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Abstract— The property termed scale-invariance, or fold-
change detection, represents a phenomenon that is observed
in a variety of biological systems, ranging from bacterial to
eukaryotic signaling pathways. Mathematically, it represents
invariance of the complete output trajectory with respect to a
rescaling of input magnitudes. In the systems biology literature,
an often-discussed motif for approximate fold-change detection
is based on a time-scale separation in which output variables
respond faster than internal components do. This paper shows
that there is a lower bound on the scaling error for systems
based on this property, independently of the magnitude of the
time-scale separation. Furthermore, the paper discusses how
adaptation and scale invariance properties often fail to hold
when the effect of molecular noise is taken into account.

I. INTRODUCTION

In biological systems, the problem of asymptotic distur-
bance rejection to constant inputs is often called “(perfect)
adaptation” [1]. Here we deal with a stronger property,
namely scale-invariance (SI) of responses. Let us consider
two step inputs u1 and u2 which are scaled versions of each
other: u2(t) = pu1(t), for some positive number or “scale” p.
Adaptation means that, no matter which input we employ, the
output will asymptotically converge to the same value, while
scale-invariance means that the entire transient response will
be the same; see the journal paper [7] for more motivational
details and references to the biology literature.

One of two main biomolecular mechanisms (the other
is integral feedback) that has been discussed as providing
scale-invariance is the IFFL1 (incoherent feedforward loop)
motif. In such a system, the input u activates an internal state
coordinate x which then activates a second state coordinate
y, seen as the output of the system, but the input also
directly represses the output, see Figure 1(a). However, the
cartoon diagram shown in Figure 1(a) can be instantiated in
alternative molecular realizations, which might significantly
differ in their dynamic response, see for example Figures 1(b)
and (c). It turns out that the first of these has the SI property,
but not the second one.

Indeed, let (x(t), y(t)) be a solution corresponding to an
input u(t), for the system described by Figure 1(b) when
modeled as follows:

ẋ = αu− δx,
ẏ = β xu − γy .

(1)

Then, (px(t), y(t)) is a solution corresponding to the input
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Fig. 1: Incoherent feedforward motif type 1 (IFFL1) (a) and
its two realizations: input (b) inhibits output formation; or
(c) enhances output degradation.

pu(t):

˙(px) = α(pu)− δ(px),

ẏ = β
/px
/pu
− γy .

In particular, for example, if we consider a step input that
jumps at time t = 0 and an initial state at time t = 0 that has
been pre-adapted to the input u for t < 0 (i.e., x(0) = αu0/δ,
where u0 is the value of u for t < 0), then the solution is the
same as when applying input pu for t > 0, but starting from
the respective pre-adapted state (pαu0/δ). On the other hand,
the SI property fails for the system shown in Figure 1(c), and
modeled by:

ẋ = αu− δx,
ẏ = βx− γuy, (2)

because the scaling x 7→ px and u 7→ pu does not leave
the y equation invariant, and one can prove that no possible
equivariant group action on states is compatible with output
invariance, as discussed in [6], where a systematic analysis
of the SI property was carried out.

A. Approximate scale-invariance via time-scale separation

Systems as in Figure 1(c) and modeled by (2) satisfy an
approximate SI property, provided that the parameters β and
γ are large enough so that a time-scale separation property
holds. In fact, we showed in [8], that every three node
enzymatic network of a certain type that is approximately
SI must necessarily rely upon this mechanism of time scale
separation, which shows the interest of this class of systems.
Redefining parameters (see [7] for details) and writing our
system in singular perturbation form:

ẋ = αu− δx,
εẏ = βx− γuy , (3)
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where we think of 0 < ε � 1 as a small parameter but the
remaining parameters are all O(1). The reduced system at a
slow time-scale, obtained by replacing y(t) by its equilibrium
value (set ε = 0) is described by the one-dimensional system

ẋ = αu− δx ,

with output

y(t) ≈ βx(t)

γu(t)
, (4)

and it is now clear that scaling u 7→ pu and x 7→ px results
in (approximately) the same output.

Intuitively, since the approximation in (4) increases in
accuracy as ε → 0, one would expect that the scale-
invariance error should become negligible as ε→ 0. Perhaps
surprisingly, this intuition turns out to be wrong, as we
discuss next.

B. A fundamental limitation

Our main results show that, no matter how small ε is, there
is always a minimal possible SI error, meaning a minimal
positive difference in instantaneous values of the output y1(t)
and the output yp(t) for, respectively, inputs u(t) and pu(t).
See Figure 2 for an example. In Section II, we summarize

Fig. 2: Output of the system in Figure 1(c) and (3). All
parameters except ε are 1. Original (blue) and p-scaled (red)
responses are shown. Pre-adaptation value of input is u0 =
0.1, stepping to u∗ = 0.5 at t = 0. Here ε = 0.01 and
p = 20. The maximal magnitude of the SI error is depicted
by a black segment

our main theorem on fundamental limitations, referring to the
journal paper [7] for details on that part. In Section III, we
briefly discuss the use of the boundary function method in
singular perturbations to obtain estimates of the minimal SI
error, and in Section IV we make remarks on the limitations
involved by introducing stochasticity.

II. LOWER BOUNDS ON SCALE-INVARIANCE ERROR

A. A simple feedforward system

We start by considering the response of the singularly
perturbed IFFL described in (3) to a step input u(t) which
switches from the value u(t) = u0 for t < 0 to a different
value u(t) = u∗ for t > 0, under the assumption that the
states x and y had converged to a steady state by t = 0, and
the response to the input pu(t). The response for t > 0 will
be given by the solution of the ODE with initial condition
x(0) = α

δ u0 and y(0) = αβ
δγ , and input u(t) ≡ u∗ for t > 0.

In the p-scaled case, the initial state will be x(0) = α
δ pu0,

and the same y(0), now using the input u(t) ≡ pu∗ for t > 0.
A nondimensionalization analysis (see [7] for details) allows
us to take, without loss of generality, α = β = δ = γ = 1
in our subsequent analysis. We use ‖y − w‖[0,T ] to indicate
the maximum possible value of the difference |y(t)− w(t)|
between two functions defined on an interval t ∈ [0, T ]. The
main result for this example is as follows.

Proposition 2.1: Consider solutions (xεi (t), y
ε
i (t)) of the

following two initial value problems:

ẋε1 = u∗ − xε1, xε1(0) = u0 ,
εẏε1 = xε1 − u∗yε1, yε1(0) = 1
ẋε2 = u∗ − xε2, xε2(0) = pu0

εẏε2 = xε2 − pu∗yε2, yε2(0) = 1

(5)

where ε, u∗, u0, and p are nonzero positive numbers, and we
assume that p 6= 1, u0 6= u∗. Define M = M(u∗, u0, p) > 0
by:

M :=
∣∣∣1− u0

u∗

∣∣∣ p p
1−p |1− p| . (6)

Then, for any 0 < M ′ < M < M ′′, there exist
two numbers ε0 = ε0(u∗, u0, 1, p,M

′,M ′′), and δ =
δ(u∗, u0, p,M

′,M ′′) > 0, such that:

M ′ ≤ ‖yε1 − yε2‖[0,δ] ≤ M ′′ ∀ 0 < ε ≤ ε0 . (7)

Since M ′ and M ′′ can be taken arbitrarily close to M , this
result tells us, in particular, that ‖yε1 − yε2‖[0,δ] ≈ M for all
0 < ε� 1, and δ small. In other words, the positive number
given in formula (6), which does not depend on ε, provides a
fundamentally irreducible error as ε→ 0, for any nontrivial
scaling (p 6= 1) and any nontrivial step input (u0 6= u∗). A
proof is provided in the journal version of this paper, see [7].

B. The general case

We also provide an abstract comparison theorem that gen-
eralizes Proposition 2.1 to arbitrary systems. The theorem is
formulated and proved (see [7]) for two arbitrary singularly-
perturbed non-autonomous initial-value problems (IVPs), as
follows:

(S1)

{
ẋ1 = f1(x1, y1, t), x1(0) = ξ1,

εẏ1 = g1(x1, y1, t), y1(0) = κ1,
(8)

(S2)

{
ẋ2 = f2(x2, y2, t), x2(0) = ξ2,

εẏ2 = g2(x2, y2, t), y2(0) = κ2.

Here, (xi, yi), (ξi, κi) ∈ X×Y , where X and Y are open
sets, X ⊆ Rn and Y ⊆ Rs. The functions fi and gi are of
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class C1 with respect to x, y, and t, i = 1, 2. Consider also
the following two “reduced” ODE systems:

(A1) Y ′1 = g1(ξ1, Y1, 0), Y1(0) = κ1,

(A2) Y ′2 = g2(ξ2, Y2, 0), Y2(0) = κ2,
(9)

obtained when ε is ignored but x1 and x2 are replaced by
their initial values ξ2 and ξ1 in S1 and S2, respectively. (Here
we use primes ′ to indicate time derivatives, to reflect the fact
that this system is obtained through a rescaling of time, as
discussed later.)

To apply the result that follows to the SI problem, suppose
that we are given a system of the generic form

ẋ = f(x, y, u)

εẏ = g(x, y, u)

where the input as well as the state vector (x, y) are of
arbitrary dimensions. We think of the components of y as
an output, and want to compare the outputs associated to
two inputs u(t) and pu(t), for t > 0, when initial states
might themselves depend on the values of u(t) and pu(t) for
t < 0. This latter dependence is encapsulated in the initial
states (ξ1, κ1) and (ξ2, κ2) respectively, to the systems (S1)
and (S2) obtained by looking at the original system and its
version under input pu.

Since the transient SI-error occurs within a thin boundary
layer adjacent to the perturbation moment t = 0, as can
be seen in Figure 2, we analyze nonlinear effects occurring
within small time intervals, by using the stretched time τ =
t/ε. Substituting t = ετ into (8), we obtain

(R1)

{
X ′1 = εf1(X1, Y1, ετ), X1(0) = ξ1,

Y ′1 = g1(X1, Y1, ετ), Y1(0) = κ1,
(10)

(R2)

{
X ′2 = εf(X2, Y2, ετ), X(0) = ξ2,

Y ′2 = g(X2, Y2, ετ), Y (0) = κ2,
(11)

where (·)′ = d(·)/dτ , and all functions are continuously-
differentiable with respect to the variables, the initial condi-
tions and the parameter ε > 0 as discussed above.

In contrast to the singularly-perturbed systems (S1) and
(S2), both systems (R1) and (R2) are regularly-perturbed
with respect to ε. It follows that the SI-error should be
already detected at ε = 0 in which case the systems (R1)
and (R2) can be further reduced to the following associated
systems shown in (9). We will denote the solutions of the
systems (Ri) by Xε

i (τ) and Y εi (τ), i = 1, 2.
Theorem 1: Assume that the solution (xεi (t), y

ε
i (t)) of the

system (Si) is defined on [0,∞) for all ε ∈ (0, ε0] with some
ε0 > 0, i = 1, 2. Let Y 0

i (·) be the solution of the associated
system (Ai), i = 1, 2. Then, for each ε ∈ (0, ε0] and each
0 ≤ τ0 <∞, we have:

Mτ0 − εNτ0 ≤ ‖yε1 − yε2‖[0,ετ0] ≤Mτ0 + εNτ0 , (12)

where Mτ0 and Nτ0 are defined as follows:

Mτ0 =
∣∣Y 0

2 (τ0)− Y 0
1 (τ0)

∣∣ ,
Nτ0 = max

0≤ε≤ε0

∥∥∥∥∂Y ε1 (·)
∂ε

∥∥∥∥
[0,τ0]

+ max
0≤ε≤ε0

∥∥∥∥∂Y ε2 (·)
∂ε

∥∥∥∥
[0,τ0]

.

(13)
Theorem 1 implies that if the solutions of the associated

IVP (9) are different, that is, if Y 0
1 (τ) 6= Y 0

2 (τ) for some
τ , then as ε → 0 there will always exist a minimal
possible nonzero difference (in supremum norm) between the
solutions of the corresponding singularly-perturbed problems
(S1) and (S2), approximately equal to Mτ0 . The effect is
solely determined by the properties of the fast subsystem. A
proof is given in the journal paper [7].

III. ASYMPTOTIC EXPANSIONS

The main result does not provide explicit error estimates.
We next sketch briefly how one may obtain estimates through
the use of tools from singular perturbation theory. Consider
solutions (x(t; ε), y(t; ε)) and (z(t; ε, p), w(t; ε, p)) of the
following two initial value problems:

ẋ = f(x, y, u(t)), x(0) = σ1(u0),
εẏ = g(x, y, u(t)), y(0) = σ2(u0),

(14)

ż = f(z, w, pu(t)), z(0) = σ1(pu0),
εẇ = g(z, w, pu(t)), w(0) = σ2(pu0).

(15)

where the assumptions are the same as before, and σ1(u0)
and σ2(u0) are the pre-adapted steady states for x and y,
when an input u0 has been applied. Similarly, for z and w.

As before, our goal is to investigate the behavior of the
scale-invariance error function E(t; ε, p) defined as:

E(t; ε, p) = w(t; ε, p)− y(t; ε) (16)

on t, p, and ε as ε→ 0+.
As in [6], we study the class of systems which satisfy the

following homogeneity properties:

σ(pu) = pσ(u),
f(px, y, pu) = pf(x, y, u),
g(px, y, pu) = pg(x, y, u).

(17)

Then (15) can be rewritten in the form:

ż = f(z, w, pu(t)), z(0) = pσ1(u0),
εẇ = g(z, w, pu(t)), w(0) = σ2(u0).

(18)

To estimate a lower bound for the SI-error in cases where an
analytical solution of the system of ODEs cannot be found, it
is convenient to employ the theory of singular perturbations
[5], [12], [3], and in particular, make use of the method of
boundary functions [12].

We will use zeroth order asymptotic expansions

x(t; ε) ∼ x̄0(t) + X̄0(t/ε) +O(ε),
y(t; ε) ∼ ȳ0(t) + Ȳ0(t/ε) +O(ε),

(19)

where x̄0(t) and ȳ0(t) are the zeroth order regular terms, and
X̄0(τ) and Ȳ0(τ) are called boundary functions (or, singular
terms). Similar considerations would apply to higher-order
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expansions. One can then show, using the homogeneity
properties (17), that

z(t; ε, p) ∼ x̄0(t) + X̄0(pt/ε) +O(ε),
w(t; ε, p) ∼ ȳ0(t) + Ȳ0(pt/ε) +O(ε).

(20)

Using the boundary function algorithm formulated in [12,
Sect.2.1.2, p.20] one can show that these are asymptotic
series, under reasonable regularity assumptions on f and g.
We will also assume that the equation g(x, y, u) = 0 has a
unique solution y = h(x, u) for all (x, u) in an open domain
of interest. It is easy to show that x̄0(t) solves:

˙̄x0 = f(x̄0, h(x̄0, u(t)), u(t)), x̄0(0) = x0, t ∈ [0, T ].
(21)

We will let y0(t) := h(x̄0, u(t)). Also

Ȳ ′0 = g(x0, y
∗+ Ȳ0, u

∗)−g(x0, y
∗, u∗), Ȳ0(0) = y0− ȳ0(0),

(22)
where ȳ0(0) = h(x(0), u(0)) = h(x0, u

∗) = y∗. Finally,
one can also show

z̄0(t; ε, p) = px̄0(t),
w̄0(t; ε, p) = ȳ0(t) + Ȳ0(pt/ε).

(23)

Using (19) and (20), and recalling the definition (16) of
the SI-error E(t; ε, p), we conclude that the zeroth order
approximation E0(t; ε, p) of E(t; ε, p) is:

E0(t; ε, p) = E0(t/ε; p) = Ȳ0(pt/ε)− Ȳ0(t/ε). (24)

Obviously, E(t; ε, 1) ≡ E0(t/ε) ≡ 0 at p = 1. Under
uniform stability assumptions on g, one can derive, using the
theory of asymptotic expansions, an estimate of the following
form:

‖E0(·; ε, p)‖T ≥M0, (25)

where
M0 = sup

τ∈[0,∞]

∥∥Ȳ0(pτ)− Ȳ0(τ)
∥∥ , (26)

and

M0 = O
(
φ(u0, u

∗) |αp− 1| (αp)αp/(1−αp)
)

(27)

where α is a positive constant independent of ε and p,
φ(u0, u

∗) is a factor that equals zero when u0 = u∗. It
follows that E = E0 + O(ε) always satisfies an estimate
similar to the one in our simple example (6).

IV. REMARKS ON STOCHASTIC ADAPTATION AND
SCALE-INVARIANCE

In the analysis of biochemical networks one can proceed
with two modeling strategies, a deterministic and a stochastic
one [10], [11]. In the deterministic approach, the reaction rate
equations are ordinary differential equations, with states be-
ing the continuous variables representing the concentrations.
A pathway is therefore decomposed into set of elementary
reactions, and then the law of mass action is applied to
each elementary reaction to obtain the ODEs. However,
deterministic models represent an aggregate (mean) behavior
of the system, and are not accurate when the “copy numbers”
of species (ions, atoms, molecules, individuals) are very

small, which is sometimes the case molecular biology at the
single-cell level [9].

We have seen that incoherent feedforward motif from
Figure 1(b) analyzed in a deterministic setting, was shown to
exhibit exact adaptation and an approximate scale invariance.
In this section we will informally revisit this example in the
light of stochastic adaptation and scale invariance.

The occurrence of chemical reactions in the stochastic
setting involves discrete and random events, and in order
to predict the progress of chemical reactions in terms of
observables such as copy number, X(t), we consider a
chemical reaction network consisting of m reactions which
involve n species, [11]. We use notation as in [9], and denote
the n×m stochiometry matrix of the network by Γ = {γij},
i = 1, . . . n, j = 1, . . .m, and propensity functions (the rates
at which reactions take place) by ρ. The interest is to compute
the probability that, at time t there are k1 units of species
S1, k2 units of species S2, k3 units of species S3, and so
forth:

pk(t) = P [X(t) = k], (28)

for each k, where the vector k the state of the process. A
chemical master equation (CME) gives a system of linear
differential equations for the pk’s. When studying steady
state properties we define the steady state distribution π =
(πk) of the process X as any solution of the equations:

m∑
j=1

ρj(k − γj)πk−γj −
m∑
j=1

ρj(k)πk = 0 , k ∈ Zn≥0.

(29)
In order to solve the CME, one usually generates sample
paths of the stochastic process {X(t)}, which is referred to
as a stochastic simulation (see e.g. [2]). It can be shown that
one can derive exact or approximate differential equations
satisfied by the mean and the variance of X(t), [9]. For
mass-action kinetics and all reactions of order at most
two, the fluctuation-dissipation (FD) formula for the mean
µ(t) = E[X(t)], and covariance matrix Σ(t) = Var[X(t)]
can be derived, see for example [9]. The FD formula is
exact for zero and first order mass-action reaction. We
next revisit (3) which gives rise to an exact adaptation and
an approximate scale invariance, in the light of stochastic
adaptation. We additionally provide an example of another
feedforward circuit, IFFL2, for which the FD formula is
only approximate. Finally, we briefly discuss a minimal
stochastically adaptive “two state protein scheme” previously
discussed in [4].

A. Adaptation of feedforward model

We study here the model represented by the following
reactions:

Ø
u−→ X

1−→ Ø

X
1/ε−→ X + Y , Y

u/ε−→ Ø

The set of ODEs for the deterministic setting are given by
ẋ = u− x, and εẏ = x− uy, and was previously analyzed.
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(kx, ky + 1)

(kx − 1, ky) (kx, ky) (kx + 1, ky)

(kx, ky − 1)

kx/ε

u

kx

u

kx/ε

u(ky+1)/ε

kx+1
uky/ε

Fig. 3: State transition diagram for an IFFL circuit

The state transition diagram corresponding to this circuit is
given on Figure 3.

The stochiometry matrix for this system is given by

Γ =

[
1 −1 0 0
0 0 1 −1

]
,

and the propensities for the reactions are ρ1(k) = u, ρ2(k) =
k1, ρ3(k) = 1

εk1, ρ4(k) = 1
εuk2, where we denote

R(k) =
[
u X X

ε
1
εuY

]T
,

f(X,Y ) = ΓR(k) =

[
u−X

1
εX −

1
εuY

]
.

The following equations for the means can be obtained:

µ̇x(t) = u− µx , µ̇y(t) =
1

ε
µx −

u

ε
µy. (30)

Since all reactions are of order zero or one, the first moments
are the same as the deterministic ones. At the steady state
µssx = u, and µssy = 1. Hence, the first moment of y (the
output) adapts perfectly.

The following system of equations for the covariances can
be obtained:

Σ̇xx = −2Σxx + u+ µx , Σ̇xy =
1

ε
Σxx −

u

ε
Σxy − Σxy,

Σ̇yy =
2

ε
Σxy −

2u

ε
Σyy +

1

ε
µx +

u

ε
µy.

(31)
We denoted cov(X,Y ) by ΣXY . At the steady state we
obtain that:

Σssxx =
u+ µssx

2
= u, Σssxy =

1
εΣssxx
u
ε + 1

=
u

u+ ε
,

Σssyy =
1

2u

(
2Σssxy + µssx + uµssy

)
= 1 +

1

u+ ε

(32)

From (32), we notice that for large u, u � 1, and small
ε, Σssyy ≈ 1, which is independent of u. Morever, for
ε � 1 the system (with output y) also shows approximate
scale invariance. To show that this is true, we suppose that
(µx(t), µy(t)) is any solution corresponding to the input
u(t), for the system described by (30). Then, (pµx(t), µy(t))
is a solution corresponding to the input pu(t):

µ̇x = u− µx ⇒ ˙(pµx) = (pu)− (pµx),
εµ̇y = µx − uµy ,
ε ≈ 0 ⇒ µy = /pµx

/pu .

(33)

(kx, ky + 1)

(kx − 1, ky) (kx, ky) (kx + 1, ky)

(kx, ky − 1)

u/ε

u

kx

u

u/ε

kx(ky+1)/ε

kx+1
kxky/ε

Fig. 4: State transition diagram for an IFFL2 circuit

Hence the scaling µx 7→ pµx and u 7→ pu leaves the µy
equation (approximately) invariant. Similarly, from (31),

(pΣ̇xx) = −2(pΣxx) + (pu) + (pµx),

εΣ̇xy = pΣxx − (pu)Σxy − εΣxy ,
εΣ̇yy = 2Σxy − 2(pu)Σyy + (pµx) + (pu)µy .

(34)

The last two expressions in (34) can be estimated by using
their quasi-steady state approximation as:

ε ≈ 0 ⇒ Σxy ≈ pΣxx

pu = Σxx

u ,

ε ≈ 0 ⇒ Σyy ≈ Σxx

pu2 + 1
2uµx + 1

2µy .
(35)

For large u, the first two terms in the second expression
of (35) are negligible, so we finally obtain that under these
assumptions the variance of the output y does not depend
on the scale p, and the approximate scale invariance (of the
mean and the variance of y) can be obtained.

B. Another feedforward model (IFFL2)

We also consider the following feedforward model in
which the state degrades the output (IFFL2), for which
an approximate scale invariance can also be shown in the
deterministic setting. The chemical reactions underlying this
model are given by:

Ø
u−→ X

1−→ Ø , Ø
u/ε−→ Y

X + Y
1/ε−→ X

In the deterministic setting the model is described by the
following ODEs: ẋ = u−x, εẏ = u−xy. The state transition
diagram corresponding this circuit is given on Figure 4. The
stochiometry matrix is

Γ =

[
1 −1 0 0
0 0 1 −1

]
,

and R(k) =
[
u X u

ε
1
εXY

]T
. The means solve:

µ̇x(t) = u− µx , µ̇y(t) =
1

ε
u− 1

ε
ΣXY −

1

ε
µxµy,

(36)
It follows from (36) that the equations for the first moment
of the output y do not match the corresponding deterministic
ODEs. Notice also that the reactions are at most of order two,
unlike the previous example where the reactions were at most
order one. Hence the expressions for the second moments
will only be approximate. At the steady state µssx = u, and
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in order to solve the second equation in (36) we need to use
the second moment equations:

Σ̇xx = −2Σxx + u+ µx , Σ̇xy = − Ȳ
ε

Σxx −
X̄

ε
Σxy − Σxy,

Σ̇yy = −2Ȳ

ε
Σxy −

2X̄

ε
Σyy +

u

ε
+

1

ε
(Σxy + µxµy).

At the steady state,

µssx = u , µssy = 1 +
ȳ
ε

x̄
ε + 1

,

Σssxx = u , Σssxy =
−ȳu
ε

x̄
ε + 1

, Σssyy =
ȳ2u
ε

x̄2

ε + x̄
+
u

x̄
,

(37)

and x̄ and ȳ could be chosen to be (i) equal to the deter-
ministic means for x(t) and y(t), or (ii) solved for using the
stochastic means.

The results presented so far are summarized in Table I.

ydet adapts µy adapts Σyy adapts FD exact
IFFL1 yes yes no yes
IFFL2 yes no no no

TABLE I: Summary of adaptation results in a stochastic
and a deterministic setting; ydet denotes the deterministic
solution for y, µy and Σyy are its mean and variance. FD
exact means that the differential equations for the first two
moments are exact.

C. The two state protein model

To identify a minimal network that adapts, we modify the
example discussed in [4].

Ø
k−→ Y

α−→ Ø , Y
u/ε−→ Z

Z
c/ε−→ Y

The stochiometry matrix for this system is

Γ =

[
1 −1 −1 1
0 0 1 −1

]
,

and R(k) =
[
k αY u

εY
c
εZ
]T

. The means solve:

µ̇y(t) = k − (α+
u

ε
)µy +

c

ε
µz,

µ̇z(t) =
u

ε
µy −

c

ε
µz,

(38)

where Y is the output of interest. At the steady state µssy =
k
α , and µssz = uk

αc . Then the problem simplifies to solving

Σ̇yy = −2Σyy(α+
u

ε
) + 2

c

ε
Σyz + k + αµy +

u

ε
µy +

c

ε
µz

Σ̇yz =
u

ε
Σyy − Σyz(

c

ε
+ α+

u

ε
) +

c

ε
Σzz −

u

ε
µy −

c

ε
µz

Σ̇yy =
2u

ε
Σyz −

2c

ε
Σzz +

u

ε
µy +

c

ε
µz

At the steady state the system simplifies to

Σyy =
cΣyz
αε+ u

+
k

α
, Σzz =

uΣyz
c

+
uk

αc
, Σyz = 0.

Hence,

Σyy =
k

α
, Σzz =

uk

αc
, Σyz = 0.

Since y was taken as the output to the system, we notice that
the variance of the output also adapts. Moreover if k = c =
α = 1 then Σyy = 1, Σzz = u, Σyz = 0.

V. CONCLUSIONS

Experimental observations of scale-invariance have given
rise to follow-up modeling and theoretical research aimed
at analyzing systems that display the SI property. We have
discussed the existence of a fundamental limitation of a
mechanism based on time-scale separation between internal
variables and output variables, for scale-invariance, showing
that there is a minimal finite error that cannot be overcome,
no matter how large the separation of time scales is.
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