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The ‘input to state stability’ (ISS) property provides a
natural framework in which to formulate notions of
stability with respect to input perturbations. In this
expository paper, we review various equivalent defini-
tions expressed in stability, Lyapunov-theoretic, and
dissipation terms. We sketch some applications to the
stabilisation of cascades of systems and of linear sys-
tems subject to control saturation.
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1. Introduction

There are two very conceptually different ways of
formulating the notion of stability of control systems.
One of them, which we may call the input/output
approach, relies on operator-theoretic techniques.
Among the main contributions to this area, one
may cite the foundational work by Zames,
Sandberg, Desoer, Safanov, Vidyasagar, and others.
In this approach, a ‘system’ is a causal operator F
between spaces of signals, and ‘stability’ is taken to
mean that F maps bounded inputs into bounded out-
puts, or finite-energy outputs. More stringent typical
requirements in this context are that the gain of F be
finite (in more classical mathematical terms, that the
operator be bounded), or that it have finite incremen-
tal gain (mathematically, that it be globally
Lipschitz). The input/output approach has been
extremely successful in the robustness analysis of lin-
ear systems subject to nonlinear feedback and mild

*Supported in part by US Air Force Grant F49620-95-1-0101.

Correspondence and offprint requests to: E.D. Sontag, Department
of Mathematics, Rutgers University, New Brunswick, NJ 08903,
USA. E-mail: sontag@hilbert.rutgers.edu.

nonlinear uncertainties, and in general in the area
that revolves around the various versions of the
small-gain theorem. Moreover, geometric characteri-
zations of robustness (gap metric and the like) are
elegantly carried out in this framework. Finally, i/o
stability provides a natural setting in which to study
the classification and parameterisation of dynamic
controllers.

On the other hand, there is the model-based, or
state-space approach to systems and stability, where
the basic object is a forced dynamical system, typi-
cally described by differential or difference euqations.
In this approach, there is a standard notion of stabi-
lity, namely Lyapunov asymptotic stability of the
unforced system. Associated to such a system, there
is an operator F mapping inputs (forcing functions)
into state trajectories (or into outputs, if partial mea-
surements on states are of interest). It becomes of
interest then to ask to what extent Lyapunov-like
stability notions for a state-space system are related
to the stability, in the senses discussed in the previous
paragraph, of the associated operator F. It is well-
known (see, e.g., [1]) that, in contrast to the case of
linear systems, where there is — subject to mild tech-
nical assumptions — an equivalence between state-
space and i/o stability, for nonlinear systems the
two types of properties are not so closely related.
Even for the very special and comparatively simple
case of ‘feedback linearisable’ systems, this relation is
far more subtle than it might appear at first sight: if
one first linearises a system and then stabilises the
equivalent linearisation, in terms of the original sys-
tem one does not in general obtain a closed-loop sys-
tem that is input/output stable in any reasonable
sense. (However, it is always possible to make a
choice of a — usually different — feedback law that
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achieves such stability, in the linearisable case as well
as for all other stabilisable systems, as will be dis-
cussed below.)

It is the purpose of this article to present a brief and
informal survey of various links between the two
alternative paradigms of stability, i/o and state-
space, through the systematic use of the notion of
‘input to state stability’ (ISS). This notion differs fun-
damentally from the operator-theoretic ones that
have been classically used in control theory, first of
all because it takes account of initial states in a man-
ner fully compatible with Lyapunov stability. Second,
boundedness (finite gain) is far too strong a require-
ment for general nonlinear operators, and it must be
replaced by ‘nonlinear gain estimates’, in which the
norms of output signals are bounded by a nonlinear
function of the norms of inputs; the definition of ISS
incorporates such gains in a natural way. The ISS
notion was originally introduced in [2] and has since
been employed by several authors in deriving results
on control of nonlinear systems. It can be -stated in
several equivalent manners, which indicates that it is
at least a mathematically natural concept: dissipation,
robustness margins, and classical Lyapunov-like defi-
nitions.

The dissipation characterisations are closely related
to the pioneering work of Willems [3], who intro-
duced an abstract concept of energy dissipation in
order to unify i/o and state space stability, and in
particular with the purpose of understanding concep-
tually the meaning of Kalman—Yakubovich positive-
realness (passivity), and frequency-domain stability

theorems in a general nonlinear context. His work.

was continued by many authors, most notably Hill
and Moylan (see e.g. [4,5]). (However, although extre-
mely close in spirit, technically our work does not
make much contact with the existing dissipation lit-
erature. Mathematically it is grounded instead in
more classical converse Lyapunov arguments in the
style of Massera, Kurzweil and Zubov.)

The equivalences between different notions of
input to state stability originate with the paper [2],
but the definitive conclusions were obtained in recent
work jointly carried out with Yuan Wang in [6],
which in turn built upon research with Wang and
Yuandan Lin in [7] and [8]; the input-saturated results
are based on joints papers with Wensheng Liu and
Yacine Chitour ([9]) as well as Sussmann and Yang
([10]). Some recent and very relevant results by Teel
([11]) and Jiang, Praly and Teel ([12]) are also men-
tioned. In the interest of exposition, the style of pre-
sentation in this survey is informal. The reader should
consult the references for more details and, in some
cases, for precise statements.
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1.1. Preliminaries

This paper deals with continuous time systems of the
standard form

x:f(xau)a (1)

where x(7) € R” and u(z) € R™. (Since global asymp-
totic stability will be of interest, and when such a
property holds the state space must be Euclidean,
there is no reason to consider systems evolving in
more general manifolds than Euclidean space.) For
undefined terminology from control theory see [13].
It is assumed that f:R"xR" —R" is locally
Lipschitz and satisfies f(0,0) = 0. Controls or inputs
are measurable locally essentially bounded functions
u:R,o— R". The set of all such functions is
denoted by L%, and one denotes [u, =
(ess)sup{| u(?) |, ¢ = 0} < co; when this is finite, one
obtains the usual space L7, endowed with the
(essential) supremum norm. (Everywhere, | - | denotes
Euclidean norm in the appropriate space of vectors,
and | - || denotes induced norm for matrices, while
||l is used for supremum norm.) For each
xy € R" and each u € LY, x(t, xo,u) denotes the tra-
jectory of the system (1) with initial state x(0) = xo
and input u. This is a priori defined only on some
maximal interval [0,Ty,), With Ty,u < +oo. If
the initial state and input are clear from the context,
one writes just x(-) for the ensuing trajectory. The
system is (forward-) complete if Ty, = +oo for all
xo and u.

The questions to be studied relate to the ‘stability’,
understood in an appropriate sense, of the input to
state mapping (xo, u(-))—x(-) (or, in the last section,
when an output is also given, of the input to output
mapping —y(-)). To appreciate the type of problem
that one may encounter, consider the following issue.
Suppose that in the absence of inputs the trivial solu-
tion x = 0 of the differential equation

% =fo(x) =f(x,0) @)

is globally asymptotically stable (for simplicity, in

such a situation, we will simply say that (1), or

equivalently the zero-input restricted system (2), is

GAS). Then one would like to know if, for solutions

of (1) associated to nonzero controls, it holds that
u()=—=0=x(-) — 0

t—00 1—00

(the ‘converging input converging state’ property) or
that

u(-) bounded = x(-) bounded

(the ‘bounded input bonded state’ property). Of
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course, for linear systems x = Ax + Bu these implica-
tions are always true. Not only that, but one has
explicit estimates

I x(0) [ <B(0) [ xo | +¥lluellog

where

etA sA

e’ |\ds

B(r) =

00
0

~0andy= anj

for any Hurwitz matrix A, where u, is the restriction
of u to [0, 1], though of as a function in L7, which is
zero for s > t. From these estimates both properties
can be easily deduced.

These implications fail in general for nonlinear sys-
tems, however, as has been often pointed out in the
literature (see, for instance, [1]). As a trivial illustra-
tion, take the system

¥=—x+(*+u A3)

and the control u(r) = (2¢+2)""/2. With xy =2
there results the unbounded - trajectory
x(1) = (2t +2)"/%. This is in spite of the fact that
the system is GAS. Thus, the converging input con-
verging state property does not hold. Even worse, the
bounded input = 1 results in a finite-time explosion.
This example is not artificial, as it arises from the
simplest case of feedback linearisation design.
Indeed, given the system

% =x+ (¥ + 1,

the obvious stabilising control law (obtained by first
cancelling the nonlinearity and then assigning
dynamics x = —x) is
—2x Ly
U:——mm
x?+1

where v is the new external input. In terms of this new
control (which might be required in order to meet
additional design objectives, or may represent the
effect of an input disturbance), the closed-loop system
is as in (3), and thus is ill-behaved. Observe, however,
that if instead of the obvious law just given one used:

e —2x
x4l

—X+v

then the closed-loop system becomes instead
¥=-2x—x*+ (x*+ u

This is still stable when u = 0, but in addition it tol-
erates perturbations far better, since the term —x>
dominates u(x* + 1) for bounded u and large x. The
behaviour with respect to such u is characterised
qualitatively by the notion of ‘ISS’ system, to be
discussed below. More generally, it is possible to
show that up to feedback equivalence, GAS always
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implies (and is hence equivalent) to the ISS property
to be defined. This is one of many motivations for the
study of the ISS notion, and will be reviewed after the
precise definitions have been given.

Besides being mathematically natural and provid-
ing the appropriate framework in which to state the
above-mentioned feedback equivalence result, there
are several other reasons for studying the ISS prop-
erty, some of which are briefly mentioned in this
paper. See, for instance, the applications to observer
design and new small gain theorems in [12,14,15,16];
the construction of coprime stable factorisations was
the main motivation in the original paper [2] which
introduced the ISS concept, and the stabilisation of
cascade systems using these ideas was briefly dis-
cussed in [17].

2. The Property ISS

Next, four natural definitions of input to state stabi-
lity are proposed and separately justified. Later, they
turn out to be equivalent. The objective is to express
the fact that states remain bounded for bounded con-
trols, with an ultimate bound which is a function of
the input magnitude, and in particular that states
decay when inputs do.

2.1. From GAS to ISS — A First Pass

The simplest way to introduce the notion of ISS sys-
tem is a generalisation of GAS, global asymptotic
stability of the trivial solution x =0 for (2). The
GAS property amounts to the requirements that the
system be complete and the following two properties
hold:

1. (Stability): the map xo—x(-) is continuous at 0,
when seen as a map from R” into C°([0, 4+00), R");
and

2. (Attractivity): tli_rgl | x(t,x0) |= 0.
—+00

Note that, under the assumption that 1. holds, the
convergence in the second part is automatically uni-
form with respect to initial states x, in any given
compact. By analogy, one defines the system (1) to
be input to state stable (ISS) if the system is complete
and the following properties, which now involve non-
zero inputs, hold:

1. the map (xg, u)—x(-) is continuous at (0,0) (seen
as a map from R” x L™ to C°([0,400),R"), and

2. there exists a ‘nonlinear asymptotic gain’ v € K so
that
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lim | x(2,x0,u) [ <(llull) )

—

uniformly on x; in any compact and all .

(The class K consists of all functionsy: R, — R
which are continuous, strictly increasing, and satisfy
7(0) = 0. The uniformity requirement means, expli-
citly: for each r and e positive, there is a T > 0 so
that | x(¢,xo,u) | <e+7(|Jull,) for all u and all
| x| <randt>=T)

In the language of robust control, the inequality (4)
is an ‘ultimate boundedness’ condition. Note that this
is a direct generalisation of attractivity to the case
u #0; the ‘lim sup’ is now required since the limit
need not exist.

2.2. From Lyapunov to Dissipation — A Second Pass

A potentially different concept of input to state sta-
bility arises when generalising classical Lyapunov
conditions to certain classes of dissipation inequal-
ities.

A storage or energy function isa V:R" - R,
which is continuously differentiable, proper (that is,
radically unbounded) and positive definite (that is,
V(0)=0 and V(x) >0 for x#0). A (classical)
Lyapunov function for the zero-input system (2) is a
storage function for which there exists some function
a of class K, — that is, of class K and so that also
a(s) — +oo as s — +oo — so that

VV(x)-fo(x) € —a(] x 1)

holds for all xeR' This means that
dV(x(t))/dt < — a(] x(¢) |) along all trajectories.

By analogy, when nonzero inputs must be taken
into account, it is sensible to define an ISS-
Lyapunov function as a storage function for which
there exist two class K, functions « and € such that

VV(x)-f(x,u) <O(|ul) — ol x 1) ©)

for all x€eR" and all u € R™. Thus, along tra-
jectories one now obtains the inequality
dv(x(1))/dt < 0(| u(?) |) — a(] x(1) |).

A smooth 1SS-Lyapunov function is a ¥ which
satisfies these properties and is in addition infinitely
differentiable. Smoothness is an extremely useful
property in this context, as one may then use iterated
derivatives of V along trajectories for various design
as well as analysis questions, in particular in so-called
‘backstepping’ design techniques.

In the terminology of [3,5], (5) is a dissipation
inequality with storage function V and supply func-
tion w(u,x) =0(|u|) —a(| x|). (In the context of
dissipative systems one often postulates the equiva-
lent integral form V(x(z,xo,u)) — V(xo) < [y w(u(s),
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x(s))ds, which must hold along all trajectories, and
no differentiability is required of V. Moreover, out-
puts y = h(x) are used instead of states in the esti-
mates, so the present setup corresponds to the case
h(x) = x.) The estimate (5) is a generalisation of the
one used by Brockett in [18] when defining ‘finite gain
at the origin’; in that paper, the function 6 is restricted
to be quadratic, and the concepts are only defined
locally, but the ideas are very similar.

2.3. Gain Margins — A Third Pass

Yet another possible approach to formalising input to
state stability is motivated both by the classical con-
cept of total stability and as a generalisation of the
usual gain margin for linear systems.

In [6], a (nonlinear) stability margin for system (1)
is defined as any function p € K, with the following
property: for each admissible — possibly nonlinear
and/or time-varying — feedback law k bounded by
p, that is, so that

| k(t,x) | < p(lx)
for all (¢, x), the closed-loop system
x :f(xa k(t; x)) (6)

is GAS, uniformly on k. (More precisely, an admis-
sible feedback law is a measurable function
k:R,oxR"—R" for which (6) is well-posed;
that is, for each initial state x(0) there is an absolutely
continuous solution, defined at least for small times,
and any two such solutions coincide on their interval
of existence. Uniformity in £ means that all limits in
the definition of GAS are independent of the parti-
cular k, as long as the inequality | k(¢,x) | < p(] x|)
holds.) A system is said to be robustly stable if there
exists some such p.

Observe that for arbitrary nonlinear GAS systems,
in general only small perturbations can be tolerated
(cf. total stability results). The requirement that
p € K is thus highly nontrivial: it means that for
large states relatively large perturbations should not
affect stability.

2.4. Estimates — A Fourth Pass

A final proposed notion of input to state stability can
be introduced by means of an estimate similar to that
which holds in the linear case:

%01+ (181 |
0

It is first necessary to review an equivalent — if some-
what less widely known — definition of GAS. This is a

etA exA

Ix(t,x07u) I <

ds) el
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characterisation in terms of comparison functions.
Recall that a function of class KL is a

IB:RzoxR>O—)R>0

so that G(-,?) is of class K for each fixed ¢ > 0 and
B(s,t) decreases to 0 as ¢t — oo for each s>=0
(example of relevance to the linear case: ce™*s, with
a >0 and a constant c¢). It is not difficult to prove
(this is essentially in [19]; see also [2]) that the system
(2) is GAS if and only if there exists a 3 € KL so that

| x(2,%0) | < B(I %0 |,0) ™)

for all ¢,x,. (Note that sufficiency is trivial, since
forward completeness follows from the fact that
trajectories stay bounded, the estimate
| x(¢,x0) | <PB(| x01],0) provides stability, and
| x(¢,x0) | <B|xp],t) — 0 shows attractivity. The
converse is established by formulating and solving a
differential inequality for | x(¢,x) | .)

In this context, it is then natural to consider the
following ‘B +’ property: there exist § € KL and
~ € K so that, for all initial states and controls, and
all t = 0:

| x(2,x0,4) | < B( xo |, 2) +v(llulloc) ®)

(One could use a ‘max’ instead of the sum of the two
estimates, but the same concept would result. Also, it
makes no difference to write ||u||,, instead of the
norm of the restriction ||u||.,.) This is a direct gen-
eralisation of both the linear estimate and the char-
acterisation of GAS in terms of comparison
functions.

2.5. All are Equivalent

The following result was recently proved by Yuan
Wang and the author:

Theorem 1 ([6]). For any system (1), the following
properties:

1. ISS (nonlinear asymptotic gain),

2. there is an ISS-Lyapunov function (dissipativity),
3. there is a smooth ISS-Lyapunov function,
4

. there is a nonlinear stability margin (robust stabi-
lity), and

5. there is some [ + v estimate,

are all equivalent. O

The proof is heavily based on a result obtained by
Wang, Lin, and the author in [7], which states essen-
tially that a parametric family of systems x = f(x, d),
with arbitrary time-varying ‘disturbances’ d(t) taking
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values on a compact set D, is uniformly globally
asymptotically stable if and only if there exist a
smooth storage function ¥ and an a € K, so that

VV(x)-f(x,d) < —ax])

for all x € R" and values d € D. Note that the con-
struction of a smooth V is not entirely trivial (this
subsumes as particular cases several standard con-
verse Lyapunov theorems).

There is yet another equivalent notion of ISS,
obtained in the recent work [20]. This notion allows
replacing sup norms on controls with a fading-mem-
ory L' estimate, as follows, and is of great use in
robust control applications.

Theorem 2. A system (1) is ISS if and only if there
exist a KL-function 3, and two functions ~;,7yy € K,
so that

| x(t,6u) | <B]E&]0)+%
(Je “vil| u(s) ds)
0
forall t > 0. O

2.6. Checking the ISS Property

Of course, verifying the ISS property is in general
very hard — after all, in the particular case of systems
with no inputs, this amounts to checking global
asymptotic stability. Nonetheless, the dissipation
inequality (5) provides in principle a good tool, play-
ing the same role as Lyapunov’s direct method for
asymptotic stability. Actually, even more useful is
the following variant, which is the original definition
of ‘ISS-Lyapunov function’ in [2]. Consider a storage
function with the property that there exist two class K
functions & and x so that the implication

x| Zx(ul)=VV(x)-flxu) < —af x])
©)

holds for each state x € R” the control value u € R™.
It is shown in [6] that the existence of such a V pro-
vides yet another necessary and sufficient character-
isation of the ISS property. (Other variants are also
equivalent: for instance, asking that o be of class
Keo-)

As an illustration, consider the following system,
which will appear again later in the context of an
example regarding the stabilisation of the angular
momentum of a rigid body. The state space is R,
the control value space is [R?, and dynamics are
given by:
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x = —x 4+ x*uy — xuy + uyuy (10)

This system is GAS when u = 0, and for large states
the term —x> dominates, so it can be expected to be
ISS. Indeed, using the storage function V(x) = x%/2
there results

VV(x) f(x,u) < — (;)x“

provided that3 |u; | < | x|and 3 |u, | < x*. A suf-
ficient condition for this to hold is that
|u| <v( x|), where v(r) :=min{r/3,r*/3}. Thus
V is an ISS-Lyapunov function as above, with
a(r) = (2/9)r* and x = v\

Another example is as follows. Let SAT : R — R
be the standard saturation function: SAT[r] =r if
|r| <1, and SAT][r] = sign(r) otherwise. Consider
the following one-dimensional one-input system:

x = —SAT[x + u]. (11)
This is an ISS system, as will be proved next by show-
ing that ‘

V(x) := @ x; (12)

is an ISS-Lyapunov function. Observe that V is once
differentiable, as required. This is a very particular
case of a more general result dealing with linear sys-
tems with saturated controls, treated in [9]; more will
be said later about the general case (which employs a
straightforward generalisation of this V).
To prove that V satisfies a dissipation inequality,
first note that, since | r — SAT[r] | < rSAT]r]forallr,
| x—SAT[x+u] | < |x+u—SATx+u] |+
lu| < (x4 u)SAT[x + u]+ | u| (13)

for all values and u € R. It follows that
—xSAT[x + u] = x(—x) + x(x — SAT[x + u])
< — x4 | x| (x4 u)SAT[x + 4]
+ | x[fu |

for all x,u. On the other hand, using that SAT[r] < 1
for all r,

— | x| xSAT[x +u] =| x | [ (x + u)SAT[x + |
+ uSAT[x + u]]
< = | x| (x+u)SAT [x + 4]
+ [ xlu |

Adding the two inequalities, it holds that

—(14 | x )xSAT[x + u] < —x* +2 | x|ju|
(14)
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so that indeed

2
VV(x) - f(x,u) < — "7 + 2P

as desired (note that VV(x) = x(1+ | x |)).

2.7. Relations Among Estimates, Zero-State
Responses, and Linear Gains

There are many relationships among the various esti-
mates which appear in the alternative characterisa-
tions of ISS. Two of them are as follows.

Assume that V is a storage function satisfying the
estimates in Eq. (5):

VV(x)-f(x,u) < ag(|u]) — as(| x |) (15)

for some K, functions a3 and ay. Since V is proper,
continuous, and positive definite, there are as well
two other class K, functions «; and o, such that

a (| x ) S V(x) < ao(l x ) (16)

for all x € R". It then holds that one may pick an
asymptotic gain v in Eq. (4) of the form:

y=oai' oy 05! oay. (17)

Moreover, if instead of (15) there holds a slightly
stronger estimate of the form

VV(x)-f(x,u) S ag(|u]) — o3| x [) — (] x |)

where o is any class K function, then the « function in
the ‘G + +* property (8) can also be picked as in Eq.
(17). These conclusions are implicit in the proofs
given in [2] and [6].

For trajectories starting at the particular initial
state xy = 0, for any input function u, and assum-
ing only that V satisfies (15)—(16), it holds that
| x(2,0,u) | <~(||lul|l,) for all >0, not merely
asymptotically, for the same ~ as in (17), that is,

[, 0, 4) oo < (Il oo )-

Thus the zero-state response has a ‘nonlinear gain’
bounded by this .

A particular case of interest is when both (o, a;)
and (a3, ay) are convex estimate pairs in the following
sense: a pair of class K functions («, 3) is a convex
estimate pair if @ and (3 are convex functions and
there is some real number k>1 such that
B(r) < ka(r) for all r = 0. Note that for any convex
function @ in K and any k>1 it holds that
o !(ka(r)) < kr for all non-negative r, from which
it follows that o' (3(r)) < kr if k is as in this defini-
tion. One concludes that if each of (ay,a;) and
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(a3, ) is a convex estimate pair, then the gain v can
be taken to be bounded by a linear function. In other
words, the input to state operator, starting from
xg =0, is bounded as an operator with respect to
sup norms:

[12C, 0, )l < &l

This is the standard situation in linear systems theory,
where V is quadratic (and hence admits estimates in
terms of o; and a, of the form ¢;/*, where ¢; and ¢,
are respectively the smallest and largest singular
values of the associated form) and the supply func-
tion can likewise be taken of the form
cs|ul* —c3 | x|%. So finiteness of linear gain, that
is, operator boundedness, follows from convexity of
the estimation functions. Somewhat surprisingly, for
certain linear systems subject to actuator saturation,
convex (but not quadratic) estimates are also possi-
ble, and this again leads to finite linear gains. For
example, this applies to the function V in Eq. (12),
as an ISS-Lyapunov function for system (11): there
one may pick a = oy = a, = r*/3 +r*/2, which is
convex since a”(r) =2r+1>0, while a3 and a4
can be taken quadratic (cf. Eq. (14)).

As an additional remark, note that, just from the
fact that V' is non-negative and V(0) = 0, and inte-
grating the dissipation inequality (5), for x, = 0 there
results the inequality ["* a(| x(#,0,u) |)dt < ;8
(| u(z) |)dt. In this manner, it is routine to use dissipa-
tion inequalities for proving operator boundedness in
various pth norms (in particular, when o(r) = ¢;r*
and 6(r) = c,* one is estimating ‘H*’ norms). But
in the current context, more general nonlinearities
than powers are being considered.

It is also interesting to note that, if V" and « are so
that the estimate (9) is satisfied, then there is some 6
so that the dissipation estimate (5) also holds, with
these same V and a.

2.8. Set ISS

A useful variation of the notion of ISS system is
obtained when one studies stability with respect to a
closed subset K of the state space R”, not necessarily
K = {0}. It is possible to generalise the various defi-
nitions given; for instance, the definition (8) becomes

| x(t,%0,) [ < B(l X0 x,2) +¥(lluell o)

where | x |x denotes the distance from x to the set K.
(When u = 0, this equation implies in particular that
the set K must be invariant for the unforced system.)
This notion of set input to state stability was intro-
duced and studied in [8,21]. The equivalence of var-
ious alternative definitions can be given in much the
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same way as the equivalence for the particular case
K = {0} (at least for compact K), since the general
results in [7] are already formulated for set stability;
see [22] for details. Set-ISS is of interest in various
contexts, among them the design of robust control
laws (the sets in question correspond to equilibria
for different parameter values) and those cases in
which only ‘practical’ stabilisation, that is to say, sta-
bilisation to a neighbourhood of the origin, is all that
is possible.

3. Interconnections

It is by now well known, and easy to prove, that the
cascade of two ISS systems is again ISS (in particular,
a cascade of an ISS and a GAS system is GAS). It is
interesting to observe that this statement can be
understood very intuitively in terms of the dissipation
formalism, and it provides further evidence of the
naturality of the ISS notion. In addition, proceeding
in this manner, one obtains a Lyapunov function
(with strictly negative derivative along trajectories)
for the cascade.

Theorem 3. Consider the system in cascade form:

f(zx)

Z =
)'c=g(x,u)

—_— =z z

where £(0,0) = g(0,0) = 0, the second eq. is ISS, and
the first eq. is ISS when x is seen as an input. Then the
composite system is ISS. O

The proof can be based on the following argument.
First, one shows that it is possible to obtain storage
functions V; and ¥V, so that V; satisfies a dissipation
estimate

VVi(2) - f(z,x) < O0(| x |) — (] 2 )

for the first subsystem, while ¥, is a storage function
for the x-subsystem so that

VVa(x) - g(x,u) < 6(lu]) —26(] x|)

(see [23] for details). Then V(z) + V,(x) is a storage
function for the composite system, which satisfies the
dissipation inequality with derivative bounded by
6 ul)——8( x ) —a( z ).

A beautiful common generalisation of both the cas-
cade result and the usual Small-Gain Theorem was
recently obtained by Jiang, Teel and Praly.
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Theorem 4 [7]. Consider a system in composite feed-
back form (cf. Fig. 1):

Z'=g(Z7‘x’ v)
x=f(x,z,u)

where u,v are the inputs to the composite system.
Assume:

e Each of x =f(x,z,u) and 7z = g(z,x,v) is an ISS
system, when (z,u) and (X, v) are considered as
inputs respectively; let 4; and v, denote the gains
for the x and z subsystems, in the sense of the
estimate of type (8).

e The following small-gain condition holds: there is
a p €Ky so that (y; +p)o(y,+p) <r for all
r=0.

Then, the composite system is ISS. : O

(Note that, in the special case in which the ~;(r) = g;r,
the small gain condition is satisfied iff g;g, < 1, thus
generalising the usual case.) It is important to note
that the result in [12] is far more general; for instance,
it deals with partially observed systems and with
‘practical stability’ notions. Also, the small gain con-
dition can be stated just in terms of the gains with
respect to the z and x variables. Related to these
results is previous work on small-gain conditions,
also relying on comparison functions, in [24,25].

A different cascade form, with an input feeding
into both subsystems, is of interest in the context of
stabilisation of saturated linear systems (using an
approach originally due to Teel, cf. [26], and devel-
oped — in far more detail than we can do justice to
here — in the recent paper [11]) and in other applica-
tions. This provides yet another illustration of the use
of ISS ideas. The structure is (cf. Fig. 2):

z :f (Z y Xy u)
X = g (x ) u)'
First assume that a (locally Lipschitz) feedback law
k can be found which makes the system

z=f(z,xk(z)) GAS uniformly on x, that is,
f(0,x,k(0)) =0 for all x and an estimate as in (7),

z

f¢— U

Fig. 1. Composite feedback form.
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Fig. 2. Special cascade configuration.

| z(¢) | <B]z2(0)|,7) holds, which is independent of
x(?). Suppose also that the x subsystem is ISS. Then,
the feedback law u = k(z) gives closed-loop equations
z=f(z,x,k(z)), x =g(x,k(z)); because x is essen-
tially irrelevant in the first equation, these equations
behave just as a cascade of a GAS system (the z-sys-
tem) and an ISS one, so the GAS property results as
before. (More precisely, this is because it is still pos-
sible to find a Lyapunov function which depends only
on z for the z-subsystem, due to the assumed unifor-
mity property; see [7].) The interesting fact is that the
same global conclusions hold under more local
assumptions on the z-subsystem. Assume:

e The z-subsystem is stabilisable with small feed-
back, uniformly on x small, meaning that for
each 0 < € < g there is a (locally Lipschitz) feed-
back law k. with | k.(z) | <e for all z so that
z=f(z,x,k.(z)) is GAS uniformly on | x| < &g;
further, under the feedback law u = k.(z) the com-
posite system is forward complete (solutions exist
for all > 0).

e The x subsystem is ISS.

(Later we discuss an interesting class of examples
where these properties are verified.) Then, the claim
is that, for any small enough ¢ > 0, the composite
system under the feedback law u =k (z) is GAS.
Stability is clear: for small x and z, trajectories coin-
cide with those that would result if uniformity would
hold globally on x (cf. the previous case). We are left
to show that every solution (x(-),z(-)) satisfies
x(¢) — 0 and z(¢) — 0 as t — +o0.

To establish this fact, pick any e as follows. Let ~
be a ‘nonlinear asymptotic gain’ as in Eq. (4), so
that t_lffoo | x(¢,x0,u) | <7(||lull,,) for all inputs
and initial conditions. Now take any 0 < € < g; so
that y(e) < €o. Pick any k. so that | k.(z) | <e for
all z. Consider any solution (x(-),z(:)). Seeing
v(¢) = k.(z(¢)) as an input to the x-subsystem, with
IVl <e€, the choice of v means that for some T,
t > T implies | x(#) |< gy. It follows that z(¢) — 0.
Now the second equation is an ISS system with an
input v(z) — 0, so also x(¢) — 0, as required.
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4. An Example

As a simple illustration of the use of the ISS concept,
we may consider the oft-studied problem of globally
stabilising to zero the angular momentum of a rigid
body which is controlled by means of two external
torques applied along principal axes, and suggest an
alternative way of achieving this objective using ISS
ideas. (This may represent a model of a satellite under
the action of a pair of opposing jets.) The compo-
nents of the state variable w = (w;,w;,w;) denote
the angular velocity coordinates with respect to a
body-fixed reference frame with origin at the centre
of gravity and consisting of the principal axes. Letting
the positive numbers I, l;,[; denote the respective
principal moments of inertia (positive numbers), this
is a system on R*, with controls in R* and equations:

Iw = S(w)Iw + Bu, (18)

where [ is the diagonal matrix with entries I}, I, I3
and where B is a matrix in R**? whose columns
describe the axes on which the control torques
apply. Since it is being assumed that the two torques
act along two principal axes, without loss of general-
ity the columns of B are (0, 1,0)" and (0,0, 1)’ respec-
tively. The matrix S(w) is the rotation matrix

0 w3 —Wwy
S(LL)) = —Wws 0 wi
(7%) —Wwp 0

Dividing by the s, and applying the obvious feed-
back and coordinate transformations, there results a
system on R® of the form:

X = XpX3
)'62 = u1
X3 =y

where u; and u, are the controls.

To globally stabilise this system, and following the
ideas of [18] for the corresponding local problem, one
performs first a change of coordinates into new coor-
dinates (x,z;,z,), where x = x; and

2
X2:—X1+21,X3 = X] -f—Zz.

The system is now viewed as a cascade of two sub-
systems. One of these is described by the x variable,
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with z; and z, now thought of as inputs, and the
second one is the z;, z, subsystem. The first subsystem
is precisely the one in example (10), and it is therefore
ISS. Since a cascade of an ISS and a GAS system is
again GAS, it is only necessary to stabilise the z;, z,
subsystem. In other words, looking at the system in
the new coordinates:

x=-x+ x221 —Xzy+ 212
=u + (—x+2;) (¥ +2,)
B =up = 2x(—x+ )’ (¥ + ),

any feedback that stabilises the last two equations will
also make the composite system GAS. One may
therefore use

U = —X| — Xy — XoX3, Uy = —X3 + X3 + 2XXX3,
which renders the last two equations z; = —z; and
z, = —z,. As a remark, note that a conceptually dif-

ferent approach to the same problem can be based
upon zero dynamics techniques ([27,28]). In that con-
text, one uses Lie derivatives of a Lyapunov function
for the x-subsystem in building a global feedback law
(see the discussion in [13], Section 4.8). For the
present rigid body stabilisation problem, the feed-
back stabilising law obtained using that approach
would be as follows ([27]):

U= —X] — X3 — XpX3 — 2x1x3,u2 = —X3+ 3X% + 2X1X2X3.

5. Linear Systems with Actuator Saturation

For linear systems subject to actuator saturation,
more precise results regarding stabilisation can be
obtained. The objective is to study control problems
for plants P that can be described as in Fig. 3, where
W indicates a linear transfer matrix. For simplicity,
we consider here just the state-observation case, that
is, systems of the type

X = Ax + BSATu]. (19)
By an L,-stable system one means that the zero-initial

state response induces a bounded operator L, — L,,.
The following result was recently obtained by W. Liu,

Fig. 3. Saturated-input linear system.
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Y. Chitour and the author (see also [29] for related
results on input-to-state dependence for such sys-
tems):

Theorem 5 [9]. Assume that the pair (A, B) is control-
lable and that A is neutrally stable (i.e., there is some
symmetric  positive  definite Q so  that
ATQ 4+ 04 < 0). Then, there exists a matrix F so
that the system

X = Ax + BSAT[Fx + u]

is L,-stable for each 1 < p < oo. O

The fact that GAS can be achieved for such systems is
a well-known and classical application of dissipation
ideas, and a quadratic Lyapunov function suffices;
obtaining the ISS property, and in particular operator
stability, is far harder. Not surprisingly, the proof
involves establishing a dissipation inequality invol-
ving a suitable storage function. What is perhaps sur-
prising is that the storage function that is used is only
of class C', in general not smooth: ¥ is of the form
x'Px+ | x |, for some positive definite P. One estab-
lishes by means of such a V that the system is ISS.
Since the used ¥ admits convex estimates (in the sense
discussed in Section 2.7), stronger operator stability
conclusions can be obtained. The second example
given in Section 2.6 (system (11) and storage function
(12)) illustrates the detailed calculations in a very
simple case.

The hypotheses in Theorem 5 can be relaxed
considerably. For instance, controllability can be
weakened, and the result is also valid if, instead of
SAT, one uses a more general bounded saturation
function ¢ which satisfies: (1) near the origin, o is
in a sector [k, ky]:0 <k < @ < Kk, for all
0<|r| <1;and (2)sign (r)o(r) >k >0if | r|> 1.

A different line of work concerns linear systems
subject to control saturation in the case in which
the matrix A is not stable, but still has no eigenvalues
with positive real part. This is the case, for instance, if
A has a Jordan block of size at least two correspond-
ing to an eigenvalue at the origin (the multiple inte-
grator). In that case, L, stabilisation is not possible,
but, since the system is open-loop null-controllable
(assuming, as in Theorem 5, that the pair (4, B) is
controllable, or at least stabilisable as a linear pair),
it is realistic to search for a globally stabilising feed-
back.

A first result showing that a smooth, globally sta-
bilising feedback always exists was given in work by
Sussmann and the author [30]. A remarkable design
in terms of combinations of saturations was supplied
by Teel ([26]), for the particular case of single-input
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multiple integrators, and a general construction based
on Teel’s ideas was completed recently in work of
Sussmann, Yang and the author ([10]). For simplicity,
call a function R" — R™ each of whose coordinates
has the form

©1x + 0y SAT[rx + uSAT[. .. SAT
[ps-1% + o1 SAT[px]] .. ]

for some s and some real numbers «; and linear func-
tionals ; a cascade of saturations, and one for which
coordinates have the form

a1SAT[p1x] + a;SAT[pyx] + ... + @, SAT[p,x]

a superposition of saturations. (In the terminology of
artificial neural networks, this last form is a ‘single
hidden layer net’.) There are two results, one for each
of these controller forms:

Theorem 6 [10]. Consider the system (19), where
the pair (A, B) is stabilisable and A has no eigen-
values with positive real part. Then there exist a
cascade of saturations k£ and a super-position of
saturations ¢ so that x = Ax+ B SAT[k(x)] and
X = Ax + BSAT[¢(x)] are both GAS. O

(The coefficients «; in the second case can be chosen
arbitrarily small, which means that the second result
could also be stated as stability of x = Ax + B{(x)
since the saturation is then irrelevant.)

For cascades of saturations, this design proceeds in
very rough outline as follows (the super-position case
is similar). A preliminary step is to bring the original
system (19) to the following composite form:

X = Azx + stAT[u],

where F is a matrix which has the property that
the system x = A,x + B,SAT[Fx+u] is ISS. (An
example of such F is provided by the case
x = —SAT[x + u], shown earlier to be ISS, and
more generally the case treated in Theorem 5.)
Further, it is assumed that for each £ > 0 sufficiently
small there is a (locally Lipschitz) feedback law
k. with |k, (z)| <e for all z and so that
Z= Az + B1k.(z) is GAS. Now the feedback law

u=Fx+k./2)

is so that for small x and ¢ the z-eq. is GAS indepen-
dently of x (in fact, the x variable is completely can-
celled out), and hence the discussion given in
connection with Fig. 2 applies. Thus the composite
system is stabilised, assuming only that the z-sub-
system can be stabilised with small feedback.
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Moreover, Fx + k.(z) has a cascade form provided
that k. be a saturation of a cascade. These assump-
tions can be in turn obtained inductively, by decom-
posing the z-equation recursively into lower
dimensional subsystems. (More precisely, instead of
SAT, one may use a scaled version with smaller lower
bounds, SAT,[r] = 6SAT[r/é], and the proof is the
same. This provides the small feedback needed in
the inductive step.) See [10] for details as well as for
a far more general result, which allows many other
saturation functions o instead of SAT.

6. Feedback Equivalence

As mentioned earlier, with the concept of ISS, it is
possible to prove a general result on feedback equiva-
lence. Consider two systems

X =f(x,u)

with the same state and input value spaces (same
n,m). These systems are feedback equivalent if there
exist a smooth k : R" — R”, and an m matrix I" con-
sisting of smooth functions having det I'(x) # 0 for
all x, such that

g(x7 u) :f(xak(x) + F(x)u)

for all x and u (see Fig. 4). The systems are strongly
feedback equivalent if this holds with T" = I (see Fig.
5).

Strong equivalence is the most interesting concept

and X =g(x,u)

when studying actuator perturbations, while feedback

equivalence is a natural concept in feedback linear-
isation and other design techniques. More general
notions of feedback equivalence are also possible,
not requiring transformations to be affine in u, but
the main result will hold already for these types of
transformations.

The system (1) is stabilisable if there exists a
smooth function k (with £(0) = 0) so that

x =f(x7 k(x))

is GAS. Equivalently, the system is strongly feedback
equivalent to a GAS system. It is ISS-stabilisable if it
is feedback equivalent to an ISS system.

k

Fig. 4. Feedback equivalence.
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Fig. 5. Strong feedback equivalence.

Theorem 7 ([2,31]). The following properties are
equivalent, for any system:

e The system is stabilisable.
e The system is ISS-stabilisable.

For systems affine in controls u (that is, f(x,u) is
affine in u) the above are also equivalent to strong
feedback equivalence to ISS.

7. Input/Output Sability (I0S)

Until this point, only input to state ability has been
discussed. It is possible to give an analogous defini-
tion for input/output operators. This will be done
next, and a result will be stated which shows that
this property is equivalent to internal stability under
suitable reachability and observability conditions,
just as with linear systems (cf., for instance, Section
6.3 in [13]).

An ifo operator is a causal map F: Ly, — L5 ,.
(More generally, partially defined operators can be
studied as well, but since only the stable case will be
considered, and since stability implies that F is every-
where defined, there is no need to do so here; see [2]
for more details.)

The i/o operator F is input/output stable (10S) if
there exist two functions 8 € KL and v € K so that

| F)(1) | < Bllullor t = T) +(|fuc'|] )

o]

for all pairs 0 < T< ¢ (a.e.) and all u € Ly, ,. Here u,
denotes, as earlier, the restriction of the input u to
[0,7] and u' denotes its restriction to [t,+00), in
both cases seen as elements of L, having zero
value outside of the considered range. This notion is
well-behaved in various senses; for instance, it is

. closed under composition (serial connection), and

u — 0 implies F(u) — 0.
Consider now a control system X = f(x,u) with
outputs

y = h(x) (20)
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where h:R" — R’ is continuous and satisfies
h(0) = 0. With initial state xy, =0, this induces an
operator

F(u) () :== h(x(2,0,u))

(a priori only partially defined). The system (1)—(20) is
called IOS if this operator is.

The system with outputs (1)-(20) is well-posed
observable (‘strongly’ observable in [2]) provided
that the following property holds: there exist two
functions «;, a, of class K such that, for each triple
of state, control, and output functions on ¢t > 0

(x(-),u(-), ()
satisfying the equations, the norms of these functions
necessarily satisfy

¥l < @1(llulloo) + 2(lI¥llo0)- 1)

Analogously, one has a notion of a well-posed reach-
able system (1). This is a system for which there is a
function o of class K with the following property: for
each x; € R” there exists a time 7> 0 and a control u
so that

llullo < 3] xo )

and so that x(7,0,u) = x,.

For linear systems, these properties are equivalent
to observability and reachability from zero respec-
tively. In general, the first one corresponds to the
possibility of reconstructing the state trajectory in a
regular fashion — similar notions have been studied
under various names, such as ‘algebraic observability’
or ‘topological observability’ — and the second models

the situation where the energy needed to control from

the origin to any given state must be in some sense
proportional to how far this state is from the origin.
The proof of the following result is a routine argu-
ment, and is quite similar to the proofs of analogous
results in the linear case as well as in the dissipation
literature:

Theorem 8 [2]. If (1) is ISS, then (1)-(20) is IOS.
Conversely, if (1)~(20) is I0S, well-posed reachable,
and well-posed observable, then (1) is ISS. O

Many variants of the notion of IOS are possible, in
particular in order to deal with nonzero initial states
([81, [7]), or to study notions of practical stability, in
which convergence to a small neighbourhood of the
origin is desired. Also of interest is the study of the
IOS (or even ISS) property relative to attracting
invariant sets, not necessarily the origin and not
even necessarily compact; see ([7,21]), for instance.
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