ2 = pu0 − pu∗w2, w2(0) = 1

By Lemma 1, w1 − w2

∥∥ ∥∥
1 = w1 − w2

∥∥ ∥∥
[0,1T ] = M , and,

since εT≤ ε0T = δ, this implies that

w1 − w2

∥∥ ∥∥
[0,d] = M (40)

as well. Let Δ(t) := x(t)− x(0) = x(t)− u0 on the interval t∈
[0, δ], and �D := D‖ ‖[0,d]. Defining e1(t) := y1(t)− w1(t), we
have that

1 ė1 (t) = 1ẏ1(t)− 1 ẇ1 (t) = −u∗e1(t)+ D(t)

or, equivalently

ė1 (t) = − u∗

1
e1(t)+

D(t)

1

Applying Proposition 2 with A =− u*, B = 1, C = 1, S = δ and
q = 1/ε, we obtain: e1(t)

∣∣ ∣∣ ≤ �D/u∗ for t∈ [0, δr], and thus

y1 − w1

∥∥ ∥∥
[0,d] ≤

�D

u∗
(41)

Similarly, to determine |y2(t)− w2(t)| we apply Proposition 2
with the same matrices A, B and C, and q = p/ε, and obtain

y2 − w2

∥∥ ∥∥
[0,d] ≤

�D

u∗
(42)

By the triangle inequality for norms

w1−w2

∥∥ ∥∥
[0,d]≤ w1−y1

∥∥ ∥∥
[0,d]+ y1−y2

∥∥ ∥∥
[0,d]+ y2−w2

∥∥ ∥∥
[0,d]
)u∗

)
,

ln p

p− 1

}
, if

M (1− r)u∗

2 u∗ − u0
∣∣ ∣∣ , 1

otherwise

(38)

IET Syst. Biol., 2015, Vol. 9, Iss. 1, pp. 1–15
doi: 10.1049/iet-syb.2014.0006
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and therefore, using (40)–(42), we conclude

y1 − y2
∥∥ ∥∥

[0,d] ≥ M − 2�D

u∗
(43

Similarly, from

y1−y2
∥∥ ∥∥

[0,d]≤ y1−w1

∥∥ ∥∥
[0,d]+ w1−w2

∥∥ ∥∥
[0,d]+ w2−y2

∥∥ ∥∥
[0,d

we obtain that

y1 − y2
∥∥ ∥∥

[0,d] ≤ M + 2�D

u∗
(44

We next show that

�D ≤ M (1− r)u∗

2
(45

which will imply that

rM = M −M (1− r) ≤ y1 − y2
∥∥ ∥∥

[0,d]

≤ M +M (1− r) = (2− r)M

which is what the proposition asserts. To estimate �D, w
compute the explicit solution x(t) = u* + (u0− u*)e−t, so th
Δ(t) = x(t)− u0 = (u*− u0)(1− e−t). This means that

D(t)
∣∣ ∣∣ = u∗ − u0

∣∣ ∣∣(1− e−t)

As |Δ(t)| is an increasing function on [0, δ], showing (45)
the same as showing that

D(d) = u∗ − u0
∣∣ ∣∣(1− e−d) ≤ M (1− r)u∗

2
(46

hence we prove this last statement.
To prove (46), we first look at the case where δ = (ln p/p− 1
under the condition

M (1− r)u∗

2 u∗ − u0
∣∣ ∣∣ ≥ 1 (47

Since 1− p(1/(1−p)) < 1, indeed from (47), we have that

M (1− r)u∗

2
≥ u∗ − u0

∣∣ ∣∣ ≥ u∗ − u0
∣∣ ∣∣ 1− p(1/(1−p))( )

= u∗ − u0
∣∣ ∣∣(1− e−d)

Next we consider the two cases for

M (1− r)u∗

2 u∗ − u0
∣∣ ∣∣ , 1 (48

depending on what the minimum between

ln
2 u∗ − u0
∣∣ ∣∣

2 u∗ − u0
∣∣ ∣∣−M (1− r)u∗

( )
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and

ln p

p− 1

is. (Observe that (48) only plays a role in guaranteeing that the
expression inside the logarithm is positive and hence the
logarithm is well-defined.) Consider first the case

ln p

p− 1
≤ ln

2 u∗ − u0
∣∣ ∣∣

2 u∗ − u0
∣∣ ∣∣−M (1− r)u∗

( )
(49)

With δ selected as a minimum of these two expressions, we
again have that Δ(δ) = |u*− u0|(1− p(1/(1−p))). Working with
the condition (49) we have that

− ln p

p− 1
≥ ln

2 u∗ − u0
∣∣ ∣∣−M (1− r)u∗

2 u∗ − u0
∣∣ ∣∣

( )

p(1/(1−p)) ≥ 1−M (1− r)u∗

2 u∗ − u0
∣∣ ∣∣

u∗ − u0
∣∣ ∣∣ 1− p(1/(1−p))( ) ≤ M (1− r)u∗

2
(50)

which is exactly what we were supposed to prove. Finally,
consider the case when

ln
2 u∗ − u0
∣∣ ∣∣

2 u∗ − u0
∣∣ ∣∣−M (1− r)u∗

( )
,

ln p

p− 1
(51)

In this case

D(dr)
∣∣ ∣∣ = u∗ − u0

∣∣ ∣∣ 1− e− ln 2 u∗−u0| |( )/ 2 u∗−u0| |−M (1−r)u∗( )( )( )

= u∗ − u0
∣∣ ∣∣ 1− 2 u∗ − u0

∣∣ ∣∣−M (1− r)u∗

2 u∗ − u0
∣∣ ∣∣

( )

= u∗ − u0
∣∣ ∣∣ M (1− r)u∗

2 u∗ − u0
∣∣ ∣∣

( )
= M (1− r)u∗

2

which proves the claim (46). This completes the proof of the
proposition. □

Proof of Proposition 1:

Proof: Without loss of generality, we may take p < 1. Indeed,
if p > 1, we simply exchange the roles of y1 and y2, and the
result is the same. Pick any r∈ (0, 1) such that M′ < rM and
(2− r)M <M″. Such an r can be found because 2− r→ 1 as
r→ 1 and define ε0(u*,u0,p, r) as in Proposition 3. Fixing
any 0 < ε≤ ε0, we have that x11 = x and x12 = px in that
proposition, so y11 = y1 and y12 = y2 are as there. It follows
that

rM ≤ y1 − y2
∥∥ ∥∥

[0,d] ≤ (2− r)M

Thus, y1 − y2
∥∥ ∥∥

[0,d] ≥ rM ≥ M ′ and y11 − y12
∥∥ ∥∥

[0,d] ≤ (2− r)

M , M ′′, as desired. □
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and (56) that
4.2 Proof of the comparison theorem

Let (X 0
i (t), Y

0
i (t)) be the solution of the system (Ri) in (11)

ε = 0. Then, obviously, Y 0
i (t) is the solution of the associate

system (Ai) in (10). The following lemma, which will be use
to prove Theorem 1, relates the solution of the associate
system (Ai) with the solution of the regularly-perturbe
system (Ri), i = 1, 2.

Lemma 2: Consider the solution (X 1
i (t), Y

1
i (t)) of the system

(Ri) in (11) on a closed interval [0, t0] for some fixed t0 >
Let (X 1

i (t), Y
1
i (t)) be continuously-differentiable with respe

to the parameter ε∈ [0, ε0], ε0 > 0. Then

‖Y 1
i − Y 0

i ‖[0,t0] ≤ Nt0,i
1 (52

where

Nt0,i
:= max

0≤1≤10

∂Y 1
i (·)
∂1

∥∥∥∥
∥∥∥∥
[0,t0]

(53

for all ε∈ [0, ε0] and i = 1, 2.

Proof: The statement is an immediate consequence of th
differentiability of solutions with respect to parameters, as
function with values in the space of continuous function
with supremum norm, which in turn follows from th
Lagrange form of the mean value theorem, see for exampl
Theorem 1 in [46]. We provide the details to make th
paper self-contained. Fix any ε0 > 0. As the system (Ri)
of class C1 with respect to x, y, ε and t, the solution of th
system (Ri) is also of class C1 with respect to ε, see fo
instance [47]. We have

Y 1
i (t)− Y 0

i (t) =
∫1
0

∂Y u1
i (t)

∂1
du

( )
1 (54

Taking norms, and using that θε∈ [0, ε0] when 0 < θ < 1

∂Y 1
i (·)
∂1

∣∣∣∣
∣∣∣∣ ≤ Nt0,i

(54) yields (52). □

Using Lemma 2, Theorem 1 can now be proved as follows

Proof: Consider solutions X 1
i (t), Y

1
i (t)

( )
of the system (Ri

and the corresponding solutions Y 0
1 (t) and Y 0

2 (t) of th
associated systems (Ai). Fix t0 and ε0 > 0, and pick Nt0
i = 1, 2, as in Lemma 2. Let Nt0

= Nt0,1
+ Nt0,2

. Then,
follows from (52) that

‖Y 1
1 − Y 1

2 ‖[0,t0] ≥ ‖Y 0
1 − Y 0

2 ‖[0,t0] − ‖Y 1
1 − Y 0

1 ‖[0,t0]
− ‖Y 1

2 − Y 0
2 ‖[0,t0] ≥ Mt0

− Nt0
1 (55

and also

‖Y 1
1 − Y 1

2 ‖[0,t0] ≤ ‖Y 0
1 − Y 0

2 ‖[0,t0] + ‖Y 1
1 − Y 0

1 ‖[0,t0]
+ ‖Y 1

2 + Y 0
2 ‖[0,t0] ≤ Mt0

+ Nt0
1 (56

for all 0 < ε≤ ε0. Let t = t/ε, and l
(x1i (t), y

1
i (t)) = (X 1

i (t/1), Y
1
i (t/1)), where t∈ [0, εt0]. B

uniqueness of solutions, we immediately obtain th
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(x1i (t), y
1
i (t)) is the solution of the singularly-perturbed

problem (Si) on the time interval [0, εt0] for all ε∈ (0,ε0],
so y12 − y11

∥∥ ∥∥
[0,1t0]

= Y 1
2 − Y 1

1

∥∥ ∥∥
[0,t0]

. It follows from (55)
Mt0
− Nt0

1 ≤ ‖y12 − y11‖[0,1t0] ≤ Mt0
+ 1Nt0

(57)

for all ε∈ (0, ε0]. □

5 Conclusions

Scale-invariance, also called fold-change detection, is a
phenomenon that has been recently observed experimentally
in systems ranging from the E. coli bacterial chemotaxis
pathway to the eukaryotic Wnt and EGF pathways. These
experimental observations have given rise to follow-up
modelling and theoretical research aimed at analysing
systems that display the FCD property.
One of the mechanisms that have been proposed relies

upon a time-scale separation between internal variables and
output variables. We have established, through a
combination of theoretical and computational analysis, the
existence of a fundamental limitation of such a mechanism
for fold-sensing, showing that there is a minimal error that
cannot be overcome, no matter how large the separation of
time scales is. This violation of the scaling behaviour
always occurs at small times. For fast downstream
processes, this initial fragility may result in unintended and
potentially disruptive consequences.
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