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ABSTRACT. Various  preliminary  results  are  given 
related  to  the  problem of characterizing  singular  and  time- 
optimal  trajectories  for  (planar,  rigid)  two-link  robotic 
manipulators  with  torque  constraints. Most of the  results  are 
consequences of the  nice  Lie-algebraic  structure of the 
corresponding  control  system. 

1. Introduction. 
A  manipulator  with  two  rotational  links  (see  figure 1) can  be 

modeled  as  in  [PA],  chapter  6.  We  let  w  be  the  column  vector 
(u,v)'  (prime  indicates  transpose),  where  u(t)  and  v(t)  are  the 
torques  applied a t  each  joint,  and B=(B1:BZ) ' :  where O1(t) and 
8,(t)  are  the  respective  angles  at  time  t.  An  equation of the  
following  type  results: 

w = r\[(s)e - ~ ( 8 , ; )  + Q ( O )  . 6 .. 
(1.1) 

(The precise  equations  are  given by iPA., equations 6.16 and 
6.20.)  Here M ( . )  is a 2 by 2 matrix of inertial  terms, N(.) 
includes  all  contributions  from  Coriolis  and  centrifugal  forces, 
and Q(.), characterizes  all  gravity  loadings.  The  matrix M(.) is 
symmetrlc  positive  definite for all  values of i ts   arguments,   and 

the  vector N( . )  is  homogeneous  quadrat,ic in 8; some of the  
properties  to follow  will be  consequences of these  general  facts 
about  M and 5, but  most will depend  on  the  actual  form of the 
matrices.  The  torques  w(t)  are  bounded; for simplicity  we 
assume  constraints of the  type ,uI<K, ,vl<L, for some  positive 
real  numbers K,L, but  more  arbitrary  intervals for u and  v 
would  give  rise  to  similar  results.  We  shall  model  such  a 

system in state-space  form,  using  the  components of (O(t),O(t)) 
as   the  s ta te   a t   t ime  t   (detai ls  given  below,). 

The  t ime-opt imal   contro l  problem is t h a t  of designing  controls 

w(.)  that  achieve  the  transfer of a  given  state ( @ , e )  to  another 
given  such  state,  in  minimal  time. A general  theoretical 
approach  to such  problems is provided by the  Maximum 
Principle,  This  approach  can be used as   a  basis for numerical 
methods of solution,  but even  for the  present low (4) 
dimensional  system,  the  resulting  nonlinear  2-point  boundary 
value  equations  are  very  difficult  to  solve  without  some  better 
knowledge of the  singular  structure of the  problem.  It  is  to 
that  last  topic  that  the  present  note  addresses  itself.  We 
present  preliminary  results  which  provide  "closed  forms'  for 
some  optimal  controls,  and  we  study  the  existence of singular 
trajectories.  The  complexity of the "closed  forms"  obtained 
seems  t'o  indicate  that  they  should  he of use  mainly  in  guiding 
the  design of sophisticated  numerical  methods. 
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The  literature in (numerical)  optimal  control of manipulators 
is rather  extensive,  and  we  shall  not  give  complete  references  in 
this  short  introduction.  The  reader  may wish to  consult  the 
papers  [RA], [SDJ, and ISH,: as  well as   the references  there  and 
other  papers in the  conference  volume  in  which  t,hey  appear. As 
far as we are  aware,  a syst,ematic  study of singularities  as  the 
one  taken  here  has  not  been  attempted in  previous work. We 
intend  to  direct  further  research  to  the  understanding of what  
implications our results  have  for  the  algorithms  given in the  
literature. For instance, our results  may  help in the  "prunning" 
of possibilities  in  dynamic  programing  numerical  methods. 

The  study of the  singular  structure of the  problem is of great 
interest  in  itself,  for  the  following  reason.  One  of  the  main 
techiques used  in  practical  robotic  control  consists  in  dividing 
the  design  effort  into  two  st.ages: ( 1 )  find an  open-loop  control 
which  achieves  the  desired  state  transfer,  and (2 )  linearize  along 
the  resulting  trajectory:  and  use  a  linear  controller  to  regulate 
deviations  from  this  trajectory.  The  essential  point  is  that  this 
last   step will  typically  depend  on  controllability of the  obtained 
linearization  (as a time-varying  linear  system).  and a t r a j e c t o r y  
is singular  precisely   when  this   l inearizat ion  is   uncontrol lable .  
Thus,  our characterizations of singular  traject'ories  should  help  in 
determining if a  trajectory  suggested by step (1) is  suitable for 
step  (2).  

The  organization of this  note is a s  follows. The  first  section 
illustrates  some of the  techniques  through  the  comparatively 
trivial  (and  classical)  case of single-link  manipulators  (nonlinear 
pendulum).  Notations  and  definitions  are  given  after  that.  The 
main  observations  are  all  consequences of  a  number of  Lie 
algebraic  facts  given  in  the  next  section.  Aft,er  this,  the 
existence  of  singular  aextremals  and  singular  optimal  controls is 
investigated. 

Briefly,  it is easy to  establish  that  all singular  controls  must 
take  values in the  boundary of the  constraint  set:  i .e.  that for 
each  t  either u ( t ) = i K  or   v ( t )= iL.   I t  is a much  more  difficult 
problem,  not  completely  resolved  here,  to  determine  those 
singular  trajectories  for  which  one of the  controls is saturated 
hut  not  the  other.   We  show  that if v is saturated  then u must 
satisfy  certain  constraints;  through  every  point of the   s ta te  
space,  with  the  possible  exception of those  with  82=0,+n/2,r! 
there  is  a  one-parameter  family of singular  extremals of this 
kind. In the  case  where u is saturated,  the  situat,ion  is  reversed: 
for all points in an  open  dense  subset of the  state  space  there 
are  no such  trajectories.  Regarding optimalit!, in  a  certain 
sense  about  half of the  singular  trajectories  with v saturated  are  
not  time-optimal,  as  concluded  from  the  applicat,ion of high 
order  optimality  conditions.  The  same  arguments  strongly 
suggest  that   the  other  'halP of these  trajectories  are  (at  least) 
locally  optimal,  but  this  depends  on  some  apparently  open 
questions  on  the  high  order  theory. 

In general,  the  results  with  respect  to  the  control u are   what  
one  may  expect for "generic"  4-dimensional  systems,  except  that 
some of the  arguments  are especially  simple  due t o   t h e  
particular Lie  algebraic  structure of the  robotics  problem. For 
the  control v ,  on  the  other  hand,  the  system  behaves in ways 
that   one would not expect  for  a 4 dimensional  system. 
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2. The single-link case. 
First  consider.  as  a  trivial  illustration of the  technique.  the 

case of a  single-link  manipulator.  i.e.  a  pendulum  with  torque 
control.  This  model  results  when  the  mass  and  length of the  
second  link  approach zero in the  general  two-link  problem.  The 
defining  equation  is 

6 - cs in t i  = d u .  (2 .1)  
where u satisfies  the  constraints u 5 K .  for  some  nonzero 
constants  c.d.K. 1:Suitabie  regularit! conditions  are  assumed  on 
u ( . ) .  typicall! that  u(.) is  measurablr.)  The  objective is t o  
control ( 2 . 1 )  in minimal  time  from an! one  given  state x = 

(0.6j‘  to  any  other  given  state. Lje  write  the  above  equation in 

usual  control-system  form:  x(t) = f j x j t ] )  - u ( t ) g ( x ( t ) ) .  w-here 

f(x):=  (6.-csino)‘  and g(x) is :he constant  vector field (0,d)‘. 
The  state  space  can  be  taken to be either S1*W or 8’. the  
latter  for  local  questions or b)  lifting  the  system. By general 
existence  results. for each  pair of states. if there is a  control 
driving  one  to  the  other.  then  rhere is one  doing so in minimal 
time. 

We  are  mainly  interested in deciding if such  a  control  must 
be  ’bang-bang’.  Recall  that u is a  bang-bang  control if it 
switches  finitely  many  times  between  the  values K and -K. Let 
(x( t ) ,u ( t ) )  be  a  time-optimal  trajectory.  defined on the closed 
time  interval 1. Then.  there is a  nontrivial  solution  p(,) of the 
adjoint  equation  which  satisfies  the  condition in the  maximum 
principle.  Let 3 be the  jclosedj  set of zeroes of the  
corresponding  (“switching’)  function  o(t):=  .cp(t).g(x(t))>.  This 
is an  absolutely  continuous  function.  because  p  and x are.  and  g 
is smooth.  If we  prove  that .I is  a  finite  set.  then u will  be 
forced  to  take  the  values u ( t )  =I sign(o(t)) .   with  switches  at   the 
set J .  

Since I is  compact.  it \vi]! be  enough  to show tha t  J is 
discrete, or equivalently  that for each 7 in J there is a 
neighborhood S of 7 in I such  that  o(t)=O for all t G S .  t= i .  
Take  any  such r .  A straightforward  calculation  shows  that  the 

derivative of o is o ( t )  = <p( t ) .   f ,g   (x( t ) )> ,   where  ._ is the 
s tandard Lie bracket.  But ‘f.g. is the  constant  vector field 
(d.0)’.  and  since  det(g.:f.g:)dO. i r  is linearly  independent  of g (at 

every  point of the  state  space), so by nontrivialit) of p: o ( r )  

must  be  nonzero.  Thus  there  is a neighborhood of 7 where  o( t )  
is still  nonzero. In this  neighborhood. o cannot  have  an)  other 
zero  beside: 7 .  since  being  a  ccntinuousl)  differentiable  function 
this  would  imply  the  existence of a zero of its  derivative.  Thus 
the  set J is indeed  disrrete. \Ye established  the  following  (well- 
known)  result: 
Lemma 2.1: For the  pendulum  model (2 .1) .  ever! control 
corresponding  to  a  singular  extrema]:  and  hence e ie r )  optimal 
control.  is  bang-bax1g.l 

S o t e  how  Lie  algebraic  information  about  the  shstem  allows 
us to  conclude  that  all  trajectories  are  bang-bang. Of course. 
the  abo\e  remarks  are  well-known for the  rase of the  pendulum: 
in fact.  the  proof for this  example. in L51..  p.427.  that  optimal 
controls  are  bang-bang. is --with  different  terminology-  precisely 
the  same  that  we gave. 

3. Definitions and Notations. 
\lost  functions  and  vector  fields  appearing will have  a 

particularly  nice  form:  we  introduce  some  appropiate  terminolog) 
to  refer  to  this  form. If 11 = ~ ( t i , ~ ~ . . . ~ ~ , . ~ ~ . . ~ . . ~ ~ ) }  is  a  product of 
circles  and  Euclidean  spaces.  a  polynomial  (resp.. rational.) 
function  from 51 to  an  Euclidean  space will be one  that is 
polynomial  (resp.:  rational,)  on  the z i  and on trigonometric 
functions of the lii.  ( I t  is understood  that  such  a  rational 
function  is  everywhere  defined  c8n XI.) .4n algebraic s u b s e t  of \I 
is one  defined by an  equation f = O .  a h e r e  fX1-W is  polynomial. 
This  set is nontrizzal if different  from  51. A generic  subset is 
the  complement of a  nontrivial  algebraic  subset.  Sote  that 
finite  unions  and  intersections of generic  sets  are  still  generic. 
Generic  sets  are  open  dense,  and  calculations  in\olving 
pol>nomial  and  rational  functions i n  this  generalized  sense  can 

be  carried  out in principle  using  methods  and  algorithms  from 
elimination  theory.  Sote  that  the  definitions  are  consistent  with 
viewing  a  circle  as  a  an  algebraic  subset of the  plane.  It  is 
sometimes  useful in computations  to  apply  the  substitutions <:= 
t an ( l ’2 ) :   t hen  cos0 = (l-~’j~(l-<’) and sin6 = 2<’(1-?) :  and 
we  can  work  with  true  ratlonal  functions. 

The  model  we  shall use  is tha t  in (1 .1 ) .  as  in Paul‘s  book. 
pp.15Q-on.  The  parameters  appearing  are  the  masses m,.m2 and 
lengths of links.  and  the  acceleration of gravity g. It  is 
possible to  reparametrize  time  and  controls in  such  a waj   tha t  
m , = l .  [ ] = I .  and g=1 can  be  assumed.  This is done by letting 

the  time  scale  change  according  to 7 : ( I ,  g)’ ‘ and  controls 

according  to R ( i j  = (m2tsg) . ’w[ i j .  \f-r model (1.1) i n  s ta te  
space  form 

x ( t j  = f ( x ( t ) )  - u ( t ) g , ( ~ ( t ) )  - v ( t ) g s ( x ( t ) )  . (3.11 

where  x(t)  = x = (61.62.61+32)‘ is in (S’]’, 8’ for each  t:  and 
the  vector  fields f. g,. g2 are  as  induced  from (1.1). It  will be 
convenient  to  partition  these  equations  into  the  parts 

corresponding to y = and z = (61.62): 

y = 2  (3.2) 

z = F ( y : z )  - G(y)w . 
Remark 3.1: \\’ith this  notations.  the  following  properties  hold. 

a.  each  coordinate of F ( y . 2 )  has  the  form  q(y.z)siny2 

b .   de tG(yj  = 0 for  all y : 
c ( ) )  . with  q  homogeneous  quadratic in 2 : 

c. all entries of F and G are  “rational” in the  aboxe 
sense: 

d .  G is slmmetric  positive  definite.  and  depends  only on 
V’ .I 

Remark 5.2: What  the  natural  state  space  for  (3.1)  should  be 
is not  a  trivial  question  to  decide.  and seems not  to  be very 
clear  in  the  literature.  The  equations  suggest x ~ h l  with Xf the  
manifold ( S ’ ) 2 ~ R * .  On  the  other  hand.  there  are  frequent11 
constraints  on  the  possible  achievable  angles. for instance 
B , E ( - x ,  2 . ~ 2 ) .  (Open.  rather  than  closed.  intenals  should  be 
used  since  there  are  no good mathematical  results  for  svstems 
evolving in manifolds  mith  boundar? .) I t  also  seems  reasonable 
to  assume  that  the  coordinates of the Xector Q(6) in ( 1 . 1 )  are  in 
the  interior of the  control  constraint  sei. for  each 6. since 
otherwise  fixed  link  positions  cannot  be  mantained  without  the 
assistance of passive  locking  mechanisms. If Ql  and Qs are  the 
coordinates of Q: this  condition  is.  then: 

- I i < Q , ( b ) < K  and  -L<Q2(ti)<L for  each 6 . (3 .3 j  
(See .STK] for a  discussion of this  hypothesis.)  For  small z .  
this  means  that  all sloa enough  trajectories  are  achievable.  and 
in particular  that  each  state  with z=O is an  equilibrium  state. 
Let So = { ( y . ~ )  such  that z=O}.  It follows that   s ta tes  in So 
are  mutually  reachable.  when  condition  (3.3)  holds. =It this 
stage we shall  not  have  any  need  to  introduce  this  restriction. 
however.  It  will on11 appear  at  one  minor  point.  Another 
interesting  complication  may  be  due  to  obstacles in the  
workspace.  Further.  it  does  not  make  physical  sense  to look a t  
states  which  cannot  be  reached  from  the  set So. so one ma! 
restrict  attention  to  this  reachable  set  (which is reasonable  to 
assume  open.  because of the local  controliabilit: of So,).  Since 
the  conclusions  from our results  are basical!! local.  a  great  deal 
of this  discussion is at  this  point  not  very  important. A l l  
results will remain  the  same if we restrict  the  state  space  and 
consider  only  extremals  that  respect  the  given  extra  constraints. 
We  shall  take (S1)’~,Wz as  the  state  space.  but  abuse 
terminology  and  notations b! using  local  representations of 
objects  associated  to  the SI components.  thinking of elements of 
SI as  numbers  mod 2 r .  Thus  vector  fields  on  the  state  space 
are  identified  with  vector  functions  h = (hl.h2.h3.h4)‘ on W4 
which are  periodic in the first  two  components. 



Correspondingly,  the  joint  differential  equation  for  x(t)  and  the 
adjoint  covector  p(t)  that  is  concluded in the  Maximum 
Principle  should  be  understood  as  a  Hamiltonian  system  in  an 
appropiate  cotangent  bundle,  but  because of the  locality of the 
arguments,  we  shall  write  p(t)  as  an  element of IR4 again.a  

An  important  notational  convention is the  following.  We  use 
the  shorthand  notation: 

X,X,. . .Xk := [xI,[xz?[...: ,xk.,,Xk:-]:j (3 .4)  

for  iterated Lie compositions of vector  fields.  Note  that XkY = 
adiY  with  this  notation. By a n  iterated  bracket we  shall  mean 
an  expression  as  above  for  which  each Xi is  one  of  f, g,, or g,, 
the  vector fields appearing in the  model (3 .1) .  If a is  a 
function w4-%: and  q  a  vector field we denote by Lq(a) := 
grad(a).q  the  action of the  vector field  q  on a (Lie  derivation). 

3.1. Singular  extremals 
Unless  otherwise  stated, 1 always  denotes  a  nontrivial closed 

interval,  and  statements  like ' 7 fO  a.e."  mean  precisely  "y(t)fO 
a.e. for tEI".  An eztremal  (on  the  interval 1) is  given  by 
functions  (x,p,w) on I satisfying  the  simultaneous  equations (3 .1)  
and 

p( t )  = D.f (x ( t ) ) -u ( t )g l (x ( t ) )+v( t )gz (x ( t ) ) !p ( t )  (3.5) 
(where D!...] denotes  transpose of Jacobian  matrix):  and  such 
that  pfO  everywhere, w is  suitably  regular,  x(t) is not  constant 
on 1: and  almost  everywhere:  u<p(t),g,(x(t))> 
v<p( t ) ,g , (x( t ) )>  = max{C<p(t) ,g , (x( t ) )> 2 ~ < p ( t ) , g , ( x ( t ) ) > } ,  
where  the  maximum  is  over all ( c : Y )  i n  U .  \?'e often  write 
(x,p,u,v)  to  refer  explicitly  to  the  coordinates of w;  on  t'he  other 
hand,  if w is irrelevant  to  the  discussion?  we  write  just  (x,p). 
Note  that  w is not  required  to  satisfy  any  magnitude  constraints 
in  this  definition: w is  any  (suitably  regular)  function I-%'. If 
w takes  values in U. we  talk of an admissible extrema]. 

The  Maximum  Principle  states  that  every  time-optimal 

trajectory  (x,w)  is  part of an  admissible  extremal  (x:p>w),  along 
which 

<p,f> + u<p,g,> + v<p:g2> = constant 2 0 . (3.6) 
A control w is u-bang-bang if u = = K  with  finitely  many 

switchings,  and  similarly for rr-bang-bang: w is bang-bang if both 
components  u  and v are.  We  interpret  these  statements in the 
sense of equivalence  modulo  a  set of measure  zero.  Thus a 
statement  concluding  that  a  control  must  be  bang-bang  must 
really  be  interpreted  as  equality  t,o  a  bang-bang  control  almost 
everywhere. If an  extremal is such  that   the u-switching  funct ion 
d,(t):= <p( t ) , g , (x ( t ) )>   has  only  finit,ely many  zeroes:  then  u(t) 
must  be  equal  almost  everywhere  to  the  function  K.sign(d(t)) = 
i K :  which  switches  among K and -K a t   the  zeroes of 4, and so 
u is bang-bang.  Similarly  for v and  its  associated  switching 
function dv. The  extremal  (x:p:u,v) is u-singular if 4" is  zero 
a.e.  on I. Similarly  for wsingula? extremals. A singular 
ez t remal  is  one  that, is u- or v-singular.  A nonsingular extremal 
will be  one  which  is  not  singular on any s v b i n t e r d .  
Remark 3.3: Singular  admissible  extrernals  are  such  that  along 
the  corresponding  x(t)  and  u(t)  the  variational  system 
("linearization  along  the  trajectory")  is  not  controllable. (For a 
good  discussion of all  this:  as well as  an  example of analogous 
problems  in  satellite  control, see [BO].) If a  trajectory  is 
nonsingular  but  any of the  controls  takes  values in the  boundary 
of the  control  constraint  set,  the  corresponding  linearization 1s 

controllable,  but  physically  one  may  not  apply  to  the  system 
controls  which  are  small  perturbations of the  saturated  controls. 
Thus  i t  is of interest,  independently of time-optimality  questions, 
to  stud>-  u-singular  and  v-singular  extremals,  corresponding  to 
the  s tudy of the  controllability of the  linearizations  with  respect 
to  either  the  control u or the  control v . 1  

4.  Useful algebraic facts. 

4.1. Some Lie identities. 
A  large  number of facts  about  Lie  brackets of the  vector 

fields f ,  g,, g, appearing in equation (3 .1)  will be  essential  in 
the  material  to  follow. We omit  proofs. A few of these  facts 
can  be  proved  easily  from  the  properties  listed in remark (3 .1) ;  
most  were  obtained  from  a  very  heavy  amount of symbolic 
computation  using  MACSYMA  running  on  a  TOPS20  system. 
Lemma 4.1: {g,,g,,fg,,fg,} are  linearly  independent  everywhere. 

This  is easy to  see  from  the  form of the  equations (3 .2) .  It 
is closely  related  to  the  fact  that  the  kind of manipulator 
considered  here  is  linearizable  under  feedback. 
Lemma 4.2: Any  iterated  bracket  with  two  more gi's than f s  
is  identically  zero.  In  particular, !g,,g,=O. 

Lemma 4.3: There  exist  functions (2,: a,, a3 of the  variable y2, 
"rational" in the  above  defined  sense,  such  that 

g , k ,  = 1 

g,fg, = Q'2.5, : and 
g , k ,  = g ,k ,  = -g 1 2  g f = -g,g,f = "$2 ' 

The  function a, is of the  form  c.sin(2yz),  where  c  is  a  positive 
constant.  The  functions a, and a3 have  zeroes in particular  at  
y,=O,r (and possibly  other  zeroes:  depending  on  the  manipulator 

parameters),  but  neither  is  identically  zer0.l 
From  lemma (4.1) i t  follows t h a t  g, and g, are  independent, 

and  from  lemma (4 .3)  that  g,fg,  is  a  nonzero  multiple of g, 
almost  everywhere, so: 
Corollary 4.4: g,fg,  and g, are  linearly  independent if and 
only if y 2  # O:+r;/Z:n. 

A large  number of expressions  can  be  derived  from  the 
above. For instance,  from  the  form of g, and g, it  follows  that 
Lg(ai) = 0 for g = g, or g, and  the a i  in lemma (4.3).  Thus  

we  can  conclude  that,  for  instance, 

g,ffg, = fglfgl = Lf(a,)g, + aIfgz , and (4.1) 
g,ffg, = f@, = Jqa , )g ,  + ",fS, ' 

Let  e4  be  the  constant  vector field ( 0 ~ 0 ~ 0 ~ 1 ) ' .  
Lemma 4.5: There  is  are  a  positive  constant y and a 
"rationaln  function a of y, such  that  g, = ag, + 7eq. 

The  function a is in  fact a = - ~ l + ( l , / L z ) c o s ( y z ) j ~  so it  is 
nonzero  everywhere if the  parameters of the  system  are  such 
t h a t  In that,  case, g, can  be  expressed  in  terms of g, 
and  eq.  

The  values of certain  vector  fields  and  determinants  at 
various  special  points  will  also  be  useful.  We  have  the  following 
calculations: 

g,ffg, = 0 a t  all x of form (yl,O,O,o) . (4.2) 

det(g,,fg,,ffg,,fffg,) = c . c o s ( ~ , ) ~   a t  (y,,O,O,O) . (4.3) 
det(f,g,:fg,:ffg,) = c' .zl .cos(yl)   at  (y,:z,,O,O) . (4.4) 

det(g,,€$gl,ffg,) = P(y,).z,.sin(2yz) ' (4.5) 
In the  above,  both  c  and c' are  nonzero  constants,  and  is  a 
function  satisfying O(y,)fO for  all y,. 

4.2. Certain Lie Algebras 
If L is a Lie  algebra of vector  fields:  by  the rank of L at the 

point  x  we  mean  the  dimension of the  subspace {X(X),XEL} of 
the  tangent   space  a t  x. The  smallest  Lie  algebra of vector 
fields  containing  given  vector  fields X,Y,... is denoted by 
{X,Y;. . .}LA. It is  well  known t h a t  in  principle  important 
controllability  properties of the  system (3.1) can  be  deduced 
from  the  s t ructure  of the Lie  algebra  {f,gl,g,}LA  and of the  ideal 
of {f,gl,g2}LA  generated  by {g,,g,}. From  lemma (4 .1) ,  it  is 
clear  that   the  lat ter  has  rank 4 (full rank)  at  each  point.  This 
implies  that  certain  degenerate  behaviors  can  not  occur in the 
time  optimal  problem;  we  omit  det,ails  since  we  shall  be  able  to 
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conclude  much  more  from  other  results. 
We now *ant  to  study  the  algebras L', L i .  L?? and L i .  

which  are  obtained  as  follows  for  any  given  nonzero  numbers k , l .  

L' := {f-kg,,g,lL, 3 (4.6) 
Ll .- .- {(f-kg,)'g,.  i20}LA 

L? .- .- {f+lg2:g,}L, . and 

L: := {(f-tg,)'g,. i20}L4 . 
For this  purpose.  it  will  be  useful  to  consider  those  states (y,z) 
that  are  equilibrium  points  and  satisfy y2=0 (and.  necessarily. 
z l=zz=Oj .  Setting  derivatives  equal  to  zero in equation (1 .1 )  
results in the  condition  Q(9j=w.  which  gives  rise  to  the 
equations 

s in() ' )  = c lu  = c2v ( 4 . 7 )  
where  the  ci  are  positive  constants  that  depend on the  masses 
and  lengths of the  links  and  are  easily  computed.  Assume  that 
u is set  to  a  fixed  constant  value k = K or - K .  Then (3 .1)  
becomes  a  single-control  system.  There  is  a  corresponding 
control uo: obtained  from  solving ( 4 . i j  for v .  such  that f (xo)  -k 
kg,(xo)  - uogz(xo)  = 0. where x. = (O.y,.O.Oj. and y l  is also 
obtained  from ( 4 . 7 j .  (There  may  not  be  any  such y,. depending 
on  c,:  in  fact.  the  existence of such  a  point y ,  would  contradict 
condition (3 .3 j  if that  condition is imposed  on  the  system 
parameters.) 

\Ye now  study  the  linearization of (3 .1 ) .  seen as  a  single- 
input  system.  about (uo:xo). Let X be  the  vector field f-kg,. 
and  let Y=gz. Then  this  linearization is a  controllable  linear 
system  precisely  lvhen 

det (YY.:XY.XXY,XXXY) 0 at  x. . (4.8) 

Now  note  that XY = f.g,; - k g,& = fg,, XXY = ffg, t 
a3Y. and XXXY = fffg, - kg,ffg, - v .  where v is in  the  span 
of Y and XY.  Because of fact ( 4 . 2 ) .  we  conclude  that  the 

determinant in (4.8) equals  that in equation (4 .3 ) .  so the 
linearization is controllable iff y1 F i n ,  2. Recall  that x. was 
choosen so that  sin(y,)  = c2k.  Let ko:= 1 / c 2 .  FYhen applying 
all  this  to  the  choices k = =K.  we  conclude: 
Lemma 4.6: The  above  linearized  systems  at  the  equilibrium 
points  with z,=~~=y,=O are  controllable iff the  system 
parameters  satisfy K f = k O .  

Since the  parameters  are all  physically  quantities. we may 
expect  that  indeed  these  systems  are  all  controllable. 
Lemma 4.7: N'ith the possible  exception of the  particular  cases 
when k = =ko. every s ta te  ( can  be  steered  to  a  state of the 
form x = (yI.zl.O.O). where z , f O  and  cos(yl)*O.  using  controls 
of the  form u z ~ k .  v arbitrary  real-valued  piecewise  analytic 
function.  Same  resuit  using  u=-k. 

Proof Sote  that   the  control v is not required  to  satisfy 
any  magnitude  constraints in this  lemma. LVe prove  the  result 
for u=k. the  other  case  being  analogous.  The  "computed 
torque"  method is useful  in  establishing  the  desired 
controllability  result.  Introduce  a  new  control v equal  to  the 
angular  acceleration of the  second  joint.  The  control v can  be 
obtained  as a combination of u and  the  constant  control u (in 
other  words,  we  can  partially  linearize  the  dynamics  using  state 
feedback).  hfore  precisely. for any x.  and  any Y and u = k = = K .  
we  rnay  solve f :4  (x) t k.g, 4](x) - v.g2 ,4  (x) = u for v: because 
g2:4:(x)  is  always  nonzero.  (Here 41 indicates  4th  coordinate. 

i.e.  component  with  respect to z2.)  Thus,  given  any  state ( and 
any  pair (y2,z2) .  it  is always  possible  to  find  a  control v ( t )  

steering < into  some  state  with  the  desired ( y 2 ? z 2 ) .  In 
particular:  we  may  steer : into  a  state  with j 2 = z 2 = 0 .  If the 
resulting  state. say x :  has  third  coordinate z l ~ O ,  we may appl) 
now.  for  small  time,  the  control v for  which LEO.  (And. of 
course. u E k . )  This will  result in a  state  that   st i l l   has ),=zZ=O. 

such  that  also zl=O (for  small  enough  time).  and.  since yl=z,: 

such  that  cos(y,)=O.  Thus  the  controllability  result  is 
established  unless z,=O. Finall).  assume  that w e  ended  up  in  a 
s ta te  x with z,=O. There  are  two  possibilities:  either  x is an 
equilibrium  state (for the  single-input  sjstern  Nith u = k .  and 
with y,=O.) or  it is not. If not.  then  apply  the  control v such 
t h a t  GO: since (yl.zl) does  not  remain  constant. z ,  must 
become  nonzero  at  some  time,  and  we  are  done.  And if x is an 
equilibrium  state.  lemma  (4.6j  says  that  for  some  value u o  the  
linearized  system  about  this x and  u=k. v = u o  is controllable 
with  respect to v .  Thus  the  system is locall! controllable  about 
x! and  hence  we  can  reach  any  point in a  neighborhood of x, 
and in particular  points  with y,=z,=O and z , = O . 1  

Corollary 4.8: LVith the possible  exception of the  particular 
cases k = = k o .  the  algebra L i  has  rank 4 at  each  point. 

Proof: If x is  reachable  from [ then Lb has  the  same 
rank  at x and [ (see  for  instance SJ ). The  conclusion  then 
follows  from  lemma ( 4 . i )  and  propert! (4.4).1. 

Lemma 4.9: For  any C.  the  algebra  Li  has  rank 4 at  each 
point. 

Proof: Let X:= f-lg?. Y:= g, .  Consider  the  set of 
vector  fields {Y.XY:YXY.XYXY} . By lemma (4 .3)  and 
formula (4.1): this  set  spans  the  same  space  as {g,.fg,.g2.fg,} 

whene\er x is  such  that y,  f O , i n , ' Z . n .  Thus  the  rank of L: is 
4 except  possibly  at  points  with y 2  = 0.ir:Z.s. Koa- we  argue 

a s  in the  case of LA. From  the  explicit  system  equations  it  
follows  that g,I3: is always  nonzero,  and  hence.  analogously  to 
the  previous  case:  we  rnay  always  control  an  arbitrar)  state  into 
one  with yl=zl=O (while  mantaining v = k ) .  If a   state  with zz=O 
is  reached.  then  an)  control  for  small  enough  time will  result in 
a  final  state  with y z  different  from  the  above  exceptional  points. 
We  are left with  the  cases  where y1=z1=z2=0 and y z  is  one of 

the  above.  From  the  equations (or physical  intuition)  it  follows 
that  when >-? is either 0. R '2: or - ~ , ' 2 :  the  fourth  component 
g, 4j of g, is  positive.  Thus  applying  a  control of the  type u=p 

constant<<O  (and v E k )  results.  for  small  time:  in z,<O, and we 
reach  a  point  with y2+0.  Finally, if ~ - ~ = n  then  one  verifies  that 
g, 4 >O there.  and  (equilibrium  point  for u=v=O) (41 vanishes 
there.  Thus  with u=O one  obtains  for  small  time  a  motion for 

which z 2  has  the  same  sign  as k:  and  hence  is  also  nonzero  in 
case  that E is nonzero. \Ye shall  not  need the  case C=O. but  it 
is worth  including i t  for  completness. LVhen x l = z , = y , = O  and 
y z = n :  sign(gl;4 ) = sign(!,-!?). iippl! the  control  u=b>>O  and 

v r O .  If !,F!,. this  results  as  before in a  well-defined  sign  for z, 

and  hence in a good >?.  If f , = 1 2 .  we  argue by contradiction 
tha t  y 2  becomes  nonzero.  Otherwise. z 2  and y 2  would  remain 
zero  along  the  trajectorl;  and  this  gives  rise  to  an  equation for 

z,  of the  type  (small  term)-3.(positive  term  bounded  away  from 
zero).  Thus 2,: x1 become  positive.  and  the  last  equation 

becomes z 2  = c.sin(xlj:  c  a  nonzero  constant:  ahich  contradicts 

the  fact   that  ~ ~ ~ 0 . 1  

5 .  Singular extremals. 
In  this  section  and  the  next  we  apply  the  results of the 

previous  section  to  the  stud? of singular  extremals.  Recall  that 
an  extremal is u-singular if o,(t) = <p(t) ,g,(t)>  vanishes  along 
it:  and  similarly  for  v-singularity.  The  methods  to  be  used  all 
rely  in the following  classical  fact.  used  already  in  the 
introductory  section  on  the  single-link  case  (c.f.  lemma (2 .1 ) ) .  
Assume  that  (x.p:w) is an  extremal  and  that  o,(t) = o,( t ' j  = 0 
for some t.t'EI  (for  instance. if the  extremal is u-singular  on  the 
interval I ) .  Consider  the  derivative of the  (absolutely 
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continuous)  funct,ion 4,. This  derivative  admits  a  very  simple 

expression,  namely: ~ , ( t )  = < p ( t ) , [ f , g l ] ( x ( t ) >  + 

v( t )<p , igz :g l j (x( t ) )> ,  which  in our application.  because of the 
property in lemma (4 .2)  just  equals  <p:fg,>.  (From  now  on  we 
omit  the  argument  x(t)  when  clear  from  the  context.,   and  we  use 
the  notation  introduced  earlier  for  iterated Lie brackets.) It 

follows t h a t  4, is again  absolutely  continuous.  and in particular 

that   there is  a  t- in the  interval  (t:t ')CI  such  t,hat  q,(t") = 0. 

If 4, had  three  zeroes:  this  induces tw-o zeroes in 0,: and  we 
can  try  to  repeat  the  process  as  long  as He can  differentiate. 
Typically,  at  some  point  either u or v will appear  in a 
derivative.  and  this  may  serve to obtain  an  expression  for  the 
singular  control.  A  similar  argument  applies  to  v-singular 
controls.  A  ver)  trivial  but  interesting  consequence of this 
method i p  the  following.  Let Z, (respectively.  Z,,)  be  the  closed 
subset of I consisting of the  limit  points of Lhe set of zeroes of 
4, (resp., $ v ) .  Then: 
Lemma 5.1: Z, n Zy is empty.  

Proof: Assume  that  t  is in both  sets.  Thus  there  are 
sequences {t,} and {s,} converging  to t such  that  4,,(tn) = 
dy(sn) = 0 for  all  n. By the  above  arguments,  there  are  also 

sequences {t',} and {s',,} converging  to  t   such  that   du(t 'n) = 

$,(s',) = 0. By continuity:  all of du, 9,: du, and 0,. vanish  at 
t .   Thus ,   a t  t ,  <p,g,> = <p:fg,> = <p,g,> = <p:fg,> = 0 . 
Since g,: g,, fgl, fg, are  linearly  independent  (c.f.  lemma  (4.1)); 
it  follows  that  p(t)=O,  contradicting  nontriviality of the  adjoint 
vec t0r . l  
Remark 5.2: Not,e that  the  same  argument  actually  proves  a 

bit  more: if tEZU  and  $,(t,) = 0; then  oY(t)fO.   Thus 0, does 
change  sign a t   t :  if it   vanishes  there  at  all  and  t  is in the  

int,erior of I.@ 
Corollary 5.3: If the  extremal  (x,p,u,v) is  u-singular 
Irespectively,  v-singular:]  on  the  interval I ,  then  i t  is V- 
Irespectivell-: u-] bang-bang  on I. In particular,  there  are  no 
extremals  that  are  simultaneously u- and  v-singular. 

Proof: We  prove  the  result  for  u-singular  extremalsi  the 
other  case  is  analogous. By assumption, 4, vanishes  ident'ically 
on  the  interval I. Thus  Zu = 1: so by lemma (5.1) Zv is 
empty.  Thus  the  set  of zeroes  of d, in the  compact  interval I 
must  be  finite:  as  desired.@ 

It follows that  every  singular  (and  hence  also  each  optimal) 
control  takes  values in t,he  boundary of the  control  constraint 
set,  and  one is led to  study  extremals  which  are,  either u- 
singular  and  v-bang-bang, or vicebersa.  Moreover:  one  can  be 
much  more  precise  about  the  points  where v may  sHitch  values: 
Lemma 5.4: If (x,p,w)  is  u-singular  and  tEI is such  that  
$,,(t)=O: then  z,(t)=O  or  yz(t)=0,ia/2,a.  

Proof Arguing  as  before,  we  know  that d, is absolutely 
continuous;  its  derivative  is 

d, = <p:ffg,> + u<p:glfg,> + v<p?g,fg,> . (5.1) 

Since 4, vanishes  identically,  this  expression is zero  almost 
everywhere. By lemma  (4.3):  the  last  two  terms  are  multiples 
of 0,: so they  vanish a t   t .  It  follows  that  <p,g,> = < p & >  = 
<p:fg,> = <p:ffg,> = 0 . The  result  is  then a consequence of 

formula (4.5).@ 

derivative of 4, and by  using the fact  (see  remark ( 5 . 2 )  t h a t  4, 
Furt,her  results  can  be  obtained by taking  one  more 

must  change  sign. 
We wish to  show  that  certain  kinds of degenerate  behavior 

are  ruled  out in the  two-link  manipulator  problem.  The  first' is 
illustrated by the superficially  analogous  case of the  linear 
system  consisting of a  parallel  connection of two  second  order 

integrators, i.e. the  system  with  equations  y1 = u,  y 2  = v . 
The  control  constraints  are  -I<u<l  and - l < v < l .  (We  thank  
Elmer  Gilbert  for  suggesting a comparison  with  this  example.) 
Introducing  s ta tes   (yl~z,~yz~zz)   as   before ,   assume  that  v is  set  to 
a constant  value,  say VI. Consider  the  problem of minimal 
time  transfer  from (O,O?O:O) to  (O:0,l/Zj1).  Then? any 
measurable  control  u(t)  satisfying  the  magnitude  constraints  and 

for  which si s6 u ( r ) d r d t  = 0 and u ( t ) d t  = 0 hold,  is  such  that 
(u,v) is optimal. In other  words,  any  control  that  transfers  the 
first  state  to  the  second  is  optimal,  as  long  as v ~ l .  
Remark 5.5:  W h a t  goes  wrong  in  the  above  example  is  that 
the  algebra  Li  is of rank  less  than full; in fact  it  has  rank 2 a t  
every  point. In general,  consider  the  single-control  system  with 

x = X+uY  (as  one  obtains  when v ~ l ) .  If the  ideal Lo of 
{X:Y},, generated  by Y is of maximal  rank r less than   the  
dimension of the  state  space  at,  the  point (, then it is  possible 
to  change  coordinates  locally  around ( in  such  a  way tha t   t he  

equations  take  the  parti t ioned  form q = h(q,r,u) 7 = 1. (For a 
reference,  see  for  instance [IS], p.41.)  Then,  for  small T and  for 
q' near  q,  any control  u(t)  taking  q to q' in t ime T in the  first 
equation will be  such  that  it  transfers  x=(q,O)  to  x'=(q!,T) In 
minimal  time. As a  converse of this  fact, if Lo has  full  rank 
along  a  singular  extrema],  then  t,he  corresponding  control  is 
uniquely determined  as a "feedback"  function of (x,p)  (in 
particular, u is  piecewise  smooth  and  optimal  controls  are 
"singular of finite  order").  This  is  because  the  successive 
derivatives of the  switching  function  result in expressions  which 
contain  combinations of the  controls w-ith  coefficients of the   type  
<p,W>:  with  all  possible W in  Lo  appearing  eventually.  These 
coefficients  cannot all vanish  bacause of the  rank  assumption  on 
the  Lie  ideal  and  the  nontriviality of p.  This  allows  solving  for 
u ;  some  details  will  be  given  in  the  material  to  follow. In any 
case:  corollary (4.8) and  lemma  (4.9)  guarantee  that  this  kind of 
behavior does not occur  in  our  manipulator  model  (with  the  two 

possible  exceptions i k o ,  in the  case of Li) .@ 

5.1. u-singular  extremals. 
If (x,p,w)  is  u-singular  on 1: we  know by the  above 

considerations  that  there  is  partition of I into  finitely  many 
intervals in  each of which v is (..e.) either  L or -L. So we 
shall  restrict  att,ention  to  such  subintervals.  It  is  not  difficult  to 
prove  that: If (x,p,w)  is  singular,  it  cannot  hold  that 
sin(2yz)=0.  Motivated by this,  we  shall  restrict  attention  to u- 
singular  extremals  contained  in  a  generic  subset of the   s ta te  
space,  namely, 

5, := { x=(y1,y2,z1,z,)~  s.t. z,fO and y 2 # 0 : i x / 2 3 x }  . 
The  constraint  on z1 is  most  probably  unnecessary,  but  it 
simplifies  the  treatment.  Because of lemma  (5.4);  u-singular 
extremals  included in 5, will  have  v-const,ant.  Sote  that  in 
any  case  there is a  gap in t h a t  a trajectory  might  intersect  the 
set  where  sin(2yz)=0  at  a  pathological  set of nonzero  measure, 
so the  classification of u-singular  trajectories will not  be 
complete  even  after  the  results  to  follow. 

We  introduce  a  couple of functions  on  the  state  space, 
"rational"  in  the  sense  defined  earlier.  Let  p = (pI,pz,p3,p4):  be 
any  vector,  and  consider  the  problem of  solving the  equations 

<p ,g l>  = 0 and  <p,fg,> = 0 ( 5 . 2 )  
a t   any  given  x.  Since  g,[3]  (third  coordinate of g,) is  never 
zero:  we  may  solve  in  the  first  equation  for  p3  in  terms of p4 
(p,   and p, do  not  appear  due  to  the  special  block  form of g,). 
Similarlj-;  the  second  equation  can  be  used  to  express p1 in 
terms of p2:p3:p4: and  hence  just p, and  p4  (note   that   fg , [ l ]  = 
-gl!3]).  Thus  there  are  "rational"  functions  c(x):  d(x):  and .(x) 
such  that  whenever  the  equations (5 .2)  hold  then 

P3 = C(X)P4: PI = d(X)Pz + e b ) P 4 :  (5.3) 
and in particular  p = a(x)pz  - b(x)p4 , where  the  (co-)  vect'ors 



a(.) and  b(x)  can be given  explicitely  as  follows  in  terms of the 
coordinates of g, and fg,: 

a(.) := (-glj4:~g,;3:.1.O,0) . 
b(x)  := (fg,  4  ,gl:3]-fg,.3]g,:4j,  (g,'3:)'.O.-g1 4. g, 3..1) . . .  

On  the  set S,, we  define  the  scalar  functions:  r(x) := 
-<a.ffgl> u,: and  s(x) := -<b.ffg,>, ( t17 - l a 3  a i :  for  any  given 
fixed  real  number 1 .  Note  that Q, is nonzero in Su. Further, 
from  a.31 = a 4: = 0 it  follows  that  <a.g,> E i a . g , >  s 0. and 
from  (fg,  I:.fg,,2:) = -(g,'3:,g1 4 j that   <a.fg,> z 0. From  (4.5) 
we  conclude  that  (on  its  domain S , , )  

r ( x )  * 0 at  all  points . (5.4) 
Consider  no%  the  adj0ir.t  equation  for  the  covector p: 

assuming  a  given  extrema].  From  the  partitioned  form  (3.2) it 

follows that   p2  depends only  on  p3  and  p4:  and  that  p4  equals 
-p2  plus a linear  combination of p3  and  p4.  When  the  extremal 
is  u-singular:  p  satisfies  (5.2).  and  we mag substitute  for  p3  and 
p4  using  equations  (5.3).  Then p, and  p4  satisfy  the  equations 

P4 = -P? - V(X)P, . 
where  and L are  functions  whose  expression  can  be  easily 
obtained.  and  are  -rational'  in x and  affine  in u and v .  We 
shall  consider  finally  the  following  Riccati  equation: 

= q2 - c(x)q  - x ( x . u , v )  . (5 .6)  
to  be  thought of.  for  each  given  trajectory  x(t)  and  controls 
u(t).v(t),  as  a  time  dependent  scalar  first  order  equation. 

Theorem 5.1: Assume  that  (x,p.w) is a  u-singular  extremal 
with  x( t )ESu for all  tEI.  Then  there  is  a  solution  q(t) of the 
Riccati  equation i5 .6)  on I such  that 

u ( t )  = r ( x ( t ) j q ( t )  - s(x( t ) )   for  all tGI . (5.7) 
(\?here  the 1 appearing in the  definition of s ( x )  is the  value e L  
of Y on I . )  Conversely,  for  each x0cS,,. each !==L. and  each 
real  qo:  there is a u-singular  extremal  (x.p.w).  and  a  solution of 
equation (5.6). both  defined  on  an  interval I which  contains 0 in 
its  interior. suck. that   x(0)=xo.  q(0)=qo.  and  equation (5.7) 
holds.  Moreover.  there is for  each so in Su a  nonempty  open 
interval  Q(x,)L%  with  the  following  property: If q s Q  thkn  the 
singular  extremal so constructed.  for I = L or -L: is an 
admissible u-singular  v-bang-bang  extrema]. 

Proof: Given  such  a  u-singular  extrema].  consider  the 

derivatise ou given a s  in (5.1). This  must  vanish  identically. 
Furthermore.  g,fg, = a l p 2 .  so by lemma ( 4 . 5 )  and  the  vanishing 
of ou = < p , g , >  it  follows that  <p:g,fg,> = (t1:p4 . Since Y 

does  not  change  sign,  p4  is  never  zero.  Hence  we  can  solve for 
u in (5.1). with v ~ l :  this  resulrs  in 

u = r (x) (p2  p,) - six )  . ( 5 . 8 )  
Calculating  the  derivative of p2  p4  using  the  adjoint  equation 
and  the  substitutions  (5.3)  shows  that  q:=  p2  p4  satisfies  the 
differential  equation (5.6). 

Conversely,  let xo. qo.  and 1 be  given.  Solve  the 
composite  system  (3.1)  and ( 3 . 5 )  using v z t  and u given by 
(5.8): and  initial  conditions x(O):= xo. p,(O):= sign((), p,(O):= 
qo.sign(l).  and  p,(Oj, p,(O) given b! equations  (5.3) in terms of 
this  data.  (Solutions  exist  for  small  enough  intervals 1. by the 
existence  theorem  applied in the  submanifold of the  cotangent 
bundle  consisting of all ( ~ . J Y  with p,=O. <p .g , (x )> tO   and  
sin(y,)*O.)  We  claim  that  the  resulting  extrema] is u-singular. 
Consider 0,. By the choice of p , (0)   and p,(O) it  follows  that 

qU(O) = o,(O) = 0. Furthermore. oU is identically  zero  because 
of the  definition of u( t ) .   Thus  ou vanishes  identically,  as 
desired.  The  statement  about  equation (5.6) is  now  clear  from 
the  previous  paragraph.  Finally:  let 

(5 .9)  

By (5 .4 ) ;  this  is  well-defined. Sote   that   qGQ(x)  precisely  when 
the u obtained  from (5.7) satisfies ' u  < K .  LVhen choosing  an 
initial  condition in &(xo).  we  restrict  the  interval 1 if necessary 

so that  ul remains  less  than L. This  completes  the  pro0f.I 
To  summarize.  through  each  point of the  generic  set Su there 

passes  a  one-parameter  famill of u-singular.  v-bang-bang 
admissible  extremals. 
Remark 5.6: Equivalent]).  since r=O we  ma! gise  an  equation 
like (5 .6)  for  the  control . ( t i .  This  can  be  achieved by 
substituting  q = (u-s),  r in both  sides of equation (5.6). Thus  
the  choice of u(0)  and x(0) uniquelg determines  a  corresponding 
singular  extrema].  which  can  be  obtained b! solving  a  set of 5 
simultaneous  ode's.  This  type of behavior  is to be  expected  for 
4-dimensional  systems. 

5.2. v-singular  extremals. 
The  situation  with  v-singular  trajectories is in a  sense  the 

opposite of tha t  of u-singular  ones.  There is here  a  generic  set 
where no possible  such  trajectories  exist  (as  opposed  to  the 
previous  case.  where  in  a  generic  set  there  are man! such 
trajectories  passing  through  each  state in the  set) .   Let 

Yote  that  det(gz.fg2.ffgz.g,ffg,) = 0 at  any  point  with ):=0 (c.f. 
property  (4.3);)  and  that  det(g,.fg2.ffg,.fffg,)  is  for  instance 
nonzero  at x=O. It  follows that  0 is in 5,. which is then 
nontrivial  and  hence  generic  since it  can  be  defined by -rational- 

inequalities. 
Theorem 5.2: There  are  no  v-singular  trajectories  intersecting 
the  set Sv. 

Proof If (x.p.w)  is  v-singular  then 0,. and 0, both 
vanish  identically  on I? just   as before.  and  u=k==li.  Hence 0 

= o,= <p.ffg,>  k<p,g,fg,> - v<p.g,fg,> = <p.ffg2>:  the 

last  equality  because of lemma  (4.3). It follow-s that  0, is also 
absolutely  continuous. so we  may  take  its  derivative 0 = 
0,(3i=<p.fffg,-kg,ffg,> - <p,g2ffg,> = cp.fffg,Lkg,ffg,>.  The 
last  equality  follo\rs  from  the  second  equation in (4.1).  Since  p 
is  nontrivial.  these  derivatives  cannot all be zero  uhen  x( t )  is in 
S,, proving  the  resu1t.l 

6. Optimality. 
By the  results in the  last  section.  there  are in particular  no 

time-optimal  v-singular  extremals in the  generic  set S,. LVe 
shall  concentrate on the  case of u-singular  extremals  contained  in 
the  generic  set 5". Through  each  point in -Uu there is a  one- 
parameter  family of such  extremals.  and  optimal  ones. if any. 
must  be  among  these. To help  single  out  extremals 
corresponding  to  time-optimal  trajectorles  from  other  extremals. 
various  authors  (see e.g. , K R i .  -HE.. I iO. .  and  references  in 
these  papers.)  have  found  stronger  constraints  than  those  implied 
by the  maximum  principle.  The  simplest of these  generalizes 
the  classical L e g e n d r e - C l e b s c h  condition  from  variational  calculus. 
R e  apply  these  conditions  to  the  single-control  system  that 
results  when v is  set  identicall>-  equal  to l==L.  The  necessar) 
condition is then  that.  along  the  singular  extrema]. 

<p.g,fg,> > 0 . (6.1) 
Here  g,fg,  is in fact  equal  to (tlg2. and we know that  on S,,. 
<p.g2> is never  zero.  Thus t h e   a b o v e  inequality zs strict for 
t ra jec torzes  t h a t   r e m a i n  in  SU. Since a, has  the  same  sign  as 
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sin(2y2),  we  conclude  the  following  result. 
Theorem 6.1: Let  (x,p:w)  be  an  extrema]  corresponding  to  a 
time-optimal  trajectory  contained in the  generic  set S,. Thus  y z  
remains  always in  one of the  intervals   ( -~,-n/2) ,  ( 0 , r / 2 j 5  
( -s j2 ,0) ,  or (7712,~). If y 2  is  in either of the  first, two of these It 
follows t h a t  v = L,  and if y 2  is in  one of the  last  two  then v 

= - L . I  
There is another  constraint  that  an  optimal  trajectory  must 

satisfy,   and  that  is the  one  given  by  equation  (3.6).  Consider 
the  following  set of properties  to  be  sat,isfied  along  an  extrema], 
the  set  of which  we  shall  call  the strict  generalized 
Legendre-Clebsch condition:  or  just,  SGLC: 

a .   <p,g,> = 0 
b.  <p,fg,> = 0 
c.  <p,g,fg,> > 0 
d.   <p,f> + L<p,g,> > 0 . 

I t  is widely  believed that  this  condition  (in  the  single-input  case, 
SO t h a t  in the  last  property  the  second  term  does  not  appear,) 
is  sufficient  to  imply  that  the  corresponding  trajectory  is  time 
optimal,   at   least  in  a  suitable  local  sense:  however,  no  complete 
proof  seems  to  be  available  except in the  analogous  case in 
dimension 3 (see IMO]). Our  last  remarks will  deal  with  t'he 
possibility of finding  such  trajectories  in  the  set S,. n'hether  
such  exist  will  depend  on  the  relations  between  the  parameters 
defining the  system.  Once  admissible  extremals  have  been  found 
as  in  theorem ( 5 . 1 ) )  the  only remaining  constraint to  sat'isfy  is 
the  one  corresponding  to  the  strict  version of property  (6.1). 
Dealing  for  instance  with  the  case in which y z  is  in one of the  
first two  intervals in theorem  (6.1)?  this  becomes,  using  q:= 

<a , f>q  + <b,f> + L: > 0 . (6.2) 
(The  functions a and  b  are  as  introduced  earlier.)  Let S,* be 

subset  of S, consisting of those  x  such  that y 2  is as  desired  and 
SO that  some  qcQ(x)  satisfies  (6.2). \Ye do  not  yet  know  much 
about S,'. In an}  case,  it  can  be  defined  using  "polynomial" 
(in  our  sense)  inequalities,  is  an  open  set,  and 
Proposition 6.1: If x is in S,' then  t,here is an  admissible 
singular  extrema1  passing  through x and  such  that  condition 
SGLC is satisfied.I 

PzIP4: 
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