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Sample Complexity for Learning 
Recurrent Perceptron Mappings 

Bhaskar DasGupta, Member, ZEEE, and Eduardo D. Sontag, Fellow, ZEEE 

Abstract-Recurrent perceptron classifiers generalize the usual 
perceptron model. They correspond to linear transformations 
of input vectors obtained by means of “autoregressive moving- 
average schemes,” or infinite impulse response filters, and take 
into account those correlations and dependences among input 
coordinates which arise from linear digital filtering. This paper 
provides tight bounds on sample complexity associated to the 
fitting of such models to experimental data. The results are 
expressed in the context of the theory of probably approximately 
correct (PAC) learning. 

Index Terms-Perceptrons, recurrent models, neural networks, 
learning, Vapnik-Chervonenkis dimension. 

I. INTRODUCTION 

NE OF the most popular approaches to binary pattern 0 classification, underlying many statistical techniques, is 
based on perceptrons or linear discriminants; see for instance 
the classical reference [lo]. In this context, one is interested 
in classifying k-dimensional input patterns U = ( V I ,  . . . , u k )  

into two disjoint classes A+ and A-. A perceptron 1’ which 
classifies vectors into A+ and A- is characterized by <a vector 
(of “weights”) C‘ E Rk, and operates as follows. One forms 
the inner product c‘. ‘U = c1v1 + . . .  + c k l i k .  If this inner 
product is positive, v is classified into A+, otherwise into 
A - ;  see Fig. 1. (A variation allows for an additional constant 
term C O ,  corresponding geometrically to a partition of R’” by 
a hyperplane not passing through the origin, but thiis term, 
can be incorporated into the remaining weights if one input 
variable is always set to the value “1.”) 

In practice, given a large number of labeled (“training”) 
samples (‘U(’),&,), where E, E {+, -}, one attempts to find a 
vector Z s o  that ?‘.‘u(~) is positive when E, = “+” and negative 
(or zero) otherwise. Finding such a vector amounts lo solv- 
ing a linear programming problem, and recursive algorithms 
(“perceptron learning method”) are popular for its solution. 
The resulting perceptron corresponding to one such vector E‘ 
is then used to classify new, previously unseen, examples. 
There are two ways of justifying this procedure. The first is 
under the hypothesis that the sets A+ and A- are indeed 
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Fig. 1.  Usual view of perceptron classifiers. 

linearly separable, that is, there is some hyperplane having 
them on opposite sides. In addition, it is assumed that the 
training samples are in either A+ or A-, and are labeled 
accordingly. Provided that the training set is large enough, 
a hyperplane separating the samples is a good approximation 
of a true separating hyperplane for A+ and A - .  A second 
justification (called sometimes “agnostic learning” in compu- 
tational learning theory) is based on the fact that, if a large 
proportion of samples can be linearly separated, then it is 
very likely that future samples will be correctly classified 
when using the same rule. Both of these justifications can be 
made precise on the basis of sample complexity bounds (“VC 
dimension” as discussed below), and can be found in classical 
references (see, e.g., [27]) as well as [14]. These bounds give 
estimates of the number of random training samples needed 
so that a perceptron consistent with (a large proportion of) the 
seen samples will also, with high probability, perform well 
on unseen data; see in particular the exposition in [17]. The 
bounds are linear in the input dimensionality k for any fixed 
confidence levels. 

A. Recurrent Perceptrons 

In signal processing and control applications, the size k 
of the input vectors v is typically very large. As perceptron 
theory says that a number of training samples proportional 
to I% is required for reliable prediction, this means that a 
very large number of samples is needed in such applications. 
However, perceptron theory does not take into account the 
fact that the signals of interest may exhibit context depen- 
dence and correlations, and this prior information can help 
in narrowing down the search for a classifier. It is often 
the case in such applications that the classes A+ and A- 
can be separated by means of a linear dynamical system of 
fairly small dimensionality. In that case, the inner product 
E ‘ .  U represents a convolution by a separating vector Z that 
is the impulse response of a recursive digital filter of some 
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Fig. 2. Recurrent perceptron classifiers. 

order n << k .  In this model, we think of the inputs as being 
presented sequentially instead of in parallel, to a linear filter, 
as shown in Fig. 2. (In general, at each time t ,  wt can be itself 
a vector, though for simplicity we will restrict our analysis to 
the case in which these are scalars.) This dynamic behavior 
can be represented in various ways, for instance by means of 
an “autoregressive moving average” update 

yt = QIYt -n  + * ’ .  + anyt-1 + + . . . + pnwt-l, 
t = n+ l , ‘ . . , k +  I 

weight vector Zis constrained to lie in the class of n-recursive 
(with fixed n << k )  vectors. One may expect that the size of 
learning samples required in order to reliably classify future 
unlabeled inputs will be much smaller than k .  Indeed, roughly 
speaking the main result is that the number of samples needed 
is proportional to the just logarithm of the length k (as opposed 
to k itself, as would be the case if one did not take advantage 
of the recurrent structure). This number is in general larger 
than the number of parameters 2n, a perhaps surpriqing fact 
(see Remark 4.4). The precise formulation is in terms of 
computational leaning theory (or, in more classical statistical 
language, in terms of generalized Glivenko-Cantelli theorems 
for uniform convergence of empirical probabilities) and is 
reviewed below. We also make some remarks on the actual 
computational complexity of finding a vector Zconsistent with 
lhe training data, and WG also discuss briefly the identification 
of linear dynamical systems, in which the complete output (as 
opposed to merely the sign) is of interest. for appropriate coefficients ai’s and pi’s (with the recursion 

initialized at y1 = . . .  = yn = 0, and where the sign of the 
last output yk+l determines the classification), or equivalently, 
letting Z denote the impulse response sequence, as a classical 
perceptron yk+l = E‘. v in which the weight vector c‘ has a 
special form, namely, Zis n-recursive, meaning that there exist 
real numbers T I ,  . . . , T, so that 

n 

c j  = C j - i T i ,  j = 12 + 1, ’ .  ’ , k .  
i=l 

Seen in this context, the usual perceptrons are nothing more 
than the very special subclass of “finite impulse response” 
systems (all poles at zero); thus it is appropriate to call 
the more general class “recurrent” or “IIR (infinite impulse 
response)” perceptrons (as done in [l], [2]). 

The BPS (“backpropagation for sequences”) approach de- 
veloped by Bengio and coauthors (see [6, sec. 4.41) is an 
example of an application of these ideas in signal process- 
ing. The autoregressive equation is seen as determining the 
behavior of dynamical processing units (cf. [6, eq. 4.17]), and 
there is an output nonlinearity given by a “squashing” function, 
corresponding in our case to taking the sign of the output. 
(Sometimes, cascades of these units are allowed, which makes 
the model capable of handling more highly nonlinear data as 
well.) Bengio [6] describes experimental data regarding the use 
of the BPS architecture in several applications, including the 
speech recognition task of speaker-independent discrimination 
between the consonants “b” and “d” (in this case, at each 
t the input ut is a vector whose coordinates consist of 
Fourier-like parameters associated to speech samples as well 
as some additional information on signal levels). There is also 
related work in control theory dealing with such classifying, 
or more generally quantized-output, linear systems; see [9], 
[ 161, [22]. Various dynamical system models for classification 
appear also when learning finite automata and languages-see, 
e.g., [12]-and in signal processing as a channel equalization 
problem (at least in the simplest 2-level case) when modeling 
linear channels transmitting digital data from a quantized 
source-see [3] and also the related paper [19]. 

Thus we are motivated to look into the theoretical issue 
that arises from the fitting data to perceptrons in which the 

B. Sample Complexity and VC Dimension 

We next very briefly review some (by now standard) notions 
regarding sample complexity, with the purpose of motivating 
the main results, which deal with the calculation of VC 
dimensions. For more details see the books [27], [28], the 
paper [7], or the survey [17]. 

In the general classification problem, an input space X as 
well as a collection 3 of maps X i { -1, I} are assumed to 
have been given. (The set X is assumed to be either countable 
or an Euclidean space, and the maps in 3 are assumed to be 
measurable. In addition, mild regularity assumptions are made 
which insure that all sets appearing below are measurable, but 
details are omitted since in our context these assumptions are 
always satisfied.) Let W be the set of all sequences 

w = ( . 1 , $ ( . 1 ) ) , . . . , ( U S , $ ( ~ ~ ) )  

over all s 2 1, (u1, . . . , U,) E X”, and .Si, E F. An ident$er 
is a map cp : W + F. The value of cp on a sequence w as 
above will be denoted as cpw. The error of cp with respect 
to a probability measure P on X, a $ E 3, and a sequence 
( u ~ , . . . , u , )  E X”, is 

E n p ( P , + , ~ i , . . . , ~ s )  :=Prob[cp,(U) #$(U)]  

(where the probability is being understood with respect to P).  
The class F is said to be (uniformly) learnable if there 

is some identifier cp with the following property: For each 
E ,  6 > 0 there is some s so that, for every probability P and 
every + E 3 

Prob [Err,(P, +, ~ 1 , .  . . , U,) > E ]  < 6 
(where the probability is being understood with respect to P“ 
on X“). 

In the leamable case, the function S ( E ,  6) which provides, 
for any given E and 6, the smallest possible s as above, 
is called the sample complexity of the class 3. It can be 
proved that leamability is equivalent to finiteness of the 
Vapnik-Chewonenkis (VC) dimension U of the class F, a 
combinatorial concept whose definition we recall later. In fact, 
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S ( E , S )  is bounded by a polynomial in 1/& and 1/6 and is 
proportional to v in the following precise sense (cf. [7], [26]): 

Moreover, lower bounds on S ( E , S )  are also known, in the 
following sense (cf. [7]): for 0 < E < i, and assuming that the 
collection 3 is not trivial (i.e., 3 does not consist of just one 
mapping or a collection of two disjoint mappings, see [7] for 
details), we must have 

The above bounds motivate the studies dealing with estimating 
VC dimension, as we pursue here. 

When there is an algorithm that allows computing an 
identifier p in time polynomial on the sample size, ihe class 
is said to be learnable in the PAC (“probably approriimately 
correct”) sense of Valiant (cf. [25]). In this paper, we first study 
the question of uniform learnability in the sample complexity 
sense, for recurrent perceptron concept classes, and we also 
prove a result, in Section V regarding PAC learnability for 
such classes. 

There is a variation of the PAC learning results, in which the 
objective is not to obtain arbitrary small errors but merely to 
approximate the smallest possible error rate achievable with 
a given class of functions 3. This is much more realistic 
in applications, as there is no reason to assume that a given 
structure (such as recurrent perceptrons of a given order) will 
represent the data precisely. The VC dimension appears again 
in the sample complexity estimates associated to this “agnostic 
learning” problem (the term originates in the fact that we do 
not wish to assume a particular “target concept” that generates 
the observed samples). A typical result in this area is as follows 
(cf. [17], based on [18], [14], for more details). Let iZ be any 
distribution over X x { -1,l). Pick any E ,  6 > 0. Suppose that 
a sample (u1, yl), . . . , (us, ys) of length s = S ( E ,  6) ILS drawn 
according to A, where 

Assume that we now approximately minimize the empirical 
risk, in the sense that we find a function E 3 so that the 
average number of missclassifications 

when using 11, is within ~ / 3  of the minimal possible number 
inf+tEFp(ll,’). Then, with probability 21 - S (with respect 
to the random drawing of the sample), the expectation of the 
error made by $ on samples drawn according to the same 
distribution A is within e of the minimal possible expected 
error among all possible $’ E 3. 

Generalizations to the learning of real-valued (as opposed to 
Boolean) functions, by evaluation of the “pseudo-dimension’’ 
of recurrent maps, are also possible; see the brief discussion 
in Section VI. 

11. DEFINITIONS AND STATEMENTS OF MAIN RESULTS 

The concept of VC dimension is classically defined in terms 
of abstract concept classes. Assume that we are given a set X, 
called the set of inputs, and a family of subsets C of X, called 
the set of “concepts.” A subset X C X is said to be shattered 
(by the class C) if for each subset B C X there is some 
C E C such that B = C n X .  The VC dimension is then the 
largest possible positive integer n (possibly +CO) so that there 
is some X G X of cardinality n which can be shattered. An 
equivalent manner of stating these notions, somewhat more 
suitable for our purposes, proceeds by identifying the subsets 
of X with Boolean functions from X to { -1, l} (we pick 
(-1, l} instead of {0,1} for notational convenience): to each 
such Boolean function qh there is an associated subset, namely, 
{ x  E Xlqh(x) = l}, and conversely, to each set B C X one 
can associate its characteristic function 4~ defined on the set 
X .  Similarly, we can think of the sets C E C as Boolean 
functions on X and the intersections C X as the restrictions 
of such functions to X .  Thus we restate the definitions now 
in terms of functions. 

Given the set X, and a subset X of X, a dichotomy on X 
is a function 

s:x + {-l,l}. 

Assume given a class 3 of functions X + { -1, l}, to be 
called the class of classiJier functions. The subset X G X is 
shattered by 3 if each dichotomy on X is the restriction to X 
of some E F. The Vapnik-Chewonenkis dimension VC (3) 
is the supremum (possibly infinite) of the set of integers /c, for 
which there is some subset X C X of cardinality /c, which can 
be shattered by 3. 

Pick any two integers n > 0 and q 2 0. A sequence 

c‘= ( C l , .  . . , cn+J E Rn+q 

is said to be n-recursive if there exist real numbers T I ,  . . . , rn 
so that 

n 

i=l 

(In particular, every sequence of length n is n-recursive, but 
the interesting cases are those in which q # 0, and in fact 
q >> n.) Given such an n-recursive sequence E‘, we may 
consider its associated perceptron classifier. This is the map 

where the sign function is understood to be defined by 
sign ( z )  = -1 if z 5 0 and sign ( z )  = 1 otherwise. (Changing 
the definition at zero to be +l would not change the results 
to be presented in any way.) We now introduce, for each two 
fixed n,a as above, a class of functions 

F ~ , ~  := {qhzl.‘ E Rn+q is n-recursive} 

This is understood as a function class with respect to the 
input space X = Rn+q, and we are interested in estimating 
vc (Fn,q). 
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Our main result will be as follows (in this paper, all 

Theorem I :  
logarithms are understood to be in base 2): 

The upper bound is a simple consequence of an argument 
based on parameter counts, and is given in Section IV. Much 
more interesting is the almost matching lower bound, which 
will involve a result on dual VC dimensions which we prove 
in Section 111. 

Some particular cases are worth discussing. When q = O ( n )  
then both the upper and the lower bounds are of the type cn for 
some (different) constants c. If q = Q(nl+‘) (for any constant 
E > 0), then both the upper and the lower bounds are of the 
form cnlog ( q / n )  for some constants c. In this latter case, 
assume that one is interested in the behavior of VC (Fn,y) as 
n + $00 while q grows polynomially in n; then the upper and 
lower bounds are both of the type en log n for some constants 
e. If instead q grows exponentially on n, both the upper and 
lower bounds are polynomial in n. 

The organization of the rest of the paper is as follows. 
In Section I11 we prove an abstract result on VC-dimension, 
which is then used in Section IV to prove Theorem 1. 
In Section V, we show that the consistency problem for 
recurrent perceptrons can be solved in polynomial time, for 
any fixed n; some recent facts regarding representations of 
real numbers and decision problems for real-closed fields, 
needed in this section, are reviewed in the Appendix. Finally, 
in Section VI we make some final comments about bounds 
on the sample complexity needed for identification of linear 
dynamical systems, that is to say, the real-valued functions 
obtained when not taking “signs” when defining the maps 4,-. 

111. AN ABSTRACT RESULT ON V c  DIMENSION 
Assume that we are given two sets X and A, to be called in 

this context the set of inputs and the set of parameter values, 
respectively. Suppose that we are also given a function 

F :  A x X 4 {-1, l}. 

Associated to this data is the class of functions 

F:= { F ( X , . ) :  X t { - l , l } j X  E A} 

obtained by considering F as a function of the inputs alone, 
one such function for each possible parameter value A. We 
will prove lower bounds in Theorem 1 by studying the VC 
dimension of classes obtained in this parametric fashion. 

Note that, given the same data one could, dually, study the 
class 

F*:{F( . ,<) :A+ {-1,1}1< E X} 

which is obtained by fixing the elements of X and thinking of 
the parameters as inputs. it is well known (cf. [ l l ,  Theorem 

9.3.21, and in any case, a consequence of the much more 
general result to be presented below) that 

VC (F) L 11% (VC (3*))1 
which provides a lower bound on VC (F) in terms of the “dual 
VC dimension.” A sharper estimate is possible when A can be 
written as a product of n sets 

A = A ,  x A2 x . . .  x A, (1) 

and that is the topic which we develop next. 
We assume from now on that a decomposition of the form 

in (1) is given, and will define a variation of the dual VC 
dimension by asking that only certain dichotomies on A be 
obtained from 3*. We define these dichotomies only on 
“rectangular” subsets of A, that is, sets of the form 

L = L ~ x . . . x L , ~ A  

with each L, A, a nonempty subset. Given any index 
1 5 K 5 n, by a L;-uxis dichotomy on such a subset L we mean 
any function 6: L --+ { -1, 1} which depends only on the 6th 
coordinate, that is, there is some function 4:  LK {-1, I} so 
that 6(A1;..,An) = 4(An) for all (Al,...,A,) E L ;  an axis 
dichotomy is a map that is a &-axis dichotomy for some K .  

A rectangular set L will be said to be axis-shattered if every 
axis dichotomy is the restriction to L of some function of the 
form F ( . ,  E ) :  A + {-1, l}, for some 5 E X. 

Theorem 2: If L = L1 x ‘ . . x L, C A can be axis-shattered 
and each set L, has cardinality T,, then 

V C ( F )  L Llog(rl)l + . . .+  [lOg(rn)l. 

Note that in the special case n = 1 one recovers the result 

We will prove this theorem below, after a couple of small 
observations. 

A can 
be axis-shattered. Pick any indices (possibly equal) 6 1 , ~ ~  E 
{ 1 , - . . , n }  and any functions 4,:LK3 i {-1,1},i = 1,2 .  By 
definition of axis-shattering, there exist elements [I, [2 E X, 
such that 

Remark 3.1: Assume that L = L1 x . . . x L,  

F(A1, .  . . , A,, E,) 
= #lz(A,z) Y(A1,. . ’ ,A,) E L1 x . ’ .  x L,. (2) 

We then have 
a) If K~ = n2 and cl = (2 then 41 = 4 2 .  

b) If K~ # n2 and El = ( 2  then both 41 and 4 2  are constant 

Property a) is obvious. Property b) is proved as follows. 
Without loss of generality, we may take 6 1  = 1 and 6 2  = 2. 
Now pick XZ, . . . , X, arbitrarily. Then 

functions. 

4l(A) = F(A,x2,.‘.,Xn,t) = ~ ( X Z )  
for all A E L1, and a similar argument shows that 4 2  is 
constant as well. 0 



DASGUPTA AND SONTAG: SAMPLE COMPLEXITY FOR LEARNING RECURRENT PERCEPTRON MAPPINGS 1483 

Remark3.2: Let S = (s1,s2,.. . ,sT} be a set of cardi- 
nality r = Z m ,  where m is a positive integer. Let M be the 
m x r matrix whose columns are the 2m possible vectors 
in {-1,1}” and define the functions dz by the formula 
4z(s3) = MzJ for all 1 5 i 5 m and 1 5 j 5 T.  Then, 
it is easy to see that the the set of m (distinct) dichotomies 
41,42, . . . , dm on S have the following property: For each 
vector (al, a2, . . . , a,) E { -1, l},, there exists a unique 
index j E {l , . . . r} such that 

(3)  dz(sg) = a,, i = 1 1 ’ .  . >m.  

Moreover, none of the functions dZ is a constant function. 0 
Proof of Theorem 2: We may assume without loss of 

generality that each r ,  = 2”= for some positive integers 
ml , . . . , m,. This is because any possible indices so that 
T, = 1 can be dropped (and the result proved with smaller 
n), and for each r ,  > 1, a subset LL of L,, of cardinality 
2 L l o g r f f i J ,  could be used instead of the original L, if r ,  is not 
a power of two. 

To prove the theorem, it will be enough to find n disjoint 
subsets XI, X2, . . . , X, of X, of cardinalities ml , . . . , m,, 
respectively, so that the set 

is shattered. Pick any IF. E { 1, . . . , n}.  Consider the set 
L, = { l , , ~ ,  ln,2, . . . , l , ,T,} .  By Remark 3.2 applied to this 
set, there exists a set of m, distinct and nonconstant di- 
chotomies d, ,~ ,  d , , ~ ,  . e , q ! ~ , , ~ ,  on L, so that, for a n y  vector 
(al, a2, * a ,  amx)  E {-1,1}”-, there exists a unique index 
1 5 j ,  5 r,  so that 

(4) 

Since L can be axis-shattered, each of the axis dichotomies 
d,,z can be realized as a function F(. ,  (). That is, theire exists 
a set input 

q!In,z(L,g,) = a,, 2 = 1,. . . , m,. 

X, = {&,I, & , 2 , .  . . &,m,} 

so that, for each 2 = l , . . .  ,m, 

F(A1, ...,A,,l,,%) = dR,Z(A,) ,  

V(A1,. . . ,A,) E L1 x . . . x 11,. ( 5 )  

Note also that, by construction, <n,z # En,z, for i # i’, since 
the corresponding functions qh,,z are distinct (recall Remark 
3.1, part a)). 

Summarizing, for each vector 

( a l , a 2 , . . . , a m % )  E {-l,l}m= 

and for each IF. E { 1 ,. . . , n }  there is some 1 I j ,  I r,< so that 

~(~l,...,A,-l,z,,~ffi,~~+l,...,~,,~,,z)=d,,z(z,,~ffi) 

=az, i = l , . . . , m ,  

(6) 

for all A, E L, ( q  # IF.). We do this construction for each 
IF. and define 

Note that the sets X, are disjoint, since # whenever 
IF. # 6’ (by part b) of Remark 3.1 and the fact that the functions 
$,,, are all nonconstant). The set X can be shattered. Indeed, 
assume given any dichotomy 6: X --3. {-1, l}. Using (6), with 
the vector a = (S(&,l), . . . , S(<,,m,)) for each 6, it follows 
that for each IF. E { 1, , n}  there is some 1 5 j, 5 r,  so that 

F(Ii,g1,...,ln,g,,5n,z) =S((,,,), i = l , . . . , m K .  

That is, the function F(A,  .) coincides with S on X, when one 
W 

Note that the lower bound in the above result is almost 
tight, because by Lemma 4.2 there is a set of the form 
L = L1 x . . .  x L, C A which can be axis-shattered and 
for which VC (F) = O(n1og ( r n ) ) ,  with cardinality of each 
L; greater or equal to r for each i. 

picks X = (ll,jl ,  . . . , Zn,j,). 

Iv .  PROOF OF MAIN RESULT 

We recall the following result; it was proved, using Mil- 
nor-Warren bounds on the number of connected components 
of semi-algebraic sets, by Goldberg and Jerrum: 

Fact 4.1 ([13]): Assume given a function F :  A x X + 

{-1, l} and the associated class of functions 

F:= { F ( A ,  .): X + {-I, I } l X  E A}. 

Suppose that A = Rk and X = Rn, and that the function F can 
be defined in terms of a Boolean formula involving at most 
s polynomial inequalities in IC + n variables, each polynomial 
being of degree at most d. Then 

VC (F) I 2k log (8eds) .  0 

Lemma 4.2: 

VC (Fn,q) I min { n  + q,18n + 4nlog ( q  + 1)). 

Proofi Since Fn,q c Fn+q,o 

where the last equality follows from the fact that 

VC (sign (6)) = dim (6) 

when B is a vector space of real-valued functions (the standard 
“perceptron” model). On the other hand, it is easy to see 
(by induction on j) that, for n-recursive sequences, c , + ~  (for 
1 5 j 5 q)  is a polynomial in e1 , c2, . . . , en, r1, r2, . . . , r, of 
degree exactly j+l. Thus one may see Fn,n as a class obtained 
parametrically, and applying Fact 4.1 (with IC = 2n,s = 1, 
d = q + 1) gives 

VC (F,,p) < 18n + 4nlog ( q  + 1). W 

Lemma 4.3: 

X : = X 1  ux2 u.. . u x , .  
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Proof: As Fn,q contains the class of functions 4~ with 
c‘ = (c l ,  . . . , en, 0, . . . , 0), which in turn being the set of 
signs of an n-dimensional linear space of functions, has VC 
dimension n, we know that VC (Fn,q) 2 n. Thus we are left 
to prove that if q>n  then 

The set of n-recursive sequences of length n + q includes 
the set of sequences of the following special form: 

n 

,=I 

where a,, 1, E R for each i = 1,.  . . , n. (More precisely, this 
is a characterization of those n-recursive sequences of length 
n + q for which the characteristic roots, that is, the roots of 
the polynomial determined by the recursion coefficients, are 
all real and distinct; such facts are classical in the theory of 
recurrences.) In turn, this includes the sequences as in (7) in 
which one uses only a1 = . . .  = a, = 1. Hence, to prove 
the lower bound, it is sufficient to study the class of functions 
induced by 

F :  R” x R”+q --$ {-1, l}, 

Let T = Lq + n - l /nl  and let L1,. . . , L,  be n disjoint sets 
of real numbers (if desired, integers), each of cardinality T. 

Let L = U:==, L,. In addition, if ~n < q + n - 1, then select 
an additional set B of ( q  + n - ~n - 1) real numbers disjoint 
from L. 

We will apply Theorem 2, showing that the rectangular 
subset L1 x . . .  x L,  can be axis-shattered. Pick any K E 
{ 1, . . . , n}  and any 4: L ,  + { -1,l). Consider the (unique) 
interpolating polynomial 

3=1 

in X of degree q + n - 1 such that 

One construction of such a polynomial is via the Lagrange 
formula 

1, ELUB;1,#1 

Now pick [ = (zl,. . . , z,+~-~). Observe that 
/ n  \ 

\<=I / 

for all 

since p(Z) = 0 for Z 
follows from Theorem 2 that 

L ,  and p ( l )  = 4(2) otherwise. It 

vc (.Tn,q) L n L 1% (.)I 

as desired. 
Remark 4.4: The dependence of VC (F,,q) on q in Lemma 

4.3 is perhaps a somewhat surprising combinatorial fact, since 
there are only 2n free parameters CI ,  . . . , e,, T I ,  . . . , T,. Intu- 
itively, the explanation for this dependence is that, although the 
number of free parameters is independent of q, the degree of 
the polynomial computed does depend on q, and this degree 
influences the number of distinct sign assignments that the 
polynomial can achieve. In general, the VC dimension of 
a concept class may be far larger than the number of free 
parameters, even infinite (cf. [211), and is roughly equal to 
the square of the number of parameters for general classes of 
“neural network” classifiers (cf. [15]). As a related remark, 
observe that, as follows from a simple continuity argument, 
once that parameters have been found to achieve the shattering 
of a set of samples, any other set of samples near this set 
can also be shattered (using the same sets of parameters). In 
other words, one can always shatter an open set of samples 
(when viewing such sequences of samples as elements of 
an appropriate product Euclidean space) of cardinality equal 
to the VC dimension. One may ask about the shattering of 
more arbitrary sequences, for instance, the shattering of all 
sequences in “general position.” In [23], a result is given which 
implies, in particular, that when there are 2n parameters it is 
impossible to shatter all general position sets of more than 
4n + 2 points. So the “dimension” obtained when one asks for 
shattering of all sets in general position (a concept studied also 
in [21], and related to Cover’s capacity measures) is linearly 

0 proportional to the number of parameters. 

V. RLE CONSISTENCY PROBLEM 
We next briefly discuss polynomial time learnability of 

recurrent perceptron mappings. As discussed in, e.g., [24], 
in order to formalize this problem we need to first choose a 
datu structure to represent the hypotheses in -Tn,n. In addition, 
since we are dealing with complexity of computation involving 
real numbers, we must also clarify the meaning of “finding” 
a hypothesis, in terms of a suitable notion of polynomial-time 
computation. Once this is done, the problem becomes that of 
solving the consistency problem. 

Given a set of s 2 s ( E , S )  inputs & , < z , . . . , [ ~  E Rn+q 
and an arbitrary dichotomy A: { C l ,  &, . . . , &} t {-1, l}, 
find a representation of a hypothesis & E Fn,q such that the 
restriction of 4~ to the set {(I,&, . . . , &} is identical to the 
dichotomy A (or report that no such hypothesis exists). 

The representation to be used should provide an efJicient 
encoding of the values of the parameters T I ,  . . . , T,, c1, . . . , c,: 
given a set of inputs ( Z ~ , . . . , Z , + ~ )  E Rn+q, one should 
be able to efficiently check concept membership (that is, 
compute sign (Crz: c,z,)). Regarding the precise meaning of 
polynomial-time computation, there are at least two models 
of complexity possible. The first, the unit cost model of 
computation, is intended to capture the algebraic complexity 
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of the problem; in that model, each arithmetic and coniparison 
operation on two real numbers is assumed to take unit time, 
and finding a representation in polynomial time means doing 
so in time polynomial on s+n+q. An alternative, the logarith- 
mic cost model, is closer to the notion of computation in the 
usual Turing machine sense; in this case one assumes that the 
inputs ( 2 1  , . . . , x ,+~)  are rational numbers, with numerators 
and denominators of size at most L bits, and the time involved 
in finding a representation of rl, . . . , T, , e1 , . . . , c, is required 
to be polynomial on L as well. 

We study the complexity of the learning problem for con- 
stant n (but varying 4). The key step is treating consistency, 
since if the decision version of a consistency problem is NP- 
hard, then the corresponding class is not properly polyriomially 
learnable under the complexity theoretic assumption RP # NP, 
cf. [7]. For a suitable choice of representation, we will prove 
the following result: 

Theorem 3: For each fixed n > 0, the consistency problem 
for F,,, can be solved in time polynomial in q and s in the 
unit cost model, and time polynomial in q,  s, and L in the 
logarithmic cost model. 

Since VC (.F,,q) = O(n + nlog ( q  + I ) ) ,  it follows from 
here that the class Fn,, is learnable in time polynomial in q 
(and L in the log model). Our proof will consist of i i  simple 
application of several recent results and concepts, given in 
[4], [ 5 ] ,  [20], which deal with the computational complexity 
aspects of the first-order theory of real-closed fields. Note that 
we do not study scaling with respect to n: for q = 0, this 
reduces to the still-open question of polynomial time solution 
of linear programming problems, in the unit cost model. 

Proof of Theorem 3: For asymptotic results we may as- 
sume, without loss of generality, that s > 2n from the bound 
of Theorem 1. We will use the representation discussed in the 
Appendix for the coefficients c1 , . . . , c, , T I ,  . . . , T, , seen as 
vectors in R'", k = 2n. We first write the consistency problem 
as a problem of the following type: 

(*) find some c1, . . . , e,, TI , . a , T, E R such that 
At=l ( Q, A, 0) (or report that no such parameter values 
exist) 

where each Qz is a certain real polynomial in the variables 
T I ,  . . . , T,, c1, . . . , c, of degree at most q + 1, and A, is 
the relation > (resp. 5)  if S(&) = 1 (resp. S(&) = -1). 
Next, we determine all nonempty sign conditions of the set 
Q = { Q1 . . . Q,}. See Fact A2 in the Appendix for an 
algorithm achieving this. For constant n, and this can be done 
in polynomial time in either the unit cost or the logarithmic 
cost model. Now, we check each nonempty sign condition to 
see if it corresponds to the given dichotomy A, i.e., if all the 
(Q, A, 0) hold. If there is no match, we report a failure. 
Otherwise, we output the representation of the coefficients 
c1,. .. , e,, T I ,  .. . , T,. 

VI. A COMMENT ON REAL-VALUED FUNCTION LEP,R"G 
As a final comment, we wish to simply remark that it is 

possible to obtain results on the learnability of linear systems 
dynamics, that is, the class of functions obtained if one does 
not take the sign when defining recurrent perceptrons. The 

connection between VC dimension and sample complexity is 
only meaningful for classes of Boolean functions: in order to 
obtain learnability results applicable to real-valued functions 
one needs metric entropy estimates for certain spaces of 
functions. These can be in turn bounded through the estimation 
of Pollard's pseudo-dimension. The reader is referred to [14] 
for the appropriate definitions and the results linking pseudo- 
dimension PD and learnability. One example result possible 
in our context is as follows. For any two nonnegative integers 
n,q, consider the class 

FA,, := {&ZE IW,+~ is n-recursive} 

where 

i= l  

Assume that we wish to learn with respect to the loss function 
e(yl, y2) = max { Iy1 - y2I2, 1) and that n + q 2 4. Then we 
have that 

PD [FA,,] 5 20n log (n  + 4). 

The proof follows easily from the Milnor-type bounds and the 
appropriate definitions. 

APPENDIX 
REPRESENTATIONS OF REAL 

NUMBERS AND DECISION PROBLEMS 

We collect here some facts regarding Thom encodings of 
real numbers and their use in decision problems for real-closed 
fields. 

Let f ( x )  be a real univariate polynomial of degree d, and 
let Q be a real root of f .  The Thom encoding of Q relative to 
f ( z ) ,  denoted Th ( a ,  f ) ,  or just Th ( a )  if f is clear from the 
context, is the sign vector 

(sg [ f (Q) l ,  sg [f '(Q)l, .  * .  7 sg [P'(Q)l) E {-I, O,1ld+l 

where sg [XI = x/IxI if z # 0 and sg [O] = 0. It is known (cf. 
[SI) that Th ( a ,  f )  uniquely characterizes a among the roots 

In this paper, by a representation of a vector (y1, y2, . . . , y k )  
of f .  

E I W k  we mean a vector 

consisting of 
a) a univariate polynomial f ( t ) ,  
b) k + 1 univariate polynomials go( t ) ,  . . . , g k ( t ) ,  and 
c> a vector p E {-1,0, ~ } ~ ' g ( f ) + l .  

so that p is the Thom encoding Th(a )  of some root a of f ,  
and y; = g;(a)/go(a) for each 1 5 i 5 k .  The polynomials 
are represented by vectors providing their degrees and listing 
all coefficients. When dealing with the logarithmic cost model, 
we assume in addition that the coefficients of the polynomials 
f and g; are all rational numbers. In the unit cost model, the 
size of such a representation is defined to be the total number 
of reals needed so as to specify the coefficients, that is, the sum 
of the degrees of all the polynomials plus 5 + 3 + deg ( f ) .  In 
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the logarithmic cost model, the size is the above plus the total 
number of bits needed in order to represent the coefficients 
of the polynomials, each written in binary as the quotient of 
two integers. 

In the paper, we use these representations for the param- 
eters defining concepts, while inputs are given directly as 
real numbers (rationals in the log model); thus we need to 
know that signs of polynomial expressions involving vectors 
represented in the above manner as well as reals can be 
evaluated efficiently. We next state a result that assures this. By 
the complexity of a multivariable polynomial H ( z 1  , . . . , zq )  we 
mean the sum of the number of nonzero monomials plus the 
sum of the total degrees of all these monomials (for instance, 
2z f z i  - z: has complexity 2 + 5 + 7 = 14); in the log cost 
model, we assume that the coefficients of H are rational and 
we add the number of bits needed to represent the coefficients. 

Lemma A l :  In the unit cost model, there is an algorithm 
A which, given a polynomial H of complexity h on vari- 
ables zl, . . . , zl, y1, . . . , y,+, and given real numbers z1 , . . . , zz 
and a representation (f  ( t )  , go ( t )  , . . . , g k  ( t )  , p )  of a vector 
YI,. . . , Y,+, can compute sg [H(zl, 
polynomial on Z,h, and the size of this representation. The 
same result holds in the logarithmic cost model, assuming that 
the inputs 2; are all rational, with time now polynomial on the 

0 
Pro08 Note that, in general, if pl(t)  and p z ( t )  are 

two rational functions with numerator and denominators of 
degree bounded by d, then both p l ( t ) p z ( t )  and p l ( t )  + p z ( t )  
are rational functions with numerator and denominator of 
degree at most 2d. Moreover, these algebraic operations can 
be computed in time polynomial on d as well as, in the 
log model, on the size of coefficients. Working iteratively 
on all monomials of H ,  we conclude that it is possible to 
construct from the gi’s and zj’s, in polynomial time, two 
polynomials Rl(t)  and Rz(t) with real (rational, in the log 
model) coefficients so that 

size of these inputs as well. 

H(zl,...,zZ,Yl,...,y~) = R1(a)/Rz(a)  

where a is the root encoded by p. Note that 

1, if sign (R1 (a)) = sign (R2(a) )  
and Rl(a)  # 0 

sign (%) = { - 1, otherwise. 

Thus it is only necessary to evaluate sign ( & ( a ) ) ,  i = 1 , 2 .  
The evaluation can be done efficiently because of the following 
fact from [20]: 

There is an algorithm B with the following property. 
Given any univariate real polynomial f ( t )  , a real root a 
of f specified by means of its Thom encoding Th (a) ,  
and another univariate polynomial g ( t ) ,  B outputs 
sign ( g ( a ) ) ,  using a number of arithmetic operations 
polynomial on deg (f) + deg ( 9 ) ;  in the logarithmic 
cost model, if all input coefficients are rationals of size 
at most L, then B uses a number of bit operations 
polynomial on deg ( f )  + deg ( 9 )  + L. 

This provides the desired sg [H(z l ,  . . . , 21, y1, . . . , yli)]. 
The main reason that representations of the type ( f ( t ) ,  

go@), . . . , g k ( t ) ,  p)  are of interest is that one can produce 

solutions of algebraic equations and inequalities represented 
in that form. We explain this next. 

One says that a vector 

/7 = ( c T 1 , / 7 2 , ~ ~ . , c T s )  E { - l , O , + l } s  

is a nonempty sign condition for an ordered set of s real 
polynomials P = {PI, Pz, . . . , Ps}  in IC < s real variables if 
there exists some point (VI ,  . . . , y k )  E R’” such that 

C z  = sg[~z((Yl,Y2,. . . ,Yk)l  

for all i; the corresponding point (yl ,  y2, . . . , yk) E R‘“ is said 
to be a witness of c ~ .  

FactA2 141, [SI: There is an algorithm A as follows. 
Given any set P of s real polynomials in k < s variables, 
where each polynomial is of degree at most d , A  computcs, 
for each nonempty sign-condition of P, the sign condition 
CT, as well as a representation of a witness for D. Moreover, 
A runs in O ( ( S ~ ) ~ ( ’ ) )  time in the unit cost model, and in 
the corresponding representation, deg ( f  ) 5 ( sd)O( ,+) .  In the 
logarithmic cost model, assuming that coefficients of the given 
polynomials are rationals of size at most L,  A runs in time 
O(skddO(’”)Lo(l)), and the degrees and coefficients of all the 
polynomials f ,  go, . . . , g k  (and, consequently the number of 
components in Th (a)) are rational numbers of size at most 
0 ( d o  (k) L W ) .  0 
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