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Abstract

This paper, prepared for a tutorial at the 2005 IEEE Conference on Decision and Control, presents an
introduction to molecular systems biology and some associated problems in control theory. It provides an
introduction to basic biological concepts, describes several questions in dynamics and control that arise in
the field, and argues that new theoretical problems arise naturally in this context. A final section focuses
on the combined use of graph-theoretic, qualitative knowledge about monotone building-blocks and steady-
state step responses for components.

1 Introduction

Within the last few years, the field of “molecular systems biology” has taken shape, having as its goal the
unraveling of the basic dynamic processes, feedback control loops, and signal processing mechanisms under-
lying life. Leading biologists have recognized that new systems-level knowledge is urgently required in order
to conceptualize and organize the revolutionary developments taking place in the biological sciences, and new
academic departments and educational programmes are being established at major universities, particularly in
Europe and in the United States.

The studies of dynamics, feedback, and signal processing in engineering and in biology have long been
intertwined, for example in the fields of biological and biomedical engineering. But our community has also
actively participated in the study of biological control systems in their own right, independent of such applica-
tion areas. Indeed, one of the founders of our field, Norbert Wiener, developed many of the ideas of feedback
and filtering in the early 1940s in collaboration with the Harvard physiologist Arturo Rosenblueth, who was,
in turn, heavily influenced by the work of his colleague Walter Cannon, who coined the termhomeostasisin
1932 to refer to feedback mechanisms for set-point regulation in living organisms. Wiener viewed his study
of cyberneticsas a unifying theme in engineering and biology. Rudolf Kalman often used biological analogies
in his discussion of control systems theory, and so did many other early researchers. Balthazar van der Pol,
the Dutch electrical engineer whose oscillator models of vacuum tubes are a routine example in the theory of
limit cycles, was motivated by models of the human heart and an interest in arrhythmias. In parallel, and for
at least as long, mathematical biologists have been developing quantitative theories of physiological regulation,
metabolic pathways, insulin control, heart electrical patterns, neural and circadian oscillations, and so forth.

So, one may ask, why the sudden resurgence of interest? The answer surely involves a combination of many
factors. Bioinformatics has been tremendously successful in facilitating the sequencing of human, animal,
plant, bacterial, and other genomes, as well as in protein structure prediction. Nontrivial ideas and algorithms
from discrete mathematics, probability and statistics, theoretical computer science, and even partially observed
stochastic systems (Hidden Markov Models), embedded in user-friendly software, are now indispensable tools
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of the working biologist and pharmaceutical researcher. Thus, many biologists have come to accept and value
the use of mathematical tools. On the other hand, new data collection and measurement approaches, themselves
based upon sophisticated engineering, make possible the simultaneous monitoring of the activity of thousands
of genes and the concentrations of proteins and metabolites, thus allowing for the study of microscopic dy-
namic interactions among cellular components, and making a systems-level view of cells particularly natural.
The huge amounts of data being generated by genomics and proteomics require new theoretical approaches to
interpretation and organization. Medical advances also drive this new emphasis. Many in the pharmaceutical
industry have come to the realization that only by understanding cells as a whole can one identify novel targets
for new drugs, and understand their systemic effects; gene therapies will depend on a more global understanding
of dynamic interactions among genes and their cellular environment. Finally, and at a somewhat more philo-
sophical level, there also is the fact that current experimental methods permit makingfalsifiable predictions,
bringing modern biology closer to physics and chemistry as a science.

While classical theoretical biology dealt largely with ecology, or with whole organisms, biologists can now
test hypotheses in a precisely targeted fashion. For example, if a mathematical model predicts that a certain
mutation will make fruit flies grow a leg instead of antennae on their heads, the mutation can be carried out and
the results observed.

Control and systems theory have much to offer to biology. But, conversely, one may look forward to
technologies inspired by biological research: evolution has resulted in systems that are highly fault-tolerant,
nonlinear, feedback-rich, and truly hybrid —in the sense that the digital information encoded in DNA controls
chemical concentrations in cells. Advances in genomic research are continually adding to detailed knowledge
of such systems’ architecture and operation, and one may reasonably argue that they will constitute a rich source
of inspiration for innovative solutions to problems of control and communication engineering, as well as sensor
and actuator design and integration.

This paper is organized as follows. The next section —which may be skipped by those readers not interested
in, or already knowledgeable about, the chemistry and biology background— provides an introduction to many
of the basic concepts of molecular biology. (For a serious study of the subject, a recommended starting point is
the book [2].) Next, the paper describes some of the central questions in dynamics and control that arise in the
field. It is argued that some of these questions differ in an essential manner from similar-sounding questions in
engineering applications, thus leading one to entirely new theoretical control and systems theory problems. The
final section focuses on a topic in which the author has recently worked, namely, the combination of network-
like, qualitative knowledge, with a comparatively small amount of quantitative data, in order to help characterize
global behavior. This approach is based upon decompositions into well-behaved building-blocks —monotone
subsystems— and the use of input/output data —steady-state step responses— for these components.

2 Molecular Cell Biology

The fundamental unit of life is the cell (Figure 1). Organisms may consist of just one cell or they may be
multicellular; the latter type are typically organized into tissues, which are groups of similar cells arranged so
as to perform a specific function. (For example, humans have on the order of1014 cells organized into roughly
200 tissues.)

One may view cell life as a collection of “wireless networks” of interactions among proteins, RNA, DNA,
and small molecules involved in signaling and energy transfer. These networks process environmental signals,
induce appropriate cellular responses, and sequence internal events such as gene expression, thus allowing cells
and entire organisms to perform their basic functions. These control and communication networks can be rel-
atively simple, such as thetwo-component systemsfound mainly in bacteria, which are cascades connecting
sensors (proteins in the cell membrane, which detect outside signals) to actuators (typically transcription fac-
tors, which direct the expression of a gene), cf. [94]. Or they may be incredibly sophisticated, as in higher
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Figure 1: An eukaryotic cell

organisms, involving multiplesignal transduction pathwaysin which information is relayed among enzymes
through chemical reactions (for instance, phosphorylation).

In addition to their own needs for survival and reproduction, cells in multicellular organisms need additional
levels of complexity in order to enable communication among cells and overall regulation, as well as to direct
differentiation from a single fertilized egg into the various tissues in an individual member of a species. We
will focus on intracellular pathways, but these other aspects are no less exciting areas of study.

Before providing more details and examples, let us step back and review some of the basic concepts and
terminology.

2.1 Prokaryotes, Eukaryotes, Archaea, and Viruses

At the highest level, biologists classify life forms into prokaryotes, eukaryotes, and archaea.Prokaryotesare
organisms whose cells do not have a nucleus nor other well-defined compartments; their genetic information
is stored in chromosomes –typically circular– as well as in smaller circular DNA molecules called plasmids.
Eukaryoteshave cells with organized compartments; their genetic material is stored in chromosomes –typically
linear– that lie in the nucleus. Most prokaryotes, with few exceptions, are unicellular, and most are bacteria.
Eukaryotes might be unicellular (e.g., yeast) or multicellular (e.g., plants and animals).Archaeawere proposed
as a third life form in the mid-1970s, and they share many characteristics with both prokaryotes and eukaryotes.

Eukaryotic cells are enclosed in aplasma membrane, which is made up of lipids and also contains proteins
and carbohydrates, and acts as a protective barrier and gatekeeper, permitting only selected chemicals to enter
and leave the cell. (In addition to membranes, plant cells also have a rigid cell wall.) Their interior is called
the cytoplasm, and many types of organelles —specialized compartments— populate the cell (mitochondria,
responsible for energy production through metabolism, and containing a very small amount of DNA; chloro-
plasts for photosynthesis; ribosomes, responsible for protein synthesis, and made up themselves of proteins
and RNAs; endoplasmic reticulum; and so forth). The cytoskeleton, made up of microtubules and filaments,
gives shape to the cell and plays a role in intracell substance transport. Prokaryotic cells, on the other hand, are
surrounded by a membrane and cell wall, but do not contain the usual organelles.

Virusesconsist of protein-coated DNA or RNA, and are not usually classified as living organisms, because
they cannot reproduce by themselves, but rather require the machinery of a host cell in order to replicate. In
particular, bacteriophages are viruses that infect bacteria.
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2.2 Genomics and Proteomics

Research in molecular biology, genomics, and proteomics has produced, and will continue to produce, a wealth
of data describing the elementary components of intracellular networks as well as detailed mappings of their
pathways and environmental conditions required for activation.

2.2.1 DNA and Genes

Thegenome, that is to say, the genetic information of an individual, is encoded in double-strandeddeoxyribonu-
cleic acid (DNA)molecules, which are arranged into chromosomes. It may be viewed as a “parts list” which
describes all the proteins that are potentially present in every cell of a given organism. Genomics research has
as its objective the complete decoding of this information, both the parts common for a species as a whole and
the cataloging of differences among individual members.

The key paradigm of molecular biology: “DNA makes RNA, RNA makes protein, and proteins make the
cell” is called thecentral dogma of molecular biology(Crick, 1958).1 A separate process,replication, occurs
more rarely, and only when a cell is ready to divide (S phase of mitosis, in eukaryotes), and results in the
duplication of the DNA, one copy to be part of each of the two daughter cells. See Figure 2. The termgene

Figure 2: Central dogma of molecular biology

expressionrefers to the process by which genetic information gets ultimately transformed into working proteins.
The main steps are transcription from DNA to RNA, translation from RNA to linear amino acid sequences,
and folding of these into functional proteins, but several intermediate editing steps usually take place as well.
(Sometimes the term “gene expression” is used only for the transcription part of this process.) At any given
time, and in any given cell of an organism, thousands of genes and their products (RNA, proteins) actively
participate in an orchestrated manner.

1Recent work is forcing a rethinking of the roles of RNA and proteins. For example, prions appear to take advantage of a direct
mechanism for protein replication: when a prion infects an organism, it interacts with wild-type –that is to say, normal– proteins,
causing them to change their shape. For another example, until recently, RNA was not believed to be a direct player in cell control
mechanisms, but now it is known that double-stranded RNA’s (dsRNA’s) can act, through the RNA interference (RNAi) effect, to disrupt
(“turn-off” or “silence”) genes. However, the central dogma remains the organizing principle: as usual in biology, the only general
“theorem” is that every general fact has exceptions!
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The DNA molecule is a double-stranded helix made of a sugar-phosphate backbone and nucleotide bases
(Figure 3). Each strand carries the same information, which is encoded in the 4-letter alphabet{A, T, C, G}

Figure 3: DNA; a codon shown in box

(the nucleotides Adenine, Thymine, Cytosine, and Guanine), in a “complementary” form (A in one strand
corresponds toT in the other, andC to G). The two strands are held together by hydrogen bonds between the
bases, which gives stability but can be broken-up for replication or transcription. One describes the letters in
DNA by a linear sequence such as:

gcacgagtaaacatgcacttcccaggccacagcagcaagaaggaggaatc . . .

and genes (instructions that code for proteins) are substrings of the complete DNA sequence. (Besides genes,
there are regulatory and start/stop regions that help delimit genes as well as determine if and when they should
be “active”. In addition, there are also regions that have other roles, such as coding for RNA that may not lead
to proteins.) Because of its double-stranded nature, DNA is chemically stable, and serves as a good depository
of information. One might think of DNA storage as a “hard disk” in a vague computing analogy.

2.2.2 RNA

The “read-out” of genetic information —bringing-in the instructions into working memory for execution, in
our computer analogy— begins when DNA information is transcribed letter by letter into “RNA language.”
Ribonucleic acid (RNA)is a nucleic acid very similar to DNA, but less stable than DNA, and almost exclusively
found in single-stranded form (with exceptions such as the RNA in some viruses). RNA language is basically
the same as DNA’s, with the minor (for us) detail that in RNA, the amino acid thymine is replaced with uracil,
symbolized by the letterU . This process is known astranscription. The “copying-machine” is calledRNA
polymerase. A polymerase is, generally speaking, anenzyme—a type of protein that acts as a catalyst— that
helps in the synthesis of nucleic acids. RNA polymerase is, thus, a polymerase that helps make RNA, more
preciselymessenger RNA (mRNA).2 A promoter regionis a part of the DNA sequence of a chromosome that is
recognized by RNA polymerase. In prokaryotes, the promoter region consists of two short sequences placed
respectively 35 and 10 nucleotides before the start of the gene. Eukaryotes require a far more sophisticated
transcriptional control mechanism, because different genes may be only active in particular cells or tissues at
particular times in an organism’s life; promoters act in concert with enhancers, silencers, and other regulatory
elements.

2This description is over-simplified: in eukaryotic cells, an intermediate form of RNA called heterogeneous nuclear RNA (hnRNA)
is produced first; then a process of “editing” gets rid of “introns” which are not part of the code for the desired protein, leaving the
“exons” that are joined together to produce the actual mRNA, perhaps after insertion of some additional nucleotides.
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2.2.3 Proteins

Proteinsare the primary components of living things. Among other roles, they form receptors that endow the
cell with sensing capabilities, actuators that make muscles move (myosin, actin), detectors for the immune
response, enzymes that catalyze chemical reactions, and switches that turn genes on or off. They also provide
structural support, and help in the transport of smaller molecules, as well as in directing the breakdown and
reassembly of other cellular elements such as lipids and sugars. Ultimately, one might say that cell life is about
proteins and how and when they are produced.

After transcription,translationis the next step in the process of protein synthesis and it is performed at the
ribosomes. The information in the mRNA is read, and proteins are assembled out of amino acids (with the help
of transfer RNA (tRNA), which help bring in the specific amino acids required for each position). RNA language
is translated into protein language by a mapping from strings written in the RNA alphabetΣn = {U,A, G,C}
into strings written in the amino acid alphabet:

Σa = {A,R, D,N,C, E, Q, G, H, I, L,K,M,F, P, S, T, W, Y, V }.

Every sequence of three letters in the RNA alphabetΣn is replaced by a single letter in the alphabetΣa. The
genetic code explains how triplets (orcodons, one of which is shown in Figure 3) of bases map into individual
amino acids. The code, including full names and three and one-letter abbreviations, is shown in Figure 4. For

Alanine Ala A GCU, GCC, GCA, GCG Leucine Leu L UUA, UUG, CUU, CUC, CUA, CUG

Arginine Arg R CGU, CGC, CGA, CGG, AGA, AGG Lysine Lys K AAA, AAG

Asparagine Asn N AAU, AAC Methionine Met M AUG

Aspartic Acid Asp D GAU, GAC Phenylalanine Phe FUUU, UUC

Cysteine Cys C UGU, UGC Proline Pro P CCU, CCC, CCA, CCG

Glutamine Gln Q CAA, CAG Serine Ser S UCU, UCC, UCA, UCG, AGU, AGC

Glutamic Acid Glu E GAA, GAG Threonine Thr T ACU, ACC, ACA, ACG

Glycine Gly G GGU, GGC, GGA, GGG Tryptophan Trp W UGG

Histidine His H CAU, CAC Tyrosine Tyr Y UAU, UAC

Isoleucine Ile I AUU, AUC, AUA Valine Val V GUU, GUC, GUA, GUG

START AUG, GUG STOP UAG, UGA, UAA

Figure 4: Genetic code

example, the codon AUG translates into M (Methionine). Thus, the DNA stringTACTCATTGCGC would
first get transcribed into the RNA stringAUGAGUAACGCG (note the complementation, and replacingT by
U ), and would be then translated into the sequenceMSNA (Methionine-Serine-Asparagine-Alanine) of amino
acids. The string AUG codes for the amino acid Methionine but also serves as a “start” codon: the first AUG in
an mRNA indicates where translation should begin.

The shapeof a protein is what largely determines its function, because proteins interact with each other,
and with DNA and metabolites, through lego-like fitting of parts in lock and key fashion, transfer of small
molecules, or enzymatic activation. Therefore, the elucidation of the three-dimensionalstructureof proteins
is a central goal in biochemical research; this subject is studied in the fields ofproteomicsand structural
biology. TheProtein Data Bank(http://www.rcsb.org/index.html) based at Rutgers University, USA, serves as
an online catalog of protein structures. Sometimes, protein structure can be gleaned through physical methods,
such as X-ray crystallography or NMR spectroscopy. Very often, however, the structure of a protein P can
only be estimated, based upon a comparison with anhomologousprotein Q whose structure has been already
determined (as chemists say, “solved”). One says that P and Q are homologous if they are, in an appropriate
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sense, close in amino acid sequence, or equivalently, in the DNA sequences for the genes coding for P and
Q. One measure of closeness is Hamming distance (by how many “letters” do P and Q differ?), but more
sophisticated measures used in practice include allowance for deletions and insertions of letters in P and Q. The
rationale behind homology-based protein shape determination is that homologous proteins probably share a
common evolutionary or developmental ancestry, and hence perform similar functions. Mathematical methods
of computational biology (bioinformatics) play a central role in homology approaches; thecritical assessment
of structure prediction methods (CASP)competition compares methods from different researchers. Yet another
set of techniques for elucidating the shape of proteins from their description as a linear sequence of amino
acids is that ofenergy minimization methods. One views the protein-folding process as a gradient dynamical
system, of which steady states are the stable configurations. This method is very difficult to apply, because of
the complexity of the energy function, but has been useful for comparatively small proteins.

After translation, proteins are typically subjected topost-translational modifications, such as the addition of
phosphate or methyl groups, or, in eukaryotic cells,ubiquitination, the process by which a protein is inactivated
by attaching ubiquitin to it. Ubiquitin is a protein whose function is to mark other proteins forproteolysis
(degradation), a process which occurs at theproteasome.

One of the key properties of proteins is that their shape (conformation) can be modified in a predictable
fashion, as the consequence of interactions with other molecules. One often says that the protein has been
“activated” as a result of such an interaction. For instance, Figure 5 shows, in schematic form, two conforma-

Figure 5: A protein in two conformations. Left one is Ca2+-free. Right one is Ca2+-bound

tions of the recoverin protein, the second of which comes about when two calcium ions have been inserted at
appropriate places (white balls). Notice how the insertion of these ions makes an “arm” swing out. Depending
on the position (extended or not) of this arm, different interactions of this protein with other players in the cell
will occur.

2.3 Proteins act as Sensors, Signal Relayers, and Actuators

Conformation changes in proteins typically happen in response to intracellular or extracellular ligand binding
events, or because of binding with other proteins. (Tobindmeans to reversibly join;ligandsare small molecules
that bind with larger molecules, typically proteins.) Two noteworthy instances of activation are provided by
receptors and by phosphorylation reactions.
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Receptorsare proteins that act as the cell’s sensors of outside conditions, relaying information to the inside
of the cell. A receptor is typically made up of three parts. Theextracellular domain(“domains” are parts of a
protein) is exposed to the exterior of the cell. Extracellular ligands, such as growth factors and hormones, bind
to receptors, most of which are designed to recognize a specific type of ligand. Thetransmembrane domain
serves to “anchor” the receptor to the membrane. Finally, acytoplasmic domainhelps initiate reactions inside
the cell in response to exterior signals, by interacting with other proteins. There is a special class of receptors
which constitute a common target of pharmaceutical drugs:G-protein-coupled receptors (GPCR’s)(Figure 6).
The name of these receptors arises from the fact that, when their conformation changes in response to a ligand

Figure 6: G-protein-coupled receptor and G-protein

binding event, they activate G-proteins, so called because they employguanine triphosphateanddiphosphate
(GTPandGDP) in their activity. GPCR’s are made up of several subunits (Gα, Gβ , Gγ) and are involved in the
detection of metabolites, odorants, hormones, neurotransmitters, and even light (rhodopsin, a visual pigment).

Another example of activation isphosphorylation. Adenosine triphosphate (ATP)is a nucleotide that is the
major energy currency of the cell. Anenzymeis a protein that catalyzes a chemical reaction. Phosphorylation
is a chemical reaction in which an enzyme X —called akinasewhen playing this role— transfers a phosphate
group (PO4) from a “donor” molecule such as ATP to another protein Y, which becomes “activated” in the sense
that its energy is increased. Once activated, protein Y may then influence other cellular components, including
other proteins, itself acting as a kinase, or it may take an appropriate shape that allows it to to bind with yet
another protein or to a segment of DNA so as to initiate, enhance, or repress expression of a gene. Normally,
proteins do not stay activated forever; another type of enzyme, called aphosphatase, eventually takes away the
phosphate group; see Figure 7. In this manner, signaling is “turned off” after a while, so that the system is

Figure 7: Phosphorylation and de-phosphorylation

ready to detect new signals.

Receptors and enzymatic cascades act in concert. Binding of extracellular ligands triggers signaling through
a series of chemical reactions inside the cell, carried out by enzymes and often relayed by smaller molecules
calledsecond messengers. In this manner, regulatory pathways can be either turned “on” and “off” or mod-
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ulated, and transcription of particular sets of genes may be started and stopped in response to environmental
conditions. Figure 8 ([19]) illustrates one such pathway, which involves GPCR activation as well as signaling
through a MAPK cascade (more on MAPK cascades below).

Figure 8: A GPCR pathway

The animation athttp://biocreations.com/pages/mapk.htmlis strongly recommended as an illustration of
signaling pathways.3

As another illustration, consider the diagram shown in Figure 9, extracted from the paper [46] on cancer
research, describing the top-level schematics of a wiring diagram of signaling circuitry in the mammalian cell.
The illustration shows the main signaling pathways for growth, differentiation, and apoptosis (commands which
instruct the cell to die). Highlighted in red are some of the genes known to be functionally altered in cancer
cells. Of course, such a figure, compared for example with the more detailed biochemical pathway shown in
Figure 8, leaves out a lot of information, some known but omitted for simplicity, and some unknown. Much of
the system has not yet been identified, and the functional forms of the interactions, much less parameters, are
only very approximately known. However, data of this type are being collected at an amazing rate, and better
and better models are being obtained constantly.

Both of the above examples were from eukaryotes. We now turn to one from a prokaryote.Chemotaxisis
the term used to describe movement, in bacteria as well as other organisms, in response to chemoattractants or
repellants, such as nutrients and poisons, respectively.E. coli bacteria (Figure 10) are single-celled organisms,
about 2µm long, which possess up to six flagella for movement. Chemotaxis inE. coli has been studied
extensively. These bacteria can move in basically two modes: a “tumble” mode in which flagella turn clockwise
and reorientation occurs (Figure 11, left), or a “run” mode in which flagella turn counterclockwise, forming a
bundle which helps propel them forward (Figure 11, right). The motors actuating the flagella are made up of
several proteins. In the terms used by Berg in [15], they constitute “a nanotechnologist’s dream,” consisting
as they do of “engines, propellers, . . . , particle counters, rate meters, [and] gear boxes.” Figure 12 shows an
actual electron micrograph and a schematic diagram of a flagellar motor. The signaling pathways involved
in E. coli chemotaxis are fairly well understood. Aspartate or other nutrients bind to receptors, reducing the
rate at which a protein called CheA (“Che” for “chemotaxis”) phosphorylates another protein called CheY
transforming it into CheY-P. A third protein, called CheZ, continuously reverses this phosphorylation; thus,
when ligand is present, there is less CheY-P and more CheY. Normally, CheY-P binds to the base of the motor,

3signaling cascade animation played at this point of lecture
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Figure 9: Signaling circuitry of the mammalian cell from [46], reprinted with permission from Elsevier

Figure 10:E. coli bacterium

Figure 11:E. coli tumbling: flaggela apart. Running: flaggela in bundle

helping clockwise movement and hence tumbling, so the lower concentration of CheY-P has the effect of less
tumbling and more running (presumably, in the direction of the nutrient). A separate feedback loop, which
includes two other proteins, CheR and CheB, causes adaptation to constant nutrient concentrations, resulting in
a resumption of tumbling and consequent re-orientation. In this manner,E. coli performs a stochastic gradient
search in a nutrient-potential landscape. Figure 13 shows a schematic diagram of the system responsible for
chemotaxis inE. coli .
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Figure 12: Electron micrograph and diagram of flagellar motor, reprinted with permission from [15]

Figure 13:E. coli chemotactic circuit

2.4 Measurement Techniques

Massive amounts of data are being generated by genomics and proteomics projects, thanks to sophisticated
genetic engineering tools (gene knock-outs and insertions, PCR) and measurement technologies (fluorescent
proteins, microarrays, blotting, FRET).Polymerase chain reaction (PCR)is a technique that amplifies DNA
(typically a gene or part of a gene). Creating multiple copies of a piece of DNA, which would otherwise be
present in too small a quantity to detect, PCR enables the use of measurement techniques. Let us briefly discuss
a couple of these measurement technologies, in order to provide an idea of their power as well as their severe
limitations.

Suppose that we wish to know at what rate a certain gene X is being transcribed under a particular set of
conditions in which the cell finds itself. Fluorescent proteins may be used for that purpose. For instance,green
fluorescent protein (GFP)is a protein with the property that it fluoresces in green when exposed to UV light. It
is produced by the jellyfishAequoria victoria, and its gene has been isolated so that it can be used as areporter
gene. The GFP gene is inserted (cloned) into the chromosome, adjacent to or very close to the location of gene
X, so both are controlled by the same promoter region. Thus, gene X and GFP are transcribed simultaneously
and then translated (Figure 14), so by measuring the intensity of the GFP light emitted one can estimate how
much of X is being expressed.

Fluorescent protein methods are particularly useful when combined withflow cytometry. Flow Cytometry
devices can be used to sort individual cells into different groups, on the basis of characteristics such as cell size,
shape, or amount of measured fluorescence, and at rates of up to thousands of cells per second. In this manner,
it is possible, for instance, to count how many cells in a population express a particular gene under a specific
set of conditions.
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Figure 14: GFP

A set of technologies collectively referred to asgene arrays(DNA chips, DNA microarrays, Affymatrix
gene chips) provide high-throughput methods for simultaneously monitoring the activity levels of thousands
of genes, thus providing a snapshot of the current gene expression activity of a cell (Figure 15). An array

Figure 15: Gene array

is built using robotics and imaging equipment, very much as in electronic chip fabrication. The array has in
each location(i, j) a detector “tuned” to a particular gene or small sequence of nucleotides Xij . This detector
(the usual name is a “target”) is the complementXij of Xij or, more likely, of a subsequence of Xij . (More
precisely, one wants to find out how much of a specific X’s mRNA is being transcribed. The first step is to
reverse-transcribe RNA to DNA, to obtain called complementary DNA (cDNA), and then PCR-amplify it. We
omit details here, since we only want to explain the basic principle.) Because of hybridization, that is, the A-T
and G-C base pairings for DNA, Xij should “stick” to its complementXij . This allows one to estimate the
presence and abundance of each Xij in a sample. In order to be able to read the information in the different
array positions, the sequences Xij being tested for are first radioactively or fluorescently tagged, so that one can
simply measure how much has accumulated at each positioni, j. Pattern recognition, machine learning, and
control-theory tools such as clustering, Bayesian networks, and identification theory —especially when time-
dependent data is available— can be and are used infer information about dynamic interactions among genes,
and to sort out which particular sets of genes are triggered simultaneously or in a sequence (co-expression
analysis) in response to different environmental factors or disease states. In control-theory language, we might
think of gene arrays as giving a vector-valued output, in contrast to a technology such as GFP which provides
merely a scalar value.

Actually, it is difficult to obtain absolute measurements with gene arrays, due to uncertainties in the PCR
and hybridization processes. Rather, the method is often used in a comparative fashion. Gene array experiments
can be done for different cell types in the same organism, for the same cell types under different experimental
conditions, or even for comparing cells from two organisms, perhaps one of them having an engineered mutation
of the original one. A fascinating application is the comparison of abnormal (e.g., cancerous) and normal cells,
obtaining in that manner a gene expression “signature” that might be used for diagnosis.

A Western blotallows one to detect the presence of a specific protein, or a small number of them, in a sample
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taken from an experiment.4 The proteins extracted from the sample, together with a small number of antibodies
which recognize only specific proteins, are placed on membranes and allowed to interact. Different methods,
for instance radioactive labeling of stains, are then used in order to visualize the results. As an example,
Figure 16, taken from [73], shows Western blot data from an experiment in which three proteins (Cdc25, Wee1,
and MAPK) have been observed under different conditions (concentrations 0, 25nM, etc.) of another protein
named∆65-cyclin B1, during two experiments (labeled “going up” and “coming down” in the figure). The
higher placements on the blot correspond in this case to the relative abundance of the phosphorylated form of
the protein; for example, phosphorylated Cdc25 is more abundant in the “100” than in the “0” lanes.

Figure 16: Western blots

2.5 Limitations

Notwithstanding the power of the techniques just described, GFP, arrays, and blots, they are intrinsically noisy,
because of chemical interactions in blots, production errors in arrays, or other sources of interference. In
addition, the resulting measurements have low precision: very few bits of information can be extracted from
data such as that shown in Figures 15 or 16. These limitations of imprecision and noise are sometimes ignored
in systems biology modeling, but it is obviously pointless to try to tightly fit model parameters to such data. On
the other hand, for certain types of quantities, such as the amount of calcium in a cell, currents through channels,
or certain enzyme concentrations, there are other techniques that may result in higher precision measurements.
In such cases, parameter fitting is more reasonable.

The field suffers from what has been called adata-rich/data-poorparadox: while on the one hand a huge
amount ofqualitativenetwork (schematic modeling) knowledge is available, as evidenced by figures such as 8
and 9, on the other hand little of this knowledge isquantitative, at least at the level of precision demanded
by most control theoretic tools of analysis. The problem of exploiting this qualitative knowledge, and effec-
tively integrating relatively sparse quantitative data, is among the most challenging issues confronting systems
biology.

2.6 Model Organisms

Since many organisms follow the same basic principles, biologists have concentrated on a small number of
model systems. This allows them to focus on specific systems, easing comparisons and facilitating sharing of
research results. Different aspects may be easier to study in different model organisms (embryonic cycles in

4“Southern” blots are techniques for detecting DNA, and “Northern” blots for detecting RNA. The names originated with the first
of these, which was developed by a UK biologist named Southern.
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frog eggs, differentiation and development in flies, aging in worms), by taking advantage of fast breeding or
speed of maturation.

As cataloged in the US National Institutes of Health website (http://www.nih.gov/science/models), the
main mammalian models are the mouse and rat, and the main non-mammalian models areS. cerevisiae(bud-
ding yeast),Neurospora(filamentous fungus),D. discoideum(social amoebae),C. elegans(round worm),D.
melanogaster(fruit fly), D. rerio (zebrafish), andXenopus(frog). In addition, a popular plant model isAra-
bidopsis(a small flowering plant, member of the mustard family).

Most mathematical modeling, signal processing, and feedback control studies have been done specifically
for one or another of these model systems.

3 Cells as Dynamical Systems

The termgenotyperefers to the genetic blueprint encoded in the DNA of a given individual, whilephenotype
refers to the actual observable physical manifestations of that information. Asingle nucleotide polymorphism
(SNP), that is, a change (mutation) in a single letter in an individual’s DNA, may not have a phenotypical con-
sequence, or it might have a catastrophic one, as is the case with cystic fibrosis in humans. Moreover, distinct
species may be relatively close in genotype, yet be very far in other characteristics; for example, humans and
chimpanzees are close to 99% genetically identical. Thus, differences in genotype can be tremendously ampli-
fied into phenotype. But, even accounting for environmental factors (“inputs” to the system), this amplification
would seem to be somewhat inconsistent with the Central Dogma. After all, the mapping “genome7→ pro-
teome” is quite “continuous” in an intuitive sense and proteins determine the organism. One might then ask
how large discontinuities arise.

One major contributing factor is that a cell behaves as anonlinear dynamical system. As we discussed,
proteins interact among themselves, both directly, through enzymatic action or through binding, as well as
indirectly, through their control of gene expression. Each of these modes of interaction may involvefeedback
loops. Feedback is properly understood as a dynamic phenomenon, where quantities, such as concentrations of
proteins, RNA, metabolites, and other cell substances are seen as functions of time.

Feedback in gene expression, to take one example, is critical to the cell’s function ([29, 105]). Atranscrip-
tion factor is a protein that directs when –and possibly how many times– a gene is to be transcribed, by binding
to DNA at a specific promoter or other regulatory region. Thus, a protein A may inhibit or enhance transcription
of the RNA that codes for some other protein B, while B may in turn influence the production of A. Combina-
tions of such influences are possible, as illustrated in Figure 17, in which proteins A and B must both be present
in order for gene C to be active (an “and” gate in Boolean terms); the boxes labeledPA, PB, PC1 , PC2 indicate

Figure 17: Proteins feed back into gene expression

regulatory sites.

The various modes of interaction are closely related: an enzymatic signal transduction network may direct
the activation of a transcription factor, or a reaction of proteindimerization—binding of two proteins to each
other— may be required for transcription factor activation. For example, the diagram in Figure 18 shows a
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Figure 18: A homodimer, bound to DNA

homodimer—that is, a dimer consisting of two proteins of the same type, in this case catabolite gene activator
protein (CAP), which is one of over 300 transcription factors inE. coli— bound to DNA, which in turn helps
RNA polymerase bind and initiate transcription.

Before continuing, let us very briefly digress to mention two important sources of nonlinearities. One of
them is dimerization. If a dimer consisting of a molecule of P and a molecule of Q plays a role in a reaction,
then we must keep track of the amount of the dimer, let us call it D. Now, a molecule of D forms whenever
a molecule of P interacts with a molecule of Q. Assuming that the medium is well-mixed —for instance due
to Brownian motion— the probability that such an interaction will occur is proportional to the product of the
concentrations of P and of Q. Thus, in a differential equation model that keeps track of concentrations, a product
termp(t)q(t) will be required in order to represent this dimerization. In particular, for homodimers one may
expect to see a term likep(t)2. In general, one calls an exponent appearing in this fashion acooperativityindex.
Even higher order monomials may appear; for example, it is known that receptors inE. coli tend to aggregate in
large numbers. Another important way in which nonlinearities appear is through saturation effects, for instance
if an enzyme E catalyzes the conversion of a substrate S into a product P and the enzyme is in short supply,
there will be a maximal speed at which the reaction can take place.

3.0.1 Bifurcations

We wish to argue that dynamical phenomena are a main contributing factor to the appearance of discontinuities.
Mathematically, such discontinuities are described as bifurcations, where a small change in a parameter results
in completely different steady state behavior. (Another possibility, probably less important in this context, is the
existence of chaotic dynamics, which exhibit sensitive dependence to initial conditions, so that small differences
in initial states result in quickly diverging trajectories, even on finite time intervals.) Let us give a simplified
illustration of the biochemical role of bifurcations; much more complicated, but totally analogous, mathematical
models appear, for example, in papers dealing with embryonic development or signaling pathways. Suppose
thatp(t) denotes the dimensionless concentration (0 ≤ p ≤ 1), at timet, of the protein product P of some gene,
whose presence results in some observable characteristic of the individual, and thatp evolves in time according
to the following differential equation:

dp

dt
= p2(1− p)− kp .

The negative term corresponds to degradation, and the first term to formation by an autocatalytic process, with
the square term representing a dimerization. The parameterk represents the activity of some enzyme that
facilitates the degradation ofp. Let’s assume thatp(0) = 0.5, an initial condition that might have been set up
by another process. (In embryonic development, some of the initial conditions are set by chemical gradients
placed by the mother on the fertilized egg, cf. [103].) Ifk > 1/4, thenf(p) = p(−p2 + p − k) is always
negative, sop(t) → 0 ast → ∞, that is, complete degradation ofp results. On the other hand, ifk < 1/4,
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thenf(p) = p(−p2 + p − k) has two rootsp− < 0.5 < p+, sop(t) → p+. Thusa slight perturbation of the
parameterk will have a drastic, discontinuous, effect on the phenotype.

3.0.2 Activation and Inhibition

It is common to classify biochemical interactions as negative (inhibitory) or positive (activating). Suppose that
we consider two interacting chemicals P and Q. The rate of change of P may be affected by the concentration
of Q in several different ways. For example, Q might be an enzyme that helps catalyze the production of P, or
a protein whose presence triggers the expression of the gene that produces P; in this case, we say that the effect
of Q on P ispositiveon P, or that Q is anactivatorof P. Alternatively, Q might be an enzyme that helps degrade
P, or a protein that represses the gene that produces P, in which case we say, instead, that Q has anegativeeffect
on P, or that QinhibitsP. Similarly, one can define activation or inhibition of Q by P. Of course, it could happen
that the effect of P on Q (or of Q on P) is ambiguous, and depends on the actual concentrations of P and Q, or
even of other species. However, it is often —though certainly not always— the case that biochemical models
aresign-definite, by which we mean that this change of sign cannot happen: either P always inhibits Q or P
always activates Q. As an example, take Figure 9, part of which we provide a closer look of in Figure 19. In

Figure 19: Zooming-in on Figure 9

this picture, the arrows “→” indicate activation, and the symbols “a” indicate inhibition.

To give precise definitions, one needs to settle upon a type of model for the concentrationsp(t) andq(t) as
functions of timet: ordinary or partial differential, probabilistic, Boolean, or hybrid equations. For concrete-
ness, suppose that the pair of ordinary differential equations

ṗ = f(p, q)
q̇ = g(p, q)

adequately describes the interaction between P and Q (as usual in control theory, using dot for time derivatives
and omitting “t” arguments). Then, Q is an activator of P if the partial derivative∂f

∂q (p, q) is positive, or at
least nonnegative, everywhere, and Q is an inhibitor of P if this derivative is negative, or at least nonpositive,
everywhere. The non-sign-definite case would be that in which the partial derivative is positive for some values
of the state variables(p, q) and negative for others, as with the equationṗ = (1 − p)q, where∂f

∂q = 1 − p is
positive ifp < 1 and negative ifp > 1.

3.0.3 Two-Species Interactions

As the number of proteins and other species increase, the complexity of feedback loops and dynamics exhib-
ited by biochemical networks can be, in principle, quite arbitrary. However, some of the main behaviors in
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which biologists have focused their interest arise already in systems that involve just two interacting chemicals,
Figure 20.

Figure 20: Mutual inhibition. Mutual activation. Activation-inhibition

In mutual inhibition, each species inhibits the other one. If some external input signal helps to transiently
increase the concentration of A sufficiently over that of B, then A will repress B. Since B is at a low concentra-
tion, it will not repress A. Assuming that A can maintain its high level —due for example to some autocatalytic
reaction, or to the influence of other variables not shown— this situation will persist until such a time when
some other external factor allows B to gain an upper hand over A. The system will, therefore, memorize which
of the two components, A or B, was last activated externally; this “toggle-switch,” analogous to similar ones
found in electronic devices, plays a central role in differentiation and other biological forms of memory. See for
instance older work on the lambda phage lysis-lysogeny switch and the hystereticlac repressor system [71, 74],
as well as more recent references such as [40, 18, 80, 14].

In mutual activation, each species activates the other. Now, if some external input signal helps to transiently
increase the concentration of A, then B will be activated by A, and B will, in turn, enhance A even more. In
effect, a sufficiently large external signal, applied to either A or B, results in a large increase in both A and B.
(If the signal is not strong enough, we will assume that A and B stay small.) This mode of positive feedback
appears in biomolecular systems that amplify signals, as well as systems that produce a “binary” response to
external stimuli, and it is thought to play a role in cell decision-making.

Finally, a net negative feedback as inactivation/inhibitionloops is, as usual in control theory, the mechanism
responsible for set-point regulation, or as biologists say,homeostasis. It plays a role also in turning signals “off”
after activation: many cell signals are too expensive metabolically to be maintained at a high level.

These behaviors are associated with different phase-space pictures, which we discuss now, for concreteness,
for ordinary differential equation models.

3.1 Phase Spaces and Step Response

Three of the main types of phase-space behaviors that have attracted particular attention from biologists study-
ing biomolecular dynamics are: systems with a unique stable state, systems with multiple attracting states, and
limit cycle oscillators, cf. Figure 21. These three types of behaviors are intimately linked, and often give rise to

Figure 21: One or multiple steady states; Limit cycles
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each other, as we will discuss.

Uniqueness of steady states, and globally asymptotic stability, are quite common among simple biochem-
ical reactions, although it is not always easy to prove theorems insuring this behavior (we discuss some such
results later). Systems with multiple attractors arise in many forms, a typical one of which is the interaction be-
tween two processes, such as formation and degradation, each of which by itself would lead to global stability.
Relaxation, or hysteresis-driven, oscillators are those in which to a system with multiple attractors one adds a
slow parameter adaptation law. Other oscillators arise through a Hopf bifurcation phenomenon –basically an
unstable linear oscillator, plus a nonlinear term that prevents escape to infinity and thus confines trajectories–
from negative feedback loops around otherwise mono-stable systems.

The transitions (bifurcations) between qualitative behaviors such as mono- and multiple-stability, or the on-
set of oscillations, are phenomena which frequently arise when parameters in systems are modified. In molec-
ular biology modeling, a parameter may typically represent a concentration of an external ligand, a voltage
applied to a voltage-gated channel, the concentration of a signaling molecule (as an input to a cellular subsys-
tem), an enzyme concentration affecting a reaction, or the degree of effective cooperativity (Hill coefficient) of
a reaction.

For example, suppose that the rate of change of the concentration of some substancep has the following
form:

ṗ =
Vmaxu

km + u
− kp

where we fix the parametersVmax, km, andk, and whereu is a parameter, not fixed yet, which might corre-
spond, for instance, to the concentration of substrate that is used in makingp. The term−kp is a degradation
term, while the first term is aMichaelis-Mentenformation term. (Michaelis-Menten kinetics are really a sin-
gular perturbation reduction of a more complicated underlying enzymatic reaction, see e.g. [34] for details.)
Note thatVmax is the maximum possible speed of the formation reaction, whilekm (“m” for middle) is the
concentration ofu for which the rate happens to beVmax/2. Now assume thatu is fixed at some valueu0.
The concentrationp(t) will then, from any initial conditionp(0), converge to the steady statep0 = (Vmax/k)u0

km+u0
.

In a typical set of experiments, a biologist or biochemist will set the concentration to a given valueu0, let the
system relax to the corresponding steady statep0, and repeat for various values ofu0, thus obtaining a plot of
p0 against different suchu0’s. In Figure 22 we show the plot (withVmax = 1, km = 0.25, k = 1) for the above

Figure 22: Hyperbolic steady-state response

example. We’ll call this graph, using control-theory terminology, thesteady state response to step inputs, where
we think ofu0 as the magnitude of a constant input applied to the system. Depending on the context, this plot
might be called adose-response curveor receptor activity plotwhenu represents a concentration of ligand and
p the level of some indicator of receptor activity, asteady-state phosphorylation levelplot whenu represents a
signal that affects the phosphorylation level of a protein, and so forth. The response in this example isgraded
in the sense that it is proportional to the parameteru0, at least over a large range of valuesu0, even though it
eventually saturates. It is said to be ahyperbolicresponse, in contrast to asigmoidalresponse as in Figure 23.
A sigmoidal response arises typically from a reaction such as:
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Figure 23: Sigmoidal steady-state response

ṗ =
Vmaxur

kr
m + ur

− kp

where theHill coefficientr is greater than one (in our figure, we usedr = 20, Vmax = 1, kr
m = 0.4, and

k = 1). The parameterr is a cooperativity index. The sharp increase, and saturation, means that a value ofu0

which is under some threshold (roughly,u < km) will not result in an appreciable result (p0 ≈ 0, in steady
state) while a value that is over this threshold will give an abrupt change in result (p0 ≈ Vmax/k, in steady
state). While the first example, when we think ofu0 as displacement of a slider or button, is analogous to the
behavior of a light-dimmer, the second one is closer to that of a doorbell. (We do not define here precisely the
difference between sigmoidal and hyperbolic responses. One possible definition is in terms of inflection points
in the graph. But there is no need to be formal, since we want to keep the discussion intuitive at this point.)

Sigmoidal responses are characteristic of many signaling cascades, which display what biologists call an
ultrasensitiveresponse to inputs. If the purpose of a signaling pathway is to decide whether a gene should
be transcribed or not, depending on some external signal sensed by a cell, for instance the concentration of a
ligand as compared to some default value, such a binary response is required. Cascades of enzymatic reactions
can be made to display ultrasensitive response, as long as at each step there is a Hill coefficientr > 1, since
the derivative of a composition of functionsf1 ◦ f2 ◦ . . . ◦ fk is, by the chain rule, a product of derivatives of
the functions making up the composition ([41]). Thus, the slopes get multiplied, and a steeper nonlinearity is
produced. In this manner, a high effective cooperativity index may in reality represent the result of composing
several reactions, perhaps taking place at a faster time scale, each of which has only a mildly nonlinear behavior.

In practice, steady-state step response curves are interpolated from a number of measurements taken for
various values ofu0. For a concrete, although relatively old, example, we show in Figure 24, taken from [33],
a (log scale) plot of the degree of cAMP receptor modification after 15 minutes of constant exposure to the
stimulant cAMP, inDictyostelium. The locations of the black circles are obtained by reading the Western blots
shown in the inset.

We mentioned that systems with multiple attractors sometimes arise through the interaction of formation
and degradation processes. A typical way in which this happens is as follows. Suppose that the outputy of
a system, for exampley = p in the example that we have been considering, is fed-back into the inputu, as
shown diagrammatically in Figure 25(a). Physically, we are dealing with an autocatalytic process, and may
think simply of u being equal top (this could happen for example ifp helps promote its own transcription)
or perhaps there could be a more complicated positive feedback pathway fromp to u. Mathematically, we
substituteu = y into ṗ = Vmaxur

kr
m+ur − kp (wherer = 1 or r > 1), and obtain the closed-loop equation:

ṗ =
Vmaxpr

kr
m + pr

− kp .

We plot in Figure 26 both the first term (formation rate) and the second one (degradation), in cases wherer = 1
(left) or r > 1 (right). Let us analyze the solutions of the differential equation. In the first case,r = 1, for
small p the formation rate is larger than the degradation rate, while for largep the degradation rate exceeds
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Figure 24: Example of steady-state response, from [33]
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Figure 25: (a) Feed-backu = y; (b) Feed-backu = g · y

Figure 26: Bistability arises from sigmoidal formation rates

the formation rate; thus, the concentrationp(t) converges to a unique intermediate value.In the second case,
however, the situation is more interesting: for smallp the degradation rate is larger than the formation rate, so
the concentrationp(t) converges to a low value, but, in contrast, for largep the formation rate is larger than
the degradation rate, and so the concentrationp(t) converges to a high valueinstead. In summary, two stable
states are created, one low and one high, by this interaction of formation and degradation, if one of the two
terms is sigmoidal. (There is also an intermediate, unstable state.)These facts are totally elementary, but they
serve to motivate a theory based upon monotone systems, to be explained later, which provides a far-reaching
generalization.

Whether, under feedback, a mono-stable or a multi-stable system results, depends on the shape of the
curves, which in turn is determined by the numerical values of the parameters. For example, the hyperbolic
case, shown in the left panel of Figure 26, corresponds tor = 1, while r � 1 tends to produce pictures like the
one shown in the right panel.
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Other parameters also play a role. Let us consider a situation where the strength of the feedback can be
modulated in some fashion, for example due to some additional transcriptional or enzymatic control. The
simplest case (the theory works equally well in more complex scenarios) is whenu is proportional to the output
y: u = g · y, where “g” (a “feedback gain” in engineering) is a parameter than quantifies the proportion
(amplification, ifg > 1) of y that is fed back as input, That is, instead of closing the loop simply withu = y
as in Figure 25(a), we now wish to study the effect of a more general feedbacku = g · y, whereg 6= 1, as in
Figure 25(b).

For example, consider the sigmoidal curve shown in the left panel of Figure 27, showing the steady-state

Figure 27: Open-loop step-response and three feedback gains; Corresponding bifurcation diagram

step responsey = k(u) of a certain system that we will study later. For any fixed value ofg, the steady states
of the closed-loop in Figure 25(b) are in one-to-one correspondence with those pairs(u, y) for which both
y = k(u) andu = gy, that is to say, the intersections of the graph ofy = k(u) with the liney = (1/g)u. In
particular, we show in the left panel of Figure 27 the linesy = (1/g)u with slopes corresponding to the three
special valuesg = 1/0.98, g = 1/2.1, andg = 1/6. The middle line would correspond to a bistable case as in
the right panel of Figure 26, while the other two lines correspond to cases where a single steady state will occur,
either a “lowy” or a “high y” one. We may plot they-coordinates of these intersections against the values of the
gainsg. Observe that this plot, the bifurcation diagram, can be easily obtained by a projective transformation
from the data given by the steady state responsey = k(u): it is simply given, in parametric form, as the set

of pairs
(

u
k(u) , k(u)

)
parametrized by possible input valuesu. See the right panel of Figure 27. Thus, ifk is

obtained from experimental data, the bifurcation diagram can be immediately derived from it.

An intuitive way of thinking of the dependence of the steady state on the parameterg is by viewingg as the
force being applied on a light switch (let us say, positive means up, and negative means down) as in Figure 28.
A strong enough positive force will turn the light on, and a strong enough negative force will turn it off, no

Figure 28: Hysteretic behavior

matter how we started. An intermediate value will have an effect that depends on the initial state: if the switch
is only partially up, but the light is off, a small force will leave it off; if it is on, it will stay on. This is the
bistable case, where the steady state attained depends on the initial state.Hysteresisis the term used to describe
the phenomenon in which the actual steady state depends on the history of the system. One of the main roles of
such hysteretic behavior is in producing oscillations. Imagine an indecisive individual, who, when the light is
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off starts applying a higher and higher upward pressure on the switch, but, when the light turns on, changes his
mind and starts applying a downward pressure, repeating the process forever. The resulting oscillation is called
a hysteresis-based or relaxation oscillation.

Biologically, relaxation oscillators appear to underlie many important cell processes. As a concrete exam-
ple, let us briefly discuss the early embryonic cell cycle in frog eggs (Xenopusoocytes), in which there occur
a set of 12 synchronous cell divisions, starting from just one cell in the fertilized egg and resulting in 4096
cells. The normal cell cycle in a mature organism involves several steps: mitosis (M, the actual cell division)
and interphase, the latter made up of the substeps Gap1 (G1, when the cell grows, in preparation for cell di-
vision), synthesis (S, when DNA is replicated), and Gap2 (G2, a second gap before returning to M). In the
early embryo, though, there are no checkpoints (stopping at gaps), and the cell divisions take place in quick
succession. The divisions are controlled by proteins namedcyclin-dependent kinases (Cdk’s), so called because
they are active when cyclins (another type of protein) are bound to them. Examples of Cdk’s arecell-division
cycle (Cdc)proteins. A dimer made up of one of these, Cdc2, and cyclin B, a type of cyclin, is calledmitosis
promoting factor (MPF). MPF can be in four different phosphorylation states, depending on the binding at the
amino acid in position 167 (which is a threonine, and hence is referred to as “threonine-167”) by the protein
kinase CAK, and at a tyrosine-15 site by another protein called Wee1 when the latter is non-phosphorylated.
The phosphorylation of MPF at the tyrosine-15 site is reversed by yet another protein called Cdc25, which acts
in that manner when it is phosphorylated. The active form of MPF is that in whichonly the threonine-167
has been phosphorylated. When MPF is active, it phosphorylates both Wee1 and Cdc25. Leaving aside, for
simplicity, the action of CAK and two of the phosphorylation states, the reactions between MPF, Wee1, and
Cdc25 are as shown in Figure 29. (See [58] for more details.) This system is a net positive feedback system.
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Figure 29: Cell cycle subsystem

One can give an ordinary differential equation model, and appropriate parameter values, so that there are two
possible steady states: one corresponding to mitosis (high concentration of activated MPF as well as Wee1-P
and Cdc25-P) and one to interphase (higher concentration of inactivated MPF, Wee1, and Cdc25). Depending
on the total amount of MPF (adding active and inactive forms), these two states may theoretically exist in the
same system (bistable regime) or only one of them may be possible.

It is believed that the oscillations are produced by a relaxation oscillation mechanism: the concentration of
cyclin B can be viewed as a parameter which controls the concentration of MPF. Through a negative feedback
loop involving yet other players (not shown), cyclin B is degraded when MPF is activated, making the system
move between the monostable and bistable regimes, much as with the light-switch example. How does one
test this hypothesis? In a beautiful experimental demonstration, Joe Pomerening and Jim Ferrell at Stanford
blocked the degradation of cyclin B by introducing instead a mutated form which cannot be degraded. In effect,
this broke the negative feedback loop and left the system in Figure 29 isolated. To verify that this system is
indeed bistable, they manipulated the concentration of cyclin B and let the system relax to steady state. If
the system is indeed bistable, a bifurcation diagram like the one shown in the right panel of Figure 27 should
result. Indeed, the results, shown in the Western blots in Figure 16, indicate just this hysteretic behavior (“going
up” versus “coming down” in parameter space). Further confirmation of this bistable behavior was obtained
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from morphological observations. Figure 30 shows, for different values of the parameter and at steady-state,
observations done under a microscope. (We omit details of how this was done, which is an interesting story
in itself.) The pictures for parameter values between 40 and 60 show the two possible steady states in this
bistable system, each of which is arrived at depending on the history of the system. As the parameter is slowly
increased from 0 to 100, starting in interphase, we see nuclei that stay well-formed, indicating interphase, for
a large range of parameters, while M phase (nuclear envelope broken down, chromosomes condensed) is only
observed for the value 100. Conversely, going down, the M phase view persists for a large range of parameters.

Figure 30: Hysteresis and bistability seen under a microscope, from [73]

3.2 A System-Theoretic View

In summary, many of the dynamical behaviors typical of engineering and other natural systems are of great in-
terest when analyzing molecular biology problems, and these behaviors can be, and are, studied experimentally.
This is the reason that the field has attracted the attention of experts in dynamical systems as well as in many
areas of physics. On the other hand, one of the important themes in current molecular biology thought ([47, 63])
is that of understanding cell behavior in terms of cascades and feedback interconnections of elementary “mod-
ules.” Cells can be seen as composed of a large number of subsystems, involved in various processes such as
cell growth and maintenance, division, and death. The hope is that one should be able to decompose into such,
hopefully simpler, subsystems, and then study the emergent properties of interconnections. The control and
systems-theory paradigm of input/output systems, which are built out of simpler components that are intercon-
nected according to certain rules (Figure 31) is very natural in this context, and it should permit the recursive
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Figure 31: A System seen as an interconnection of subsystems with inputs and outputs

verification of important properties through the use of standard analysis tools such as passivity, small-gain, or
input to state stability. Even if the entire system were autonomous, in order to be able to define such inter-
connections, one would be forced to consider subsystems that process time-dependent input signals into output

23



Figure 32: The systems-theory paradigm

signals (Figure 32). But, in fact, cells are not autonomous systems. They process external information, provided
by physical (UV or other radiation, mechanical, temperature) or chemical (drugs, growth factors, hormones,
nutrients) inputs. They also produce signals which we may view as outputs, such as chemical signals sent to
other cells, commands to motors that move flagella or pseudopods, or the internal activation of transcription
factors which may be monitored by measurement technologies as we have already described.

Thus, the control-theory formalism —in contrast to dynamical-systems theory, which deals with isolated
systems— is not only reasonable, but natural. For example, and using ordinary differential equations for con-
creteness, one should study systems with inputs and outputs, in the standard sense (see e.g. [88] or any other
control-theory textbook):

ẋ1(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t))
...

ẋn(t) = fn(x1(t), . . . , xn(t)︸ ︷︷ ︸
states

, u1(t), . . . , um(t)︸ ︷︷ ︸
inputs

)

supplemented by a selection of output variablesy1, . . . , yp which are functions of the state:

yj(t) = hj(x(t)) , j = 1, . . . , p .

The inputs, which can be seen as controls, forcing functions, or external signals, act as stimuli. Outputs can be
thought of as responses, such as movement, or measurements provided by biological reporter devices like GFP
that allow a partial (ifp < n) read-out of the system state vector(x1, . . . , xn).

4 Challenges to Control Systems Theory

Many of the systems-theoretic questions that one would normally pose for a dynamical system such as repre-
sented by the cancer network diagram shown in Figure 9, are precisely those that leading biologists are asking,
if sometimes in different language:

• What is special about the information-processing capabilities, or input/output behaviors, of such net-
works, and how does one characterize these behaviors?

• How do the different signal transduction pathways interact?

• How does one find the algebraic forms of reactions, and values of parameters (identification, reverse
engineering)?

• Once these forms of reactions are known, how does one estimate time-varying internal states, such as
the concentrations of proteins and other chemical substances, from input/output experiments (observer
problem)?

• What subsystems (“modules”) appear repeatedly in the same cell?
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• Where do the main sensitivities affecting robustness of the system lie?

• What are the reasons (control objectives, signal processing) that there are cascades and feedback loops?

• More generally, what can one say, if anything, about stability, oscillations, and other dynamical properties
of such complex systems?

• In addition to analysis questions, there are, of course, also synthesis ones, dealing with thecontrol of
cellular systems through drugs or genetic modifications.

Much research addresses the above types of problems for cell signaling systems, and a major and long-term
research effort will continue toward their solution.

Nevertheless, I would argue that in spite of its immense success in engineering, “off the shelf” application
of known control theory is not always appropriate. This is because detailed models are hard to come by: it is
virtually impossible to experimentally validate the forms of the nonlinearities used in reaction terms, and even
when such forms are known, to accurately estimate coefficients (parameters). New tools must to be developed in
order to bridge the “data-rich/data-poor” dichotomy that exists in systems biology: relatively good knowledge
of overall network structure but poor quantitative resolution. In addition, issues such as robustness, multi-scale
modeling, continuous/discrete interfaces, and seamless integration of hybrid stochastic/deterministic systems,
although treated to various degrees in the control field, cannot often be handled with the tools available, which
were developed with very different engineering applications in mind. For the remaining part of this article,
therefore, I would like to focus not so much on what existing control theory and tools can do for systems
biology but rather on a sort of converse, namely how new questions in control theory arise from problems in
systems biology. Even though many problems in systems biology resemble standard problems in control theory,
on closer inspection they often turn out to differ in fundamental ways, and these differences are challenging and
worth exploring. Let’s briefly discuss this point with some examples, and later pick one particular topic for a
more detailed analysis.

4.0.1 Positivity, Nonlinearities, Equilibria, Measures of Performance

An important characteristic of biochemical models is that most variables take only nonnegative values, since
they represent chemical concentrations. By contrast, in the control theory literature, it is common to allow for
negative as well as positive values of displacements, forces, velocities, and so on. This is especially true in
linear control theory, which in essence concerns itself with differences between actual and desired values of
signals. For the latter, nonnegativity makes matters technically much harder, since linear algebra techniques
must be complemented by tools from convex analysis and positive linear algebra. Indeed, there is already
a substantial theory of positive linear systems, motivated largely by biochemical applications. Researchers in
discrete-event and several other subfields of control theory have also developed powerful techniques for dealing
with nonnegativity constraints.

We already discussed how certain types of nonlinearities, such as saturations and sigmoidal responses,
appear in biomolecular models. The study of systems with saturation is also routine in control theory, arising
for example from actuator constraints, but the algebraic form of the saturations tends to be different: a rational
function like ap

b+p is common in biological models. Note that an expression of this form only makes sense if we
know that the denominator cannot vanish. This is not a problem whenb > 0 andp is a chemical concentration,
and hence nonnegative.

Tying together the comments about positivity and about algebraic forms of nonlinearities is the meaning
of seemingly obvious terms such as “negative feedback.” In classical applications of control theory, a negative
feedback is typically a function that takes negative values for positive arguments and vice-versa, such as the
linear control lawu = K(x) = −kx whenk > 0 andx andu are scalar variables. This makes no sense
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for systems which are restricted to positive variables. Indeed, a negative or inhibitory feedback in biochemical
applications represents more likely a function likea1+kx . For instance, given a reaction likeṗ = −p + u driven
by an inputu, an inhibitory feedback ofp on itself might be represented byṗ = −p + u/(1 + kp): whenp
is small, we have the original systeṁp = −p + u, but for p large the effect of the forcing term is damped,
and we have a decaẏp = −p. As a consequence,equilibrium locations change under feedback. Feedback
theory, for example theorems on stabilization, assume as a matter of course that the feedback is zero when we
are already at a desired equilibrium, which is without loss of generality taken to be the origin of coordinates:
K(0) = 0. However, if we look at the examplėp = −p + 1/(1 + kp), we see that the equilibrium location
p = p(k) = (

√
1 + 4k − 1)/(2k) depends on the strength of the gaink.

The word “equilibrium” brings up in itself an interesting issue. In normal mathematical usage, the words
equilibrium and steady state are interchangeable. They both mean, say for a differential equationẋ = f(x), a
point at which the rate of change is zero, i.e., a root off(x) = 0. In mechanical and electrical engineering ap-
plications, typically an equilibrium is a state at which no physical or electrical activity takes place. In biological
models, in contrast, wherex represents the concentrations of various chemicals, a steady state is one in which
the concentration is “constant” in the macroscopic sense, but this does not mean that chemical reactions are not
taking place: the underlying process is stochastic and one is representing an equilibriumprobability distribu-
tion. An equilibrium in the thermodynamic sense means something much stronger. When communicating with
biologists and physicists, it is better therefore never to use the word “equilibrium” when talking about steady
states.

Positivity, different nonlinearities, and the meaning of steady states, all lead one also to consider alternative
norms on signals and measures of performance than are usual in control theory. See for example [49, 77, 21] for
some such notions, which quantify signal duration and amplitude. Even for more classical measures, however,
positivity brings up new points of view. To take the simplest possible example, consider the bilinear system
ẋ = −x − ux = −(1 + u)x. The inputu(t) ≡ −2 gives rise toẋ = x and hence instability. Thus, theH∞
(i.e., induced operatorL2) norm of this system is, clearly, infinite. But suppose that we restrict ourselves to
positive inputs: then1 + u will remain positive, so instability is ruled out. In fact, one can explicitly compute
the H∞ norm of certain types of cascades appearing in signaling pathways, including, in particular, bilinear
systems, and prove that it is finite for positive inputs; see [24, 23]. A rich, and different, theory results in this
manner. What is remarkable is that, in contrast to the usual impression from hybrid and discrete event systems
theory that positivity makes matters harder to analyze, in this case, one can argue that problems become easier,
in some sense, due to positivity.

Another issue worth commenting on, which we expand upon below, is that of precision. In areas of bio-
engineering, such as anesthesia or drug dispensers, pacemakers, or prostheses, it is imperative to develop high-
precision models. However, in cell modeling, models should not depend on tight values for parameters. One
should avoid “pseudo-exactness,” which is meaningless in that context.

The role of optimal control theory is as yet unclear. While obviously optimal control should play an im-
portant role in areas such as optimizing drug delivery, it is unclear what its role will be at a cellular-level, again
because of the lack of precise measurements. One might speculate that general theoretical questions, such as
whether optimal trajectories should be bang-bang or singular, are more relevant than actually solving optimiza-
tion problems precisely. Another potential application is inverse optimality: if one postulates that evolution has
produced at least a locally optimal design, theory might help in guessing which criteria are being optimized by
a specific cellular mechanism.

4.0.2 Robustness from Structure

Few engineered systems perform acceptably under truly large uncertainties in parameters, in contrast to living
cells, which perform satisfactorily in the face of large variations in intracellular concentrations of chemicals.
The variability might be a consequence of unequal division among daughter cells during mitosis, which would
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mean that different cells inherited different amounts of chemicals, or of genetic phenomena such as gene du-
plication or mutation. If functions critical to the survival of the organism are not to be affected, this means that
evolution must have selected for extremely robust structures, whose study is interesting in itself and in view of
its potential for suggesting novel robust designs for engineering applications.

One line of work motivated in this way is the study of stability of biochemical networks, and in particular
the search for general principles that guarantee global asymptotic stability. Some of the tools developed so far
in control theory are useful for the analysis of stability of biochemical networks. Others, such as those based
on Hamiltonian dynamics with additional damping terms, cannot be expected to be as appropriate as they are
for, say, mechanical or electrical systems. So, it is useful to develop approaches that take advantage of special
properties of biochemical dynamics; two of these are as follows.

One approach to chemical network stability is based on work done in chemical engineering by Feinberg,
Horn, and Jackson in the 1970s ([39, 53]). These researchers showed —under rather restrictive graph-theoretic
assumptions on the structure of the chemical reactions— how to obtain local stability results as well as unique-
ness of equilibria (a general global stability result was claimed in one of the papers by Horn and Jackson, but it
was later retracted). The beauty of these theorems is that they are valid essentially for all parameters appearing
in the system description, as long as the interconnection structure of the system satisfies certain rules and the
reactions are given by polynomials (more precisely, ideal mass-action kinetics). See [89] for partial extensions
to global convergence, estimates of robustness to unmodeled dynamics and results on stabilization, and an ap-
plication to the stability analysis of the kinetic proofreading immunological model proposed in [68] to explain
how T-cells balance sensitivity and selectivity of response in antigen recognition, as well as the observer theory
in [22], and the applications to parameterizations of receptor-ligand dynamics in [25].

Another promising line of research on chemical network stability is based on the notion of monotone sys-
tems. We discuss this subject in Section 5, so we will not say more here.

Of course, stability is just one of many possible properties to be studied for robustness. More generally,
one may ask how is it that a given phenotype arises, if parameters are so uncertain. An instance that has
attracted much attention from the systems biology community is the work in [101]. The authors of that paper
proposed that only models that display desired behaviors over relatively large ranges of parameters can be valid.
They carried out a concrete study of this matter for a model of theDrosophilasegment polarity gene regulatory
network, a gene network that plays a key role in fruit fly development. Certain observable patterns in the embryo
correspond in a one to one fashion with certain combinations of genes being expressed in adjoining cells, in
steady state. So, given a model, one can define a setS of parameters for which the steady states that result are
consistent with the biologically observed pattern. A robust model is, roughly, one for which the volume ofS,
as a fraction of the volume of the space of all possible parameters, is large. The authors then compared different
models using this notion of robustness as a selection criterion. This way of thinking is conceptually sort of
converse to robustness approaches in control theory such as the calculation of stability radii under structured or
structured perturbations.

The authors of [1] argued that this large robustness to parameter variations should represent a characteristic
of the network itself. As a simple illustration of the idea, suppose that, in some model, the concentration of
some substancep depends on the concentrations ofx andy asp = xy

b+xy , but that the actual value of the constant
b > 0 is unimportant in the sense that the same macroscopic characteristics are observed for a large range of
different values ofb. Then, one may reasonably argue that all that matters is that bothx andy being large
results inp ≈ 1, but that if one of them is small, thenp ≈ 0. Continuing with this line or reasoning, it is
then proposed to employ a purely Boolean model, wherex andy take only two values, “0” and “1” for “high”
and “low” respectively, and similarly forp. The dependence ofp = p(x, y) is now simply the logical “and”
of the two input variables. In [1], such a Boolean model is analyzed for theDrosophilasegment polarity gene
regulatory network, and biological and experimental consequences are described. The follow-up paper [20]
argues that asynchrony must be taken into account, and a detailed analysis of the now-stochastic dynamics (in
an asynchronous model, state updates are not deterministic) is carried out and several biological predictions are
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given.

4.0.3 Alternative Modeling Frameworks

The issue of comparing continuous and Boolean models for fly development brings up another key difference
from more classical control theory: the selection of an overall modeling framework for a given physical process
is less obvious. In control theory, quite often an appropriate formalism is dictated by the problem being consid-
ered: discrete time when dealing with sampled data systems, continuous time for analog systems, Boolean or
symbolic for digital and computer systems. The right level of modeling for biological systems is far less clear.

Biochemical systems are traditionally modeled using ordinary differential equation models, usually based
on mass action kinetics or singularly perturbed versions of mass action (Michaelis Menten). If spatial local-
ization is important, and a compartmental model is not appropriate, then diffusion effects might be explicitly
considered, and reaction-diffusion PDE’s should be used instead of ODE’s. Whether one should use PDE or
ODE models is usually clear from the problem, depending on diffusion coefficients, size of the cell, and time
scale of interest. However, differential equation models for concentrations represent, by definition, averages,
and therefore are only meaningful for situations in which one has a large number of molecules. On the other
hand, it may well happen that there are just a few dozen molecules of a given type involved in a particular
cellular process at a given time, what biologists would refer to as asmall copy number. As current technologies
make it possible to observe the activities of proteins and other cellular components in single cells, it is impor-
tant to have models that accurately describe that situation and permit comparisons with experiments. Thus, a
stochastic model for the actual numbers of particles may be more appropriate, see e.g. [16, 59, 75, 95].

Probabilistic evolution models in control theory tend to focus on stochastic differential equations, which
are based upon the paradigm of a deterministic system driven byexternal noise. For the analysis of small
copy number biochemical systems, the appropriate formalism is that of Chapman-Kolmogorov equations in
continuous time, ormaster equations, which track the births and deaths of units of each participating chemical
species. One refers to this stochasticity asinternal noise. Stochastic ODE’s, or as physicists call them, Langevin
equations, sometimes can be used as approximations for statistics (means, variances) of solutions of master
equations, but the basic model is the latter. A variation of this theme is that, when particles of several different
types interact, and individuals must be tracked in their behavior, agent-based models may be called for.

4.0.4 Prediction of Internal Structure

An important set of results in mathematical systems theory deals with the prediction, based on behavior, that
certain structures must necessarily be embedded in systems. Having this insight could be helpful to the bi-
ologist, since it may suggest a search for particular subsystems, and, conversely, the absence of which might
provide evidence that a biological entity being studied could not possibly behave in a certain fashion.

Let us take as an illustrationE. coli chemotaxis, which we introduced earlier. As we explained, chemotaxis
allows the bacterium to search for food, by evaluating a nutrient concentration gradient. In order to do so, it is
important for the bacterium to be able to distinguish nonzero gradients (which indicate progress toward or away
from a food source) versus constant concentrations. Thus, it must be able to somehow ignore constant gradients,
while reacting to changes. Indeed, it is known experimentally from measuring responses to changes in nutrients
that this response exhibits approximately a zero DC gain. The left panel of Figure 33, from [78], shows
the impulse response of CCW activity of flagellar motors averaged over a population and many experiments,
together with a sum-of-exponentials fit, and strongly suggests a zero DC gain; indeed; the right panel shows the
experimentally measured step response, also a population average, together with (thinner curve) the integral of
the impulse response. (The authors also studied how mutations in CheR, CheB, etc, would affect this behavior.)
One is thus led to look for some sort of integral control mechanism in order to account for this “step disturbance
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Figure 33:E. coli chemotactic impulse and step response, from [78]

rejection” property. Motivated by [4], the papers [104] and [55] have pursued this question, focusing on what
biochemical mechanisms might implement the integrator.

An interesting set of new theoretical questions arises in this context. Recall that the classical Francis-
Wonham Internal Model Principle (IMP) tells us that if a controller regulates a system against external distur-
bances in some family —such as steps,— and if this regulation is structurally stable in a precise mathematical
sense, then the controller must necessarily contain a subsystem —such as an integrator— that can itself gener-
ate all such disturbances, and which is driven by a suitable error signal. But there are some potential drawbacks
when attempting to use this theorem in biological applications. For one thing, it is not at all obvious that one
may distinguish between a “controller” and a “plant” in a cell, as needed for the theory, nor is it obvious why
structural stability in the precise mathematical sense required by the Francis-Wonham Theorem should hold. In
addition, there is another characteristic that distinguishes the more classical engineering disturbance rejection
setup from the problem of interest in cell biology:signal detectionis of great importance. The cell must detect
the signal before regulating —in fact, alarge overshoot is often desirable, in order to “start up” a downstream
subsystem. (On the other hand, adaptation after the signal is processed is also often important: the reaction
might be metabolically too expensive to be kept “on” for very long). One engineering analogy would be as
follows. Suppose that we wish to design an automobile active suspension system with the following additional
property: if a large gradient is felt by the car –such as might happen when the driver falls asleep and starts to
run off the road– some signal should be provided to the driver in order to alert him/her to the presence of a
problem. This would be in contrast to minor surface roughness of roads, which should indeed be filtered out, as
in more standard active suspension systems. One is thus lead to a new problem of “disturbance rejection with
signal detection” which motivated the paper [91], where one can find an internal model theorem that does not
require the assumption of structural stability, nor an a priori requirement for the system to be partitioned into
separate plant and controller components. In lieu of structurally stable regulation, a signal detection criterion,
expressed through zero-dynamics and relative degree for nonlinear systems, was imposed in order to force the
existence of an internal model. Much work remains to be done on this subject, particularly in understanding
approximate disturbance rejection and its trade-offs with signal detection; the paper [91] barely scratched the
surface of the question.

4.0.5 Realization and Identification Questions

A very active area of research in systems biology is that of reverse engineering of gene and protein networks.
Based upon measurements of concentrations of cellular species such as proteins or RNA, and their changes in
response to probing inputs, the goal is to unravel the internal structure of the system (Figure 34). This topic
seems like a perfect target for systems identification and realization theory techniques, and there is indeed
substantial work being carried out in that direction.

However, in contrast to standard formulations of control-theoretic systems identification, in biological prob-
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Figure 34: The reverse engineering (identification/realization) problem

lems it is often extremely expensive, if not impossible, to apply complicated “test signals.” Often, biologists
are only able to consider step inputs, or perhaps a small number of combinations of step inputs and ramps. Al-
though sufficient for local identification of linearized models, this certainly does not yield enough information
to characterize the behavior of a nonlinear system. The standard theory, see e.g. [88] for linear systems and [87]
for a class of nonlinear dynamics, requires one to allow the consideration of arbitrary concatenations of inputs,
which is not possible. Thus, one interesting question is to quantify the amount of experimentation needed in
order to identify a general nonlinear system if only a finitely-parametrized family of inputs is available. The
paper [90] looked into this problem and established that the best possible answer, assuming exact measure-
ments, is2r + 1 experiments, wherer is the number of parameters. Moreover, in a precise mathematical sense,
a generic set of such experiments suffices. This resembles, but differs technically in a fundamental way, from
similar results for embeddings of chaotic systems or for generic observability. An exploration of these tech-
niques in the modeling of catabolic repression for glutamine/glutamate substrate selection inS. cerevisiaecan
be found in [99].

A related set of questions is motivated by the fact that often onlysteady statemeasurements are available.
Let x(t) be a state vector that lists the time-dependence of the concentrations of certain proteins, mRNA, or
other substances, at timet, and letp be a parameter vector that represents the concentration levels of certain
enzymes that are kept at a constant value during a particular experiment. Suppose that an experiment can
measure the concentrationsx(t) after a long enough period, presumably long enough so that the system has
relaxed to a steady state. Several experiments are carried out, for various different particular values ofp. Let’s
assume that the dynamics of the system are described by a set of ordinary differential equationsẋ = f(x, p),
where the vector of state variables evolves in some manifoldM , and also that for eachp in a neighborhood of
some default valuep0 there is a unique steady stateξ(p), that is, a solution off(ξ(p), p) = 0, and that the map
p 7→ ξ(p) is smooth and describes a manifold. It is often the case that the equations defining the system —that
is, the functionsfi describing the vector field— are unknown, even in general form, but one wishes nonetheless
to determine the interaction graph of the system, that is to say, to know which variables directly influence which
variables, as well as the relative strengths of these interactions. Using perturbations of parameters, the mapξ
induces perturbations that are tangent to the manifold of equilibria. Formally, the possible vector fieldsY in
parameter space induce, by push-forward, vector fieldsX = ξ∗(Y ) on the state space, which in turn determine
a distributionD := span {X} ⊆ TM . Under suitable genericity conditions,dimD ≡ n − 1, and with the
main technical assumption described in [61], one can obtain thatdfi ∈ D⊥ (〈dfi,D〉 = 0) for appropriate
coordinates of the motion, which determines eachdfi projectively. That is, the interaction graph is completely
characterized, and strengths are identified up to a constant common multiple. See [61] for details, as well
as [93] for further results, some elementary considerations about noise in [5], and a computational complexity
analysis of approximate methods for large-scale problems in [17].

5 A Qualitative/Quantitative Approach

We now turn to a specific topic in more detail. It is common in systems biology to set up a model based
on biological knowledge, estimate parameter ranges, and then explore the spaces of parameters and initial
conditions by means of a huge number of simulations. This is often combined with bifurcation analysis and, if
applicable, model reduction techniques. There are several shortcomings to such an approach, however. First,
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the form of nonlinearities often cannot be well-justified. Also, parameters such as reaction rates are based on
rough guesses or on data from different and perhaps inconsistent sources, and usually are obtained fromin vitro
experiments (that is, experiments in a test tube or petri dish, or more generally not from an entire organism,
as opposed toin vivo measurements). In addition, parameter and state spaces are of high dimension, which
makes convergence of numerical techniques questionable and at best very local. Some of these problems are
intrinsic, and cannot be solved by better technology or algorithms; for example, parameters such as enzyme
concentrations vary from cell to cell, even among cells of the same type. In addition, a purely numerical
approach does not provide fundamental understanding. This argues for the desirability of approaches which,
while taking advantage of the huge, and growing, amount of qualitative network “schematic” knowledge such as
shown in Figures 8 or 9, take into account the uncertainties inherent in biological measurements, and effectively
integrate relatively sparse quantitative data. We describe in this section one such approach, based upon the
systems theory paradigm of I/O systems and combining information on network structure with steady-state
step response data on subsystems. A key concept will be that of monotone systems. Monotone subsystems as
components of a larger system behave, for many purposes, just as if they were one-dimensional systems (single
species), even though they may in fact have an arbitrarily large dimension (number of species).

Our main themes for the remainder of this paper may be summarized as follows:

• Network structure (qualitative knowledge) is important as a constraint: for example, certain structures are
not compatible with oscillatory behavior.

• On the other hand, parameters matter, as they underlie bifurcation phenomena: as examples, Hill coefficients
and other constants determine a hyperbolic vs. sigmoidal shape, and the gaing of a feedback loop, as discussed
earlier, determines mono-stable vs. multi-stable behavior. This is a problem because such parameters are often
difficult to obtain.

• The interplay of structure and parameters can be fruitfully studied by breaking up systems into well-behaved
building-blocks —monotone components, for example— and using only arestricted amountof input/output
quantitative data —step responses, for example– for these subsystems in order to characterize global behavior.

5.1 Consistent Graphs and Monotone Systems

Suppose given a directed graphG whose edges are labeled “+” or “−” (in diagrams, we sometimes use acti-
vating arrows→ for positive edges and the inhibition symbolsa for negative edges). By a path we will mean
any nontrivial sequence of nodes connected by an edge. We ignore direction in this definition: for example,
1-2-3 and 3-2-1 are both paths in the graphs shown in Figure 35. A cycle is, in particular, a path with same

Figure 35: A consistent and an inconsistent graph

first and last node, such as 1-2-3-4-1 in Figure 35. The parity of a path is the product of the signs along that
path; for example, in Figure 35, the path 1-4 has negative parity in both panels, whereas the path 1-2-3-4 has
negative parity in the graph shown in the left panel but has positive parity, since there are two negative links, in
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the right panel. We call a graphconsistentor coherentif every possible path between any two given nodes has
same parity. The graph in the left panel of Figure 35 is consistent. Equivalently, any cycle must have positive
parity. A graph isinconsistent if some pair of nodes has two connecting paths with different parity, as in the
right panel of Figure 35 (compare 1-4 with 1-2-3-4).

Observe that if a graph is inconsistent, one may always pull out enough edges so that the remaining graph
is consistent, and thus one may think of the original system as a “negative feedback loop” around a consistent
one, the deleted connections constituting the feedback, Figure 36. For the graph in the right panel of Figure 35,

jconsistent

�

-

-
Figure 36: Pulling out inconsistent connections

for example, we could simply remove the edge 1-2.

Now consider a system of ordinary differential equationsẋ = f(x), with no inputs nor outputs for the time
being. We assume that the system is sign-definite: for each two componentsxi andxj , eitherxi always inhibits
xj or xi always activatesxj , as in Figure 19. As we argued earlier, this is not an unreasonable restriction.
Mathematically, sign-definiteness means that∂fi

∂xj
(x) does not change sign as a function ofx, for each pair of

distinct indicesi andj, wherefi denotes theith component off . As when defining sign-consistent graphs,
we do not care about the diagonal terms∂fi

∂xi
(x) of the Jacobian off . To any sign-definite system inRn we

may associate an incidence graphG on the nodes{1, . . . , n}, where we draw an edge from nodej to nodei if
∂fi

∂xj
(x) 6≡ 0, and assign a positive sign to this edge if∂fi

∂xj
(x) > 0 for somex, and negative otherwise.

5.1.1 Monotone Systems: A More General Notion

Systems whose incidence graphs are consistent are examples ofmonotonesystems. Amonotonesystem is
one for which there is some partial order in the state space so that the evolution operator preserves the order.
Denoting the order by “≤” this means that

x(0) ≤ y(0) ⇒ ϕ(t, x(0)) ≤ ϕ(t, y(0))

for all t ≥ 0, where we are denoting byϕ(t, ξ) the solution at timet of the initial value probleṁx = f(x),
x(0) = ξ, and we assume for simplicity that solutions are unique and defined for allt ≥ 0. (Note that
this definition makes sense in both continuous and discrete time.) An example of a partial order inR2 is the
“Northeast” order, in which we declare that(x, y) ≤ (x′, y′) provided that bothx ≤ x′ andy ≤ y′, and more
generally for everyn, x ≤ y provided thatxi ≤ yi for eachi = 1, . . . , n. More generally, one can define partial
orders associated to any possible orthant inRn, for example inR2 the “Northwest” order:(x, y) ≤ (x′, y′)
provided that bothx ≥ x′ andy ≤ y′, i.e., (x′, y′) − (x, y) = (x − x′, y − y′) ∈ K, whereK is the second
quadrant{(a, b) | a < 0, b > 0}. A system with a consistent incidence graph is monotone with respect to some
such order: in each connected component of the graph, just pick one nodeN , label it+, and assign to any other
nodeM in the same connected component the sign of a path fromN to M . In this way, an assignment of signs
to nodes is obtained, and the system can be easily shown to be monotone with respect to the order associated
to the corresponding orthant. (In abstract terms, “integrals are independent of the path” implies that there is a
well-defined “potential.”) Another way to say this is as follows: monotonicity with respect to an orthant order
is equivalent to the property that, up to possible sign-flipsxi ↔ −xi for some of the variablesxi, the system
is “cooperative,” i.e. monotone with respect to the “Northeast” order. Interestingly, the same procedure, now
interpreting sign-flip as “0 ↔ 1,” gives the property that is also called “monotonicity” for Boolean networks
(for which see [84] and references there).
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Under an additional hypothesis ofirreducibility (basically, strong connectedness of the incidence graph
plus a mild condition, such as asking that non-identically zero Jacobian entries be almost everywhere nonzero),
one obtains what are calledstronglymonotone systems:x(0) ≤ y(0) but x(0) 6= y(0) implies thatx(t) =
ϕ(t, x(0)) < ϕ(t, y(0)) = y(t) for t > 0 in a strong sense which we will not define here in general, but which
for systems monotone with respect to orthants amounts toxi(t) < yi(t) for every coordinatei = 1, . . . , n.
What matters is that strongly monotone systems are very well-behaved in a dynamical sense. According to a
beautiful result of Moe Hirsch (cf. [51, 50, 83, 52]), almost every bounded solution of such a system converges
to the set of equilibria. By “almost any” one means every solution except for a measure-zero set of initial
conditions, or, in a different version of the theorem, every solution except for those starting from a thin set in
the Baire category sense. In particular, no chaotic or other “strange” dynamics can occur; in fact, not even limit
cycles can arise in strongly monotone systems.

The intuition behind this result is particularly clear for two-dimensional systems

ẋ = f(x, y)
ẏ = g(x, y)

which are mutually activating, or as is said in mathematical biology,cooperative: ∂f
∂y ≥ 0, ∂g

∂x ≥ 0. Let us
compare any two states(x, y) and(x′, y′) such thatx′ = x andy′ > y, and assume thatf(x, y) ≥ 0 (i.e., the
trajectory is moving right) at that state; see Figure 37. Now, since∂f

∂y ≥ 0, it follows thatf(x′, y′) = f(x, y′) ≥

Figure 37: Only possible motions at(x′, y′) are rightward

f(x, y) ≥ 0, so(x′, y′) must also move rightward. In other words, the dotted arrow is impossible. This implies
that there cannot be a periodic orbit. Otherwise, and assuming for definiteness that there is a periodic orbit that
is oriented counterclockwise, there would exist on such an orbit two points as shown in Figure 38, contradicting

Figure 38: No possible periodic orbits

the above argument because the motion at(x′, y′) is tangent to the curve and thus would have to look like the
impossible dotted arrow. (The clockwise case can be argued similarly, using that∂g

∂x ≥ 0.)
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5.1.2 Monotonicity Might not be Obvious

Often in applications, a system that is not monotone as originally modeled turns out to be so under some
simplifications. An elementary illustration of this phenomenon is as follows. Suppose that an enzymeB
catalyzes conversion ofC to A, as in the left panel of Figure 39. (We also included a reverse conversion
reaction, which is independent ofB, since such reactions are usually present; however, a reverse reaction is
not required for the point to be made.) Thus,B negatively affects the concentration ofC, and positively

Figure 39: Consistency after elimination

affects that ofA. It we introduce lower case variablesa(t), b(t), c(t) for the concentrations of the three species,
under various simplifying assumptions a set of ideal mass-action equations for this reaction would beda/dt =
k1bc − k2a, db/dt = 0, anddc/dt = −k1bc + k2a. (More complicated equations would involve Michaelis-
Menten dynamics, but this simple set of equations suffices to make our point.) The incidence graph for this set
of differential equations will look as the middle panel of Figure 39, and thus be inconsistent. One would then
think that monotone theory cannot be applied to this example. However, it is clear from the equations –and
natural, since they are merely two forms of the same protein– that the sum of the concentrations ofA andC
must be constant in time, i.e.d(a+ c)/dt ≡ 0, so there is a conservation lawa(t)+ c(t) ≡ c0 constant (we may
think of c0 as the initial amount ofC, if a(0) = 0). Geometrically, the hyperplanesa+ c = c0 (intersected with
the non-negativity conditiona ≥ 0 andb ≥ 0) are invariant manifolds. Thus, one may eliminatec (or a) from
the system of differential equations, leading toda/dt = k1b(c0−a)−k2a, db/dt = 0, and this reduced system
is now consistent, since there are no loops (remember self-loops are ignored), cf. the right panel in Figure 39. To
analyze solutions of the differential equation, we may first restrict to an appropriate hyperplane, which depends
on the initial conditions, and monotone theory can therefore be applied. This observation is key in applications
to signaling cascades, whereA andC might correspond to un-phosphorylated and phosphorylated forms of the
same protein, for example. The MAPK cascade example treated later is a less trivial illustration of this same
idea.Very often, much less obvious eliminations and changes of coordinates are needed in order to be able to
use monotone theory to analyze a given reaction, and the search for such transformations is an active area of
research, see for example [100, 30, 25, 32, 12, 11, 10, 31, 8, 7].

Moreover, as always in applied mathematics, one must pick a level of modeling appropriate for mathe-
matical tractability. Just as, in elementary mechanics, one assumes that springs are linear, it may be useful to
drop weak connections –or perhaps, reactions occurring at a faster time-scale– and first analyze a system as if
it were monotone. In any event, the extension toinput/output monotonesystems, discussed next, allows one
to build large monotone systems out of smaller components, and also, more interestingly, to fruitfully study
non-monotone systems, at least in some cases, by viewing them as negative feedback loops around monotone
systems.

5.2 I/O Monotone Systems

A continuous-time finite-dimensional system, in the standard sense of control theory:

ẋ = f(x, u) , y = h(x)

(one may also study delay-differential systems, reaction-diffusion PDE’s, and more abstract flows in metric
spaces, cf. [36]) ismonotoneif there are nontrivial orders in the state, input, and output spaces, such that

ξ1 ≤ ξ2 & u1 ≤ u2 ⇒ x(t, ξ1, u1) ≤ x(t, ξ2, u2) ∀ t ≥ 0
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with respect to the state and input orders, and the output maph preserves the order as well. As usual,x(t, ξ, u)
means the solution at timet if the initial state isξ at t = 0 and the input isu(·); andu1 ≤ u2 for controls
means thatu1(t) ≤ u2(t) for all t. When there are no inputs nor outputs, this reduces to the earlier definition
of monotone systems. The generalization to I/O systems is from [12, 11], and it was motivated by the types of
problems that we are discussing here. Orders are typically defined by positivity conesK, by definingξ1 ≤ ξ2

to meanξ2 − ξ1 ∈ K, and similarly for input and for output values. For cones, monotonicity can be checked
in infinitesimal terms, not requiring solution of differential equations. A very special but most important case
is that of monotonicity with respect to cones that happen to be orthants in Euclidean space. Suppose that a
system is sign-definite, meaning that we can draw unambiguous sign-graphs for the Jacobians off andh,
analogously to what we did for systems with no inputs nor outputs. More precisely,(∂fi/∂xj)(x, u) has a
constant signεij ∈ {0,+,−} for all (x, u) and alli 6= j (we may ignore self-loops), and, for alli, j and(x, u),
(∂fi/∂uj)(x, u) has a constant signαij ∈ {0,+,−} and(∂hi/∂xj)(x) has a constant signβij ∈ {0,+,−}. A
system is monotone with respect tosomeorthant if and only if its incidence graph does not contain any negative
cycles.

For the monotone system
ẋ = f(x, u), y = h(x)

consider step, i.e. constant, inputsu(t) ≡ u. One can prove, under weak boundedness assumptions, that for
for eachu, there is at least one steady state:f(x, u) = 0, and that for each periodic inputu(t + T ) = u(t),
there is a corresponding periodic solution (which is a limit cycle, if unique). Now assume that for each such
constant input it holds that all solutions are bounded (this is frequently the case in biological systems, due to
conservation laws), and that there is auniquesteady statexu corresponding to this value of the input,. Under
weak additional hypotheses ([56, 27]), one can the prove thatxu must be a global attractor, i.e. all solutions
of ẋ = f(x, u) converge toxu ast → ∞. We say in this case that the system has amonostable steady-state
step responseand define (composing with the output map) thecharacteristicor steady state step responseof
the system as the mapu 7→ k(u) := h(xu); see Figure 40.

Figure 40: Characteristic

Monotone systems with well-defined characteristics constitute a very well-behaved set of building blocks
for arbitrary systems. In particular, cascades (Figure 41) of such systems inherit the same properties. Moreover,

Figure 41: Cascades

there are asymptotic gain estimates: the omega-limit sets satisfyk(lim inf u(t)) ≤ Ω+[x(t, u)] ≤ k(lim sup u(t))
for anyu(·), and in particular ifu(t) → ū, then the output satisfiesy(t) → k(ū), see Figure 42.

5.2.1 Blending Qualitative and Quantitative Data

The most important fact in the present discussion is that characteristicscan often be measured experimentally.
We discussed this fact in Section 3.1, and illustrated in Figure 24. This is in contrast to actual system parameters,
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Figure 42: Asymptotic gains

which are typically hard to estimate.In our approach, we blend qualitative information about the system,
specifically monotonicity, with quantitative information, specifically characteristics. We view this as one way
to bridge the “data-rich data-poor” gap, but we are also confident that other approaches, most probably totally
unrelated to monotonicity and characteristics, will be developed in the future to similarly combine qualitative
and quantitative data.

5.3 Main Theorems

Some of the main results for monotone I/O systems characterize the location and stability of equilibria of
closed-loop systems. The results represent nontrivial generalizations of the elementary facts that we discussed
in connection with Figure 27.

For simplicity (but see generalizations in [37]), we assume from now on that inputs and outputs are scalar,
i.e. m = p = 1, and that the order in the input and output value spaces is the usual one inR. The main
positive-feedback theorem is from [11], and is as follows. Suppose given a systemẋ = f(x, u) , y = h(x)
which is monotone and admits a characteristick. We wish to study the closed-loop system obtained when
using a feedback lawg : y 7→ u that is monotone increasing, as depicted in Figure 43. (More generally, an

n�

- ẋ = f(x, u)
y = h(x)

g

yu

Figure 43: Positive feedback configuration

entirely analogous result holds ifg is replaced by the characteristic of a monotone dynamical system.) We
now plotk together with the inverse ofg, and label each intersection between the two graphs by an “S” or an
“ U” depending on whether the slope of the graph ofk is smaller (k′(u) < (g−1)′(u)), or larger respectively,
than that ofg−1. See Figure 44 (We assume that the graphs intersect transversally.) The conclusion, under a
nondegeneracy assumption of strong monotonicity of the closed-loop, is that steady-states of the closed-loop
system are in a one-to-one correspondence with the intersections, and that almost every bounded trajectory
(with the possible exception of a set of measure zero of initial conditions that give trajectories approaching
saddle points associated toU’s) converges to a steady state associated to one of theS’s.

A monotone system under monotone feedback is still monotone, so this result is one about monotone
systems. The main point is thatconclusions about the closed loop system, which may have arbitrarily large
dimension, are derived from looking at a simple one-dimensional picture.

It is particularly interesting thatthe result remains true even if arbitrary delays are allowed in the feedback
loop (infinite phase margin)as well as if diffusion is added. By the latter statement we mean that for the
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Figure 44: Intersection of characteristic and positive feedback

cooperative reaction-diffusion equation

∂x

∂t
= D∆x + f(x, u)

for x = x(t, q) with q belonging to a convex domain and with no-flux (Neumann) boundary conditions, diag-
onal diffusion matrixD, and assuming a discrete set of equilibria, almost all solutions converge to one of the
uniform states predicted if the corresponding ODE is analyzed. In other words,no Turing-like pattern forma-
tion due to diffusive instability can occur.This follows by combining the above theorem with deep results due
to Kishimoto, Weinberger, Casten, Holland, and Matano, as discussed in [92].

As we discussed earlier, non-monotone systems can be viewed as “negative feedback loops” obtained by
pulling-out inconsistent interconnections from the original system. Let us discuss next a negative-feedback
result, again, for simplicity, restricting ourselves to the casem = p = 1 (see [36] for generalizations to multiple
inputs and outputs). The result, from [12], is as follows. Suppose given a systemẋ = f(x, u) , y = h(x) which
is monotone and admits a characteristick. We again wish to study a closed-loop system as in Figure 43, but
now assuming that the feedback lawg : y 7→ u is monotone decreasing. We once more plotk andg−1. The
intersection between the plots, if it exists, is necessarily unique, see Figure 45. We consider the following scalar
discrete time iteration:

ui+1 = (g ◦ k)(ui) .

The result is that, if this iteration has a globally attractive fixed pointū (as shown in Figure 45), then the
closed-loop system, provided that trajectories are bounded, has a globally attracting steady state.
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Figure 45: Intersection of characteristic and negative feedback

As with the positive-feedback case, thisresult remains true if arbitrary delays are inserted in the feedback
loop, and if diffusion is allowed.(The diffusion theorem was only recently proved, in [35]. It is very surprising,
because the closed-loop system is not monotone, and thus standard comparison theorems from PDE theory
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cannot be used directly.) We remark that for a linear monotone system, theH∞ gain is maximized at zero
frequency, and the result would follow from the Nyquist criterion. Thus, we think of this result as a small-gain
theorem. For applications of the negative feedback monotone system result to species competition problems
see [32], to circadian rhythm models inDrosophilasee [9], and to a model of testosterone dynamics see [38].

The positive and negative feedback theorems just discussed are closely related to the general notion that
negative loops are required for oscillations, and nontrivial positive feedback for possible multiple steady states,
[96, 86, 26, 45]. They also constitute a generalization of some aspects of the beautiful and deep work carried
out by Tyson, Othmer, Mallet-Paret, Smith, and others, starting in the mid 1970s [76, 48, 3, 72, 98, 97, 65, 42,
83, 82], for inhibitory or activating cyclic structuresẋ1 = f1(xn, x1), ẋ2 = f2(x1, x2), . . . ẋn = fn(xn−1, xn)
(scalarxi’s), as in Figure 46. These systems were motivated by the “Goodwin model” of gene expression

- - - -

6
S0 S1 S2 Sn

Figure 46: Cyclic systems

and similar systems in the mathematical biology literature (e.g. [70, 44]); see also the recent related passivity-
based results in [13]. The papers [65, 42, 83, 82], among other major results, established a Poincaré-Bendixson
theorem which tightly characterizesΩ-limit sets for such systems, in terms of periodic orbits and heteroclinic
connections among equilibria.

5.4 Almost-Monotonicity

The approach that we have been discussing is based on the decomposition into interconnections of monotone
subsystems. When using tools like the small-gain theorem, the smaller the number of subsystems, the easier to
apply the theory. We already mentioned that systems might be monotone after appropriate transformations. On
the other hand, obviously other systems will not be, even after simplifications. Let us call the smallest number
of edges that must be removed in order to obtain a consistent graph theconsistency deficit (CD)of the graph. As
an example, consider the graph in Figure 47. The CD is 1, since it is enough to just remove the diagonal positive

l
l l
l
@

@
@@R

-

-

2

3 4

1

Figure 47: Graph with CD= 1

edge. (If one had only allowed removal of inhibitory edges, then both 1-3 and 2-4 would have to be taken out to
achieve consistency.) Computing the CD exactly for large-scale graphs is not trivial: Using a reduction to max-
cut, [28] shows that the problem is NP-hard. However, a polynomial time approximately-optimal algorithm is
given there for computing CD, using semi-definite programming techniques.

Informally, let us say that a graph isalmost-consistent—or an associated dynamical systemalmost mono-
tone— if the CD is small compared to the original number of edges in the graph. Using this terminology, it
has been pointed out ([69, 66, 67]) that almost-consistent biological circuits seem common. The work [64]
examines theE. coli transcriptional regulation map provided by Uri Alon’s lab (577 interactions between 116
transcription factors and 419 operons) and estimates a much smaller CD than for a randomized version of the
same network. These preliminary results provide a strong indication that almost-consistency is ubiquitous in bi-
ological networks. In the same large-network statistical analysis spirit, one may ask if smaller CD is correlated

38



with more ordered (less ”chaotic”) behavior. It is hard to perform this type of analysis on differential equations,
but for Boolean networks, the paper [85] described efficient ways to compute Derrida curves ([57]), which are a
discrete analog of Lyapunov exponents. If the answer is positive, this would provide motivation for the general
approach of studying systems that are close to being monotone. Work is in progress in this direction.

To conclude this paper, let us discuss one example, which is, in fact, the example that started this line of
research and led to the definition of I/O monotone systems.

5.5 MAPK Cascades

Mitogen-Activated Protein Kinase (MAPK) cascadesare a ubiquitous “signaling module” in eukaryotes, in-
volved in proliferation, differentiation, development, movement, apoptosis, and other processes ([54, 62, 102])
Figures 8 and 9 show MAPK cascades as subsystems. There are several such cascades, as diagrammed in Fig-
ure 48, and they share the property of being composed of a cascade of three kinases, see Figure 49 (see [19] for

Figure 48: MAPK Cascades, reprinted by permission from [79]

Figure 49: Different MAPK cascades, similar structure.

several similar illustrations). The basic rule is that two proteins, called generically MAPK and MAPKK (the
last K is for “kinase of MAPK,” which is itself a kinase), are active when doubly phosphorylated, and MAPKK
phosphorylates MAPK when active. Similarly, a kinase of MAPKK, MAPKKK, is active when phosphorylated.
A phosphatase, which acts constitutively (that is, by default it is always active) reverses the phosphorylation.
There are many models of MAPK cascades, with varying levels of complexity. We base our discussion upon
the Huang-Ferrell model ([54, 8]), see Figure 50, and usez1(t) for MAPK concentration,z2(t) for the con-
centration of the singly-phosphorylated MAPK-P, and so forth. The simplest assumptions about the dynamics
are made. For example, take the reaction shown in the square in Figure 50. Asy3 (MAPKK-PP) facilitates the
conversion ofz1 into z2 (MAPK to MAPK-P), the rate of changėz1 should include a term−α(z1, y3) (andż1
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Figure 50: A MAPK system

has a term−α(z1, y3)) for some (otherwise unknown) functionα such thatα(0, y3) = 0 and ∂α
∂z1

> 0, ∂α
∂y3

> 0
(more enzyme or more substrate results in a faster reaction, but nothing happens if there is no substrate). There
will also be a term+β(z2) to reflect the phosphatase action.

As we argued in an earlier discussion, the conservation laws, herey1(t)+y2(t)+y3(t) ≡ ytot (total MAPKK)
andz1(t) + z2(t) + z3(t) ≡ ztot (total MAPK), allow us to eliminate variables. The trick is to eliminatey2 and
z2. Once we do this, and writey2 = ytot − y1 − y3 andz2 = ztot − z1 − z3, we are left with the variables
x, y1, y3, z1, z3. For instance, the equations forz1, z3 look like:

ż1 = −α(z1, y3) + β(ztot − z1 − z3)
ż3 = γ(ztot − z1 − z3, y3)− δ(z3)

for appropriate functionsα, β, γ, δ. The equations for the remaining variables are similar. The incidence graph,
ignoring, as usual, self-loops, is shown in Figure 51. This graph is clearly consistent, showing that the (reduced)

��
��

��
��

��
��

��
��

��
��

?

?

?

-
�

-
�

�
�	

@
@R

�
���

���

output
(“y”)

x

y1 y3

z1 z3

input
(“u”)

+

+

+

+

−

−

−
−

−
−

Figure 51: Graph for MAPK Reduced System

system is indeed monotone. Furthermore, the system has a well-defined characteristic, as shown in [12, 10].
Thus, the theory described here can be indeed applied.

Positive and negative feedback loops around MAPK cascades have been a topic of interest in the biological
literature. For example, in [40] one finds the study of positive feedback (on Mos by ERK) in the context
of progesterone-induced oocyte maturation in frogs. For another example, [60] and [81] looked at negative
feedback, also in an ERK cascade, but affecting upstream proteins.
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5.5.1 Numerical Example

The theorems on positive and negative feedback do not need actual equations for their applicability. All that
is needed is the knowledge that the system have suitable monotonicity properties, deduced from the incidence
graph, and a well-defined characteristic, plus the plot of the characteristic (steady state step response).In order
to illustrate the conclusions, on the other hand, it is worth discussing a particular set of equations. Let us take
the following equations:

ẋ = − v2 x

k2 + x
+ v0 u + v1

ẏ1 =
v6 (ytot − y1 − y3)

k6 + (ytot − y1 − y3)
− v3 x y1

k3 + y1

ẏ3 =
v4 x (ytot − y1 − y3)
k4 + (ytot − y1 − y3)

− v5 y3

k5 + y3

ż1 =
v10 (ztot − z1 − z3)

k10 + (ztot − z1 − z3)
− v7 y3 z1

k7 + z1

ż3 =
v8 y3 (ztot − z1 − z3)
k8 + (ztot − z1 − z3)

− v9 z3

k9 + z3

with output z3. Specifically, we will use the following parameters:v0 = 0.0015, v1 = 0.09, v2 = 1.2,
v3 = 0.064, v4 = 0.064, v5 = 5, v6 = 5, v7 = 0.06, v8 = 0.06, v9 = 5, v10 = 5, ytot = 1200, ztot = 300,
k2 = 200, k3 = 1200, k4 = 1200, k5 = 1200, k6 = 1200, k7 = 300, k8 = 300, k9 = 300, k10 = 300. (The
units are: totals in nM (mol/cm3), v’s in nM·sec−1 and sec−1, andk’s in nM.)

With these choices,the steady state step response is the one shown in Figure 27, wherey is the outputz3.
Therefore, conclusions about the behavior of the closed-loop system under positive and negative feedback can
be obtained by inspection of that figure.

Figure 27 tells us that when the feedback isu = gy with g = 1/0.98 (line of slope 0.98 when plottingy
againstu), there should be a unique stable state, with a high value of the outputy = z3, and trajectories should
converge to it. Similarly, forg = 1/2.1 (line of slope 2.1) there should be two stable states, one with high
and one with lowy = z3, with trajectories generically converging to one of these two. Finally, forg = 1/6
(line of slope 6), only the low-y stable state should persist. We verify these conclusions with four simulations
in each case, for initial states(x, y1, y2, z1, z2) equal to(170, 0, 1200, 0, 300) (green),(34, 120, 600, 30, 150)
(red),(17, 1080, 120, 270, 30) (magenta), and(0, 1200, 0, 300, 0) (blue). Figure 52 shows respectively the plots

Figure 52: MAPK with positive feedback gaing = 1/0.98

of x(t), y3(t), andz3(t) for g = 1/0.98, Figure 53 forg = 1/2.1, and Figure 54 forg = 1/6, confirming the
theory predictions. According to the theory, the same stable states should result even if there are arbitrary
delays in the feedback loop. To test this, we used the feedback lawu(t) = gz3(t − 1000). We show only the
simulation in the high-y case, in Figure 55.
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Figure 53: MAPK with positive feedback gaing = 1/2.1

Figure 54: MAPK with positive feedback gaing = 1/6

Figure 55: MAPK with delayed feedback

Next, we test the effect of diffusion. Taking, for example, the intermediate valueg = 1/2.1, which leads
to bistability, we consider the associated reaction-diffusion equation on a region as shown in Figure 56, with

x(0)
=A

x(0)
=B

Figure 56: Initial conditions for RDE

uniform initial conditionsA = (0, 1200, 0, 300, 0) andB = (170, 0, 1200, 0, 300) in each half that are respec-
tively in the domains of attraction of the two predicted stable states of the closed-loop ODE. According to the
theory, since the ODE solutions should converge to states withz3 ≈ 25 and221, respectively, the RDE should
converge to a uniform steady state equal to one of them. We plot in Figure 57 several snapshots of the time-
evolution of the solution. The vertical bar shows the color coding for intensities. (The diffusion coefficient was
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Figure 57: Reaction-diffusion solution

set to6 · 10−6 cm2/min = 10−7 cm2/sec, and the size of the square is 4cm by 4cm.) Note that each side first
approaches its closest steady state, and eventually one of these (the one withz3 ≈ 221) takes over, confirming
the theoretical prediction.

Next, we consider anegativefeedback, namelyu = −0.9+600/(0.01+z3). Plotting against the character-
istic, we see, through a spider-web convergence diagram for the associated discrete iteration, that the hypotheses
of the negative-feedback theorem are verified, see Figure 58. Thus, the theory predicts a globally asymptoti-

Figure 58: Discrete iteration for negative feedback

cally stable closed-loop system (even under delays and diffusion). Figure 59 shows the result of a simulation

Figure 59: Negative feedback simulation

from the initial state(0, 1200, 0, 150, 150), displaying thex, y3 andz3 coordinates together. Note that they all,
indeed, converge.

Finally, we note that the bifurcation diagram for positive feedback, shown in the right panel of Figure 27,
suggests that a slow adaptation law for the gain, as a negative function ofz3, should result in relaxation oscilla-
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tions. This is not easy to prove, since we are dealing with a high dimensional system, but turns out to be true:
a general theorem applies to guarantee the existence of such oscillations, see [43]. We do not state the precise
result here, but show a simulation. We pick the adaptation lawġ = −ε(z3−150)g, with ε = 0.000005, and the
same initial conditions as earlier. Figure 60 shows the solution trajectories forx, y3, z3, and Figure 61 shows

Figure 60: Relaxation oscillation, coordinates

Figure 61: Relaxation oscillation,z3, g-plane

the limit cycle behavior in the projectedz3, g plane.

6 Summary

We presented an introduction to general concepts in molecular systems biology and discussed a number of
appealing dynamics and system-theoretic questions. The rapidly developing field is tremendously exciting, and
full of opportunities and challenges. The reader will, hopefully, take on some of the latter.
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