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Abstract

Monotone systems are dynamical systems for which the flow preserves a partial order.
Some applications will be briefly reviewed in this paper. Much of the appeal of the class
of monotone systems stems from the fact that roughly, most solutions converge to the set
of equilibria. However, this usually requires a stronger monotonicity property which is not
always satisfied or easy to check in applications. Following [20] we show that monotonicity is
enough to conclude global attractivity if there is a unique equilibrium and if the state space
satisfies a particular condition. The proof given here is self-contained and does not require the
use of any of the results from the theory of monotone systems. We will illustrate it on a class
of chemical reaction networks with monotone, but otherwise arbitrary, reaction kinetics.

1 Introduction

1.1 What is a monotone system?

The theory of monotone systems has been developed by M.W. Hirsch in a series of papers about
two decades ago, see [12, 13, 14, 15, 16] and H.L. Smith’s excellent monograph [27] for a review.
In general a monotone dynamical system is a continuous semiflow Φ on a metric space X equipped
with a compatible partial order �, such that the partial order is preserved by the flow:

∀x, y ∈ X : x � y ⇒ Φt(x) � Φt(y), ∀t ∈ R+. (1)

Let’s consider a system of differential equations:

ẋ = f(x)

with x ∈ Rn and f a C1 vector field which is assumed to be forward complete (although what
follows is valid under much weaker conditions, both for the state space and the smoothness of the
vector field).

An immediate question that arises is when this system generates a monotone dynamical system
with respect to some nontrivial order. This question appears to be very hard to answer. However,
when a particular order is given and one asks if the system is monotone with respect to that given
order, it is possible to provide testable conditions expressed directly in terms of the vector field f
and the graph of the order relation, see [2]. These tests take a particularly simple form in those
cases where the partial order is generated by a cone K in Rn. (Recall that a cone K in Rn is a
nonempty, closed set with K +K ⊂ K, R+K ⊂ K and K ∩ (−K) = {0}). We will review some of
these tests next.
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Probably the most familiar example is the one where f is cooperative, meaning that the Jacobian
∂f/∂x has nonnegative off-diagonal entries. It is well-known that in this case the flow of system
ẋ = f(x) is monotone since it preserves the usual componentwise order on Rn, see e.g. Proposition
3.1.1 and Remark 3.1.1 in [27]. More precisely, this order is generated by the orthant cone Rn+ in
R
n:

x � y ⇔ y − x ∈ Rn+.

This can be generalized to cases where the partial order is generated by any orthant cone O of Rn,
in which case the order is defined as follows:

x �O y ⇔ y − x ∈ O. (2)

For checking monotonicity in this case, a simple graphical test is available, see p. 49 in [27]. It
amounts to verifying whether the incidence graph of the system does not contain loops of negative
parity (the incidence graph consists of n nodes, each representing a component of the state vector,
and signed edges connecting the nodes; an edge from node j to node i is drawn carrying the sign
of the partial derivative ∂fi/∂xj ; of course this requires that the derivative does not change sign
and is nonzero in at least one point; the parity of a loop is simply the product of the signs of the
edges which make up the loop; self-loops are not taken into account for this test).

If the partial order is generated by an arbitrary cone K in Rn (simply replace O by K in
(2)), then checking monotonicity is still possible, although the test is not graphical anymore, see
[17, 30, 2] for characterizations in terms of dual cones. It is important to note here that all these
tests require a priori knowledge of the cone which generates the order. In practice however, given
a system ẋ = f(x), for which one is trying to establish that it is monotone with respect to some
nontrivial order, one does not know the partial order in advance.

1.2 A few examples of monotone systems

Monotone systems theory is useful for the analysis of many of the chemostat models studied in
[28]. For instance, the variable-yield model can be transformed in a monotone system for which
the order is not the usual componentwise order on Rn. In [10], this transformation is also exploited
to analyze a similar model with multiple nutrients.

An example which may be of interest to people working in control theory is the Riccati equation
defined on the space of real symmetric matrices S:

Ẋ = XAX +BX +XBT + C

where A,C ∈ S and B is a real (not necessarily symmetric) matrix. As shown in [30] (where a more
general nonautonomous Riccati equation is considered, but where B = BT ), the flow generated by
this equation preserves the order induced by the cone of symmetric positive semidefinite matrices.
We provide a different proof of this fact in an Appendix.

Monotone dynamical systems have been extended to monotone I/O systems in [2] in order to
facilitate the study of interconnections of such systems (cascades, feedback). We refer to [4, 3, 5, 6,
8, 9] for further developments and applications of this theory, including examples from molecular
biology, ecology and chemical reaction networks. The focus in this paper however, is on monotone
dynamical systems without external inputs or outputs.

1.3 What makes monotonicity interesting?

The main reason why monotone systems have been studied so extensively, is probably that much
is known about their asymptotic behavior. Roughly speaking, most solutions converge to the set
of equilibria. But two issues should be mentioned in this context. First, most of the available
convergence results require a stronger monotonicity notion than (1). Typically it is assumed that
the semiflow is strongly order preserving, see p. 2 in [27], or (eventually) strongly monotone -which
implies the former-, see p. 3 in the same reference for precise definitions. Checking this condition
in practice is often not so easy, or even worse: a system may be monotone, but fails to satisfy one
of these stronger notions. Secondly, the proofs of these results are nontrivial and require the use
of fundamental results from the theory of monotone systems.
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A particular result which seems to be an exception to this, was given in [20], where global
asymptotic stability of a cooperative system on Rn with a unique equilibrium was proved. Following
the ideas of that proof we generalize this in an Appendix to monotone continuous semiflows with a
unique equilibrium. This result may also be useful for infinite-dimensional systems (such as delay
equations). Moreover, the proof given here is completely self-contained.

As an illustration, we will show that every solution of a particular kind of chemical reaction
networks, converges to an equilibrium.

2 A chemical reaction network

Consider the following reaction network:

C1 
 · · ·
 Ci−1 
 Ci 
 Ci+1 
 · · ·
 Cn+1,

where each complex Ci is given by a weighted sum of distinct chemicals as follows:

Ci =
ni∑
k=1

akiX
k
i

for positive integers aki .
Some special cases of this network have been studied in [5] (where all complexes consist of

precisely one chemical and all chemicals in the network are distinct) and [21] (where C1 = X1 +X2

consists of 2 chemicals, all subsequent complexes consist of precisely one chemical, all chemicals in
the network are distinct and mass action kinetics is assumed)

Throughout this paper we assume that at least one complex is nontrivial. Equivalently, there
is at least one ni > 1. We also assume that each chemical is part of precisely one complex, or
Xk
i 6= X l

j for all k, l whenever i 6= j. The concentration vector associated to complex Ci is denoted
by xi = (x1

i , ..., x
ni
i )T and its associated stoichiometric vector by ai = (a1

i , ..., a
ni
i )T . We will also

use the full concentration vector x = (xT1 , ..., x
T
n+1)T with x ∈ RN+ where N is the sum of all ni.

All reaction rates are assumed to be C1 monotone functions of the concentrations of the reagen-
tia, zero when one of the reagentia is missing, and positive when all of the reagentia are present.
The forward reaction rate of the reaction Ci 
 Ci+1 is denoted by Ri and the backward reaction
rate by R−i. Formally, for all i = 1, ..., n it is assumed throughout the rest of this paper that:

Ri : Rni+ → R+, Ri(xi) = 0 ∀xi ∈ ∂Rni+ , Ri(xi) > 0 and ∂TRi/∂xi(xi) ∈ int(Rni+ ) ∀xi ∈ int(Rni+ )

and similarly for the backward reaction ratesR−i. (But notice thatR−i is defined for xi+1 ∈ Rni+1
+ .)

The familiar example of mass action kinetics, where reaction rates are given by Ri(xi) =
κi
∏ni
k=1(xki )a

k
i for some κi > 0, satisfies these requirements.

We define the reaction rate vector by:

R(x) = (R1(x1), R−1(x2), ..., Rn(xn), R−n(xn+1))T

and the stoichiometric matrix of the network by:

S =


−a1 +a1 0 0 . . . 0
+a2 −a2 −a2 +a2 . . . 0

...
. . . . . .

0 . . . +an −an −an +an
0 . . . 0 0 an+1 −an+1

 .

Then the differential equations for the concentrations are:

ẋ = SR(x). (3)

A standard argument shows that system (3) is positive, i.e. that the nonnegative orthant RN+ is
forward invariant. Notice that this system is not monotone with respect to any order generated by
an orthant of RN . This is seen by inspection of the incidence graph associated to system (3), which
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contains a loop of negative parity. Indeed, consider a loop formed by two nodes corresponding to
chemicals in the same complex and a third node corresponding to an arbitrary chemical in a
neighboring complex (this is a complex which can be reached from the first complex by a single
reaction step). Clearly, such a loop has negative parity. Our main result will be the following:

Theorem 1. Every solution of system (3) converges to an equilibrium point.

In our subsequent analysis we will assume that there is at least one complex with nonzero initial
concentrations for all its constituent chemicals:

∃i : xki (0) > 0, ∀k = 1, ..., ni. (4)

For if (4) would not hold, none of the reactions would take place. Note that such initial conditions
correspond to equilibria for which theorem 1 holds trivially, so assumption (4) entails no loss of
generality.

Associated to each complex Ci with ni > 1, there are ni − 1 independent linear first integrals.
Indeed,

d

dt

(
xki
aki
− x1

i

a1
i

)
= 0, ∀k = 2, ..., ni (5)

along solutions of (3) and thus we have that:

xki (t) = βki x
1
i (t) + αki , ∀k = 2, ..., ni (6)

for some αki ∈ R (which depends on initial conditions) and βki = aki /a
1
i > 0. In fact, we claim that

without loss of generality, we may assume that:

αki ≥ 0, ∀k = 2, ..., ni.

To see this, notice that after a possible relabeling of the chemicals within each complex, there holds
that:

xki (0)
aki

≥ x1
i (0)
a1
i

, ∀k = 2, ..., ni

from which our claim follows immediately.
By (6) it suffices to consider the dynamics of the concentrations of the first chemical -x1

i - of
every complex Ci. For every i, define:

yi := x1
i , ri(yi) := Ri(yi, β2

i yi + α2
i , ..., β

ni
i yi + αnii ), r−i(yi+1) := R−i(yi+1, β

2
i+1yi+1 + α2

i+1, ...).

Notice that each ri is a C1 function with the following properties:

ri : R+ → R+, ri(0) = 0, ri(yi) > 0 and r′i(yi) > 0 ∀yi > 0

and similarly for each r−i. Denoting y = (y1, ..., yn+1)T , r(y) = (r1(y1), r−1(y2), ..., rn(yn), r−n(yn+1))T

and setting:

S̃ =


−a1

1 +a1
1 0 0 . . . 0

+a1
2 −a1

2 −a1
2 +a1

2 . . . 0
...

. . . . . .
0 . . . +a1

n −a1
n −a1

n +a1
n

0 . . . 0 0 a1
n+1 −a1

n+1


we arrive at the following system:

ẏ = S̃r(y) (7)

where y ∈ Rn+1
+ \ {0}, (note that 0 is excluded because of (4)).

Since y1(t)/a1
1 + y2(t)/a1

2 + · · · + yn+1/a
1
n+1(t) = C along solutions for some constant C > 0

we can reduce the dimension by 1 by dropping the equation for yn+1 and then introduce n new
variables:

zj =
j∑
i=1

yi
a1
i

, j = 1, ..., n.
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The inverse transformation is:

y1 = a1
1z1

yj = a1
j (zj − zj−1), j = 2, ..., n.

Using these new coordinates, the equations for the reduced system are:

ż1 = −r1(a1
1z1) + r−1(a1

2(z2 − z1))
...

żk = −rk(a1
k(zk − zk−1)) + r−k(a1

k+1(zk+1 − zk)), k = 1, ..., n− 1
...

żn = −rn(a1
n(zn − zn−1)) + r−n(a1

n+1(C − zn)) (8)

with compact and convex state space:

Ω = {z ∈ Rn | 0 ≤ z1 ≤ z2 ≤ · · · ≤ zn ≤ C}.

Clearly, system (8) is cooperative (and tridiagonal).

Lemma 1. If z∗ ∈ Ω is a steady state of system (8), then z∗ ∈ int(Ω). Moreover, z∗ is hyperbolic
and locally asymptotically stable.

Proof. Suppose that z∗ ∈ ∂Ω is a steady state of system (8). Then either z∗1 = 0 or z∗n = C or
z∗k = z∗k+1 for some k ∈ {1, ..., n− 1}. Using that all functions ri and r−i can only be zero at zero,
each of these cases will lead to a contradiction with the fact that C > 0. This establishes the first
part of the lemma.

For the second part, notice that the Jacobian at a steady state has the following structure:

J =


−a11 − a12 +a12 0 . . . 0

+a21 −a21 − a23 +a23 . . . 0
...

. . . . . . . . .
...

0 . . . +a(n−1)(n−2) −a(n−1)(n−2) − a(n−1)n +a(n−1)n

0 . . . 0 +an(n−1) −an(n−1) − ann


where all aij > 0.

We will prove that J is diagonally dominant and hence Hurwitz.
Recall that an n×n matrix B is called diagonally dominant if there are n numbers di > 0 such

that:
biidi +

∑
j 6=i

|bij |dj < 0, ∀i = 1, ..., n.

For a cooperative matrix such as J , the absolute values can be dropped in the above definition.
Therefore, we must find a vector d with positive entries, such that the vector Jd is a vector with
negative entries. Notice that J1 -where 1 is a vector for which all entries are 1- is a vector with
negative first and last entries (−a11, respectively −ann) and all other entries are 0. This suggest
that to find d we could try to look for a suitable perturbation of the vector 1.

Define recursively n− 1 parameters εj as follows:

0 < ε1 <
a11

a11 + a12

0 < εj < εj−1

aj(j−1)

aj(j−1) + aj(j+1)
, j = 2, ..., n− 1.

Clearly εj < 1 for all j = 1, ..., n− 1. Next define the vector d as follows:

di = 1− εi, i = 1, ..., n− 1 and dn = 1.

Then it can be checked that Jd is a vector with negative entries, showing that J is diagonally
dominant and hence a Hurwitz matrix. This concludes the proof.
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Lemma 2. System (8) has a unique, globally asymptotically stable steady state in Ω.

Proof. Since Ω is a compact, convex, forward invariant set for system (8), it has at least one steady
state. By the previous lemma, all steady states belong to int(Ω). Then the Brouwer degree of the
vector field F of system (8) with respect to int(Ω) and value 0, is well defined and denoted by
d(F, int(Ω), 0). Moreover, we claim that:

d(F, int(Ω), 0) = (−1)n.

To see this, pick an arbitrary point x̄ ∈ int(Ω) and consider the following vector field on Ω:

G(x) = x̄− x.

Obviously,
d(G, int(Ω), 0) = (−1)n.

We will show that F and G are homotopic, and then our claim follows since the Brouwer degree
is a homotopy invariant. Define:

H(x, t) = tF (x) + (1− t)G(x)

Then H is continuous on Ω× [0, 1], H(x, 0) = G(x) and H(x, 1) = F (x). We are left with proving
that H(x, t) 6= 0 for all x ∈ ∂Ω and all t ∈ (0, 1). Suppose that this is not the case, then there is a
x̃ ∈ ∂Ω and t̃ ∈ (0, 1) such that:

F (x̃) = −1− t̃
t̃

G(x̃)

This implies that F points outwards in x̃ (since G(x̃) clearly points inwards). But this contradicts
the fact that Ω is forward invariant and establishes our claim.

By the previous lemma, we know that the Jacobian at each steady state of (8) is nonsingular and
hence the number of steady states is finite. By definition of the Brouwer degree for C1 mappings:

d(F, int(Ω), 0) =
∑
i

sign det J(x∗i )

where J(x∗i ) is the Jacobian at a steady state of system (8) and the summation runs over all steady
states.

Now by the previous lemma every steady state x∗i is hyperbolic and locally asymptotically
stable, so there holds that:

sign det J(x∗i ) = (−1)n

and hence there can only be one steady state.
Global asymptotic stability follows from lemma 5 which is proved in an Appendix. To see that

this result can be applied, note first that since Ω is compact and forward invariant, system (8)
generates a continuous semiflow. Condition 4. is clear by compactness of Ω. Condition 2. follows
from the fact that system (8) is cooperative in Ω and therefore generates a monotone semiflow with
the order given by the usual componentwise order on Rn1. Condition 3. has just been proved and
condition 1. is satisfied as well. (Proof: for any compact K ⊂ Ω, for all i = 1, ..., n, let p∗i ∈ K be
some point in K with maximal i-component. Note that p∗i exists in K since the projection on the
i-th component is continuous and K is compact. Now, Ω is a lattice, i.e. sup(a, b) ∈ Ω whenever
a, b ∈ Ω. Therefore p := supi(p∗i ) ∈ Ω and it is easy to see that sup(K) = p. The proof that
inf(K) ∈ Ω is similar.)

Remark 1. We could also have proved global asymptotic stability using results of Smillie [26] or
even of Mierczynski [22]. But these require verification of stronger monotonicity properties of the
flow, which has been avoided here. For a proof using Smillie’s results for the case where each
complex consists of only one chemical, see [5].

Proof of Theorem 1 This follows from the reduction and transformation of system (3) to system
(8), combined with lemma 2.

1Here we have used that Ω is convex, hence p-convex. The conclusion then follows from Proposition 3.1.1 and
Remark 3.1.1 in [27].
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3 Adding Diffusion

Ordinary differential equation models such as considered in (3) implicitly assume that reactions
proceed in a well-mixed environment. While this is a reasonable assumption when diffusion is
fast compared to the time scales of reactions, it is of interest as well to incorporate explicitly the
effect of diffusion. This leads to reaction-diffusion (also known as semilinear parabolic) partial
differential equations.

In this section, we show how to extend our results to the case when diffusion is included in
the model. Our results intersect, for the special example of the reaction X1 + X2 
 X3, and
assuming mass action kinetics, with those given in [23]. That paper dealt with the extension of
the Feinberg-Horn-Jackson (FHJ) theory of chemical reactions (see e.g. [11, 19, 29, 7]) from ODE’s
to reaction-diffusion problems. (See also [24] for the statement of convergence results for reaction-
diffusion FHJ systems, but with incomplete proofs.) The techniques in [24, 23] are based upon
Lyapunov functions, and are thus different from our approach, which allows treating a different
class of reactions and we do not need to restrict ourselves to mass action kinetics. On the other
hand, there is an abundance of examples of chemical systems which are of FHJ type but are not
monotone, and thus cannot be treated with our techniques.

Our goal in this section is to show how the analogous convergence results for the PDE model
follow as easy corollaries from those for ODE’s. (An alternative would be to prove all results ab
initio in the framework of monotone reaction diffusion systems, but the reduction to ODE’s is far
simpler.) In general, we consider initial/Neumann-boundary “no-flux” PDE problems for functions
x(q, t) of space and time, where dot indicates derivative with respect to time, xν indicates normal
derivative, f is a monotone vector field, and L is a diffusion partial differential operator:

ẋ = Lx+ f(q, x) t > 0 , q ∈ Q
xν = 0 t > 0 , q ∈ ∂Q (9)

x(q, 0) = x0 q ∈ Q̄ .

The key observation that we wish to make is that (under appropriate technical assumptions) every
solution of (9) converges to a unique homogeneous equilibrium: x(q, t) → c as t → ∞, provided
that every solution of the associated ODE ẋ = f(x) converges to c. Thus, the results proved earlier
extend to the diffusion case. (Monotonicity of f is essential – compare to diffusive instability phe-
nomena such as arise in activator-inhibitor mechanisms for pattern formation.) Let us first develop
some background, blending results on monotone reaction-diffusion systems from [27], Chapter 7
with some technical facts from [1].

The set Q represents space, and is a bounded, open, connected subset of an Euclidean space RM

with smooth (class C4) boundary ∂Q. The vector field f is of class C2. The notation xν indicates
directional derivative with respect to the outer unit normal ν = ν(q) to ∂Q at the point q. We
pick a nonempty closed subset X of Rn to restrict the allowed values of concentrations, such as for
example the nonnegative orthant or the compact and convex state space Ω used in Lemma 1, and
assume that X is forward-invariant with respect to the ODE ẋ = f(x) (two additional assumptions
on X are made below). The initial condition is a function

x0 : Q̄→ X

which is twice continuously differentiable and satisfies the boundary requirement (x0)ν = 0. By a
“solution” of (9) we mean a function

x = (x1, . . . , xn)′ : Q̄× [0, T ]→ X

(prime indicates transpose) such that (9) holds and:

∂xi
∂t

,
∂xi
∂qj

,
∂2xi
∂qj∂qk

are Hölder continuous on Q× (0, T ] for all i, j, k

and
∂xi
∂qj

, xi are continuous on Q̄× (0, T ] for all i, j .
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These assumptions are as in [1]; in [27] it is only required that ∂xi
∂qj

be continuous on Q̄×(0, T ] (also,
Hölder continuity is relaxed to just continuity) but less regularity is imposed on initial conditions.

The differential operator L has the following form:

Lx = (L1x1, . . . , Lnxn)′

where for every i,

Li =
n∑

j,k=1

aijk(q)DjDk +
n∑
k=1

aik(q)Dk

with each aikj = aijk ∈ C2(Q̄), and L is uniformly elliptic:

∃µ > 0 such that ξ′Ai(q)ξ ≥ µ |ξ|2 ∀ ξ ∈ Rn

where Ai(q) = (aijk(q)). The main example for us will be the case in which there is independent
diffusion of each species: aijj ≡ di > 0, and ak ≡ 0, ajk ≡ 0 for all j 6= k, i.e. Lxi = di∆xi, where
∆ is the Laplacian.

Two additional conditions must be imposed on the set of allowed state vectors X. We already
asked that it be invariant under the dynamics ẋ = f(x). A second requirement is that it should
also be invariant under diffusion, in the sense that solving the linear problem ẋ = Lx with an
initial condition having x0(q, 0) ∈ X for all q ∈ Q should result in a solution with x(q, t) ∈ X for
all t > 0 and all q ∈ Q. For this purpose we will assume from now on either that Q is an arbitrary
open convex set but all operators Li are the same (for example, there is independent diffusion of
each species and di = dj for all i, j), or that the Li’s are arbitrary but that Q equals a “rectangle”
(a, b), with b− a ∈ Rn+ (possibly with a = −∞ or b = +∞).

Assume from now on that an order has been specified on Rn. A last requirement is a lattice
requirement on the set X (see also the Appendix): for any compact subset S ⊆ X, both inf(S) and
sup(S) are defined and belong to X. We say that a vector field is quasi-monotone (with respect
to the given order on X ⊆ Rn) if the flow of ẋ = f(x) is monotone. Given two functions x, y with
values in X, we write x � y if x(q, t) � y(q, t) for all (q, t) in their common domain. The following
is a version of Theorem 3.4 in [27]. We have specialized it to PDE’s (in the textbook, it is given
in more generality, for partial differential inequalities), and we have stated it for arbitrary orders
(the statement in the book is given only for cooperative systems, but, cf. page 142, the same proof
is valid for arbitrary orders).

Theorem 2. If f is quasi-monotone, and y, z are solutions defined on [0, T ) such that y(·, 0) �
x0 � z(·, 0) on Q̄, then there is a unique solution x of (9), defined at least on the interval [0, T ),
and y � x � z on Q̄× [0, T ).

We are now ready to state our conclusions. The first remark is as follows.

Theorem 3. Suppose that f is quasi-monotone, and that there exists ξ ∈ X so that every solution
of ẋ = f(x), x0 ∈ X, converges to ξ as t → ∞. Then, for each initial condition x0, there is a
unique solution x(q, t) of (9), defined for all t > 0, and x(q, t)→ ξ as t→∞, uniformly on q ∈ Q.

To prove this statement, we first pick y as a function Q̄→ X which is constantly equal to the
minimum value of x0, and z as a function Q̄ → X which is constantly equal to the maximum of
x0. Furthermore, we observe that the solution y(t) of ẋ = f(x), x(0) = y (which is defined for all
t and converges to ξ as t→∞) can be also seen as a solution of (9), simply letting y(q, t) ≡ y(t).
Similarly with z, and we are in the situation of Theorem 2. Applying this Theorem on increasing
finite intervals [0, T ), we obtain existence and uniqueness of x(q, t) on [0,∞). Furthermore, we
have that y(q, t) � x(q, t) � z(q, t), and both y(q, t) → ξ and z(q, t) → ξ (uniformly on q), which
gives the conclusion.

Unfortunately, as elegant as Theorem 3 is, it is not sufficient by itself when treating the original
system (3), because there are many equilibria for this system. We need to make an additional
assumption, namely that all diffusion rates coincide.

Theorem 4. Suppose that f is as in Theorem 1, and that, for some d > 0, Lixi = d∆xi for each
coordinate of the state. Then all solutions of (9) converge to (homogeneous) steady states.
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To prove this, we use the same change of coordinates as earlier. Applied to the PDE, this
results in equations of the form

ż1 = −r1(a1
1z1) + r−1(a1

2(z2 − z1)) + d∆z1

...
żk = −rk(a1

k(zk − zk−1)) + r−k(a1
k+1(zk+1 − zk)) + d∆zk, k = 1, ..., n− 1

...
żn = −rn(a1

n(zn − zn−1)) + r−n(a1
n+1(C − zn)) + d∆zn.

Combining Lemma 2 with Theorem 3, we know that every solution of this system converges to
a (unique) homogeneous steady state. Thus, the variables yi = x1

i also converge to such steady
states. We now prove that the remaining variables do, too.

Recall that there were, for the ODE (no diffusion) ni − 1 independent linear first integrals, as
shown in (5):

Żik = 0 ∀ i ∀k = 2, ..., ni ,

where Zik = xki /a
k
i − x1

i /a
1
i . From there we obtained expressions as in (6):

xki (t) = βki x
1
i (t) + αki ∀ i ∀k = 2, ..., ni

for some αki ∈ R (which depend on initial conditions) and βki > 0. Thus, when the x1
i converge,

the same could be concluded for each other variable xki . When adding diffusion, this argument
does not work. Equation (5) becomes, instead:

Żik = LZik ∀ i ∀k = 2, ..., ni

with LZ = d∆Z, subject to the Neumann condition (Zik)ν = 0 at boundary points. Every solution
of this PDE converges to a constant, namely the average 1

|Q|
∫
Q
Zik(q, 0) dq of its initial values,

where |Q| is the measure of Q. (Sketch of proof: there is a sequence of eigenvalues and respective
eigenvectors λi, φi, i = 1, 2, . . ., of the self-adjoint Neumann Laplacian: solutions of Lφ+ λφ = 0,
φν = 0. These satisfy λ1 = 0, φ1 = 1, and λi > 0 for all i > 1, and the φi form an orthogonal
basis of L2. Now take any continuous and bounded initial condition x0, viewed as an element of
L2, and expand it in terms of this basis: x(q, 0) =

∑∞
i=1 biφi(q); then x(q, t) =

∑∞
i=1 bie

−λitφi(q)
is the solution of Ż = LZ with this initial condition, and it converges, in L2, to the first Fourier
term b1, which is the required average.) In summary, both xki /a

k
i − x1

i /a
1
i and x1

i converge to a
constant, so every variable xki does, too.

4 Appendix: A global attractivity result for monotone flows
with unique equilibria.

Consider a metric space X with metric d and suppose that a partial order � has been defined on
X. It will be assumed that the partial order and the metric topology on X are compatible in the
following sense: if xn → x and yn → y are converging sequences in X with xn � yn, then x � y.
We occasionally abuse notation by writing x � A for some x ∈ X and A ⊂ X, to denote that
x � y for all y ∈ A. We will use the familiar order-theoretic notions sup(A) and inf(A) to denote
the least upper bound and greatest lower bound of a set A ⊂ X -provided they exist in X. For
two points p, q ∈ X with p � q, we define the order interval [p, q] := {x ∈ X | p � x � q}. A set
A ⊂ X is called order convex if [p, q] ⊂ A for every pair p, q ∈ A with p � q.

We will discuss the dynamics generated by a continuous semiflow Φ on X. Recall that this is
a continuous map Φ : R+ ×X → X with Φt(x) := Φ(t, x) such that Φ0 = Id and Φt ◦ Φs = Φt+s
for t, s ∈ R+.

The following conditions on X and Φ are introduced:

1. For every compact subset C of X, there holds that inf(C), sup(C) ∈ X.

2. Φ is monotone with respect to �, i.e. (1) holds.

9



3. Φ has a unique equilibrium point a in X.

4. For every x ∈ X, the orbit O(x) := {Φt(x) | t ∈ R+} has compact closure in X.

The last condition 4. implies in particular that the ω limit set of x, denoted by ω(x), is nonempty,
compact, invariant (meaning that Φt(ω(x)) = ω(x) for all t ∈ R+) and limt→∞ d (Φt(x), ω(x)) = 0
(where the usual distance from a point x ∈ X to a set A ⊂ X is given by d(x,A) = infy∈A d(x, y)).
Under conditions 1− 4 we have the following result:

Theorem 5. The equilibrium point a is globally attractive for Φ.

Proof. Pick x ∈ X and consider ω(x). Then we can define:

m = inf(ω(x)) and M = sup(ω(x)).

We claim that:
Φt(m) � m, ∀t ∈ R+. (10)

To see this, we will prove that for all t ≥ 0, Φt(m) � ω(x), from which (10) will follow since m is
the greatest lower bound of ω(x).

Choose t ≥ 0 and select an arbitrary p ∈ ω(x). We need to show that Φt(m) � p. By
invariance of ω(x) there is some q ∈ ω(x) such that Φt(q) = p. Now m � q since q ∈ ω(x) and thus
monotonicity implies that Φt(m) � Φt(q) = p, thus proving (10).

Monotonicity implies that Φt(m) is nonincreasing, i.e. Φt2(m) � Φt1(m) if 0 ≤ t1 ≤ t2. (simply
apply Φt1 to (10) where t = t2 − t1)

We now claim that ω(m) = {a}.2 We will first show that p, q ∈ ω(m) implies that p = q.
Pick sequences Φtk(m) → p and Φtl(m) → q with tk, tl → ∞. Since Φt(m) is nonincreasing, it
is possible to find for every tk, some tl(k) ≥ tk such that {tl(k)} forms a subsequence of {tl} and
Φtl(k)(m) � Φtk(m). After taking limits, we find that q � p. A similar argument shows that
p � q and therefore p = q. So this shows that ω(m) is a singleton. Invariance of ω limit sets then
implies that ω(m) must consist of an equilibrium. Uniqueness of the equilibrium a then implies
that ω(m) = {a}, proving the claim.

A similar argument yields that Φt(M) is monotonically increasing and that ω(M) = {a}.
Finally, we have that for all t ≥ 0:

Φt(m) � m � ω(x) �M � Φt(M)

and upon taking limits for t→∞, we obtain that ω(x) = a, which concludes the proof.

Remark 2. Theorem 5 may also be useful for flows on infinite dimensional spaces. For instance, in
delay equations one often considers spaces of continuous functions defined on a compact interval
such as X = C([−r, 0],Rn) or X = C([−r, 0],Rn+) with the usual metric induced by the supremum
norm and with the usual partial order, defined by f1 � f2 iff f2(t)− f1(t) ∈ Rn+ for all t ∈ [−r, 0].
In both cases, the inf and sup of compact sets exist in X, see [18].

Remark 3. Condition 1. appeared in the work of [20] whose ideas we have followed here. More
recently, this condition also surfaced in the work of [18]. There, a stronger monotonicity property
is imposed on the semiflow, but equilibria need not be unique. The result is that the set of
quasiconvergent points (a point is quasiconvergent if its omega limit set is contained in the set of
equilibria) contains an open and dense set. The proof relies on a number of fundamental results
from the theory of monotone systems.

Remark 4. Although lemma 5 is sufficient for proving our main result on chemical reaction networks
(theorem 1), we can generally conclude stability of the equilibrium a as well, provided the space
X and the flow Φ satisfy extra conditions.

C Every neighborhood of every point x ∈ X contains a compact, order convex neighborhood
C of x.

Then we obtain the following result:
2This claim would immediately follow from the Convergence Criterion for monotone systems (Theorem 1.2.1 in

[27]), using uniqueness of the equilibrium a. However, here we prefer to give a self-contained yet short proof, without
having to resort to any of the results from the theory of monotone systems.
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Lemma 3. Assume that for every t ∈ R+, Φt is an open mapping. Then under conditions 1 − 4
and C, the equilibrium point a is globally asymptotically stable for Φ.

Proof. By lemma 5 it suffices to prove that a is a stable equilibrium. We will repeatedly use the
fact that for all p, q ∈ X with p � q, there holds that:

Φt([p, q]) ⊂ [Φt(p),Φt(q)], ∀t ∈ R+,

which follows from monotonicity of Φ.
Choose an arbitrary neighborhood U of a. Then by condition C, there is some compact and

order convex neighborhood C of a with C ⊂ U . By condition 1., we can define:

i = inf(C) and s = sup(C)

and consider the order interval [i, s]. Then obviously, C ⊂ [i, s], so [i, s] is also a neigborhood of a.
Consequently, since for every t ∈ R+, Φt is an open mapping, Φt([i, s]) is also a neighborhood of a.

Now choose T > 0 such that:

Φt(i),Φt(s) ∈ C, ∀t ≥ T. (11)

Such a T exists by lemma 5.
Now consider the neigborhood V := ΦT ([i, s]) of a. Then for all t ≥ 0, there holds that:

Φt(V ) = Φt(ΦT ([i, s])) ⊂ Φt([ΦT (i),ΦT (s)]) ⊂ [Φt+T (i),Φt+T (s)] ⊂ C ⊂ U

where we used the fact from above in proving the first two inclusions, and (11) and C (and in
particular for the first time that C is order convex), for proving the third inclusion. This concludes
the proof.

5 Appendix: Riccati equations are monotone systems

Here we provide an alternative proof of the fact that the solutions of the real, symmetric Riccati
differential equation generate a monotone flow.

Let’s start by introducing some terminology. The real, n2-dimensional vector space of real n×n
matrices is denoted by R. We assume that R is equipped with an inner product 〈., .〉, defined by
〈X,Y 〉 = tr

(
XY T

)
. This inner product induces a norm (known as the Frobenius norm) and thus

a metric on R in the obvious way. We shall assume that all topological notions are with respect
to this metric. Note that the normed vector space R is isometrically isomorphic to Rn

2
(with the

usual Euclidean norm). To see this define T : R → R
n2

by:

T (X) = (x1x2...xn)T ,

where xi is the ith row of X. Then it is easily checked that T is an isomorphism and an isometry.
Occasionally, it is useful to have this ’equivalence’ of both spaces in mind, in particular when
considering systems of differential equations or geometric objects (such as subspaces or cones
which will be introduced below). The set of real symmetric matrices will be denoted by S = {S ∈
R |S = ST }. Clearly, S is a linear subspace of R of dimension n(n+ 1)/2. Let P(P+) ⊂ S denote
the set of symmetric positive semidefinite (definite) matrices. Then P is nonempty and closed
(with respect to the subspace topology on S), R+P ⊂ P, P + P ⊂ P and P ∩ (−P) = ∅. Thus,
P is a cone in R and in S. Note that int(P) = P+ in S (but obviously int(P) would be empty in
R). We shall also need the concept of the dual cone. If (X, 〈., .〉) is a finite-dimensional real inner
product space and if K ⊂ X is a cone, then the dual cone of K is denoted by K∗ and defined by:

K∗ = {y ∈ X | 〈y, k〉 ≥ 0, ∀k ∈ K}.

Next we collect -without proof- some facts about the cone P ⊂ S and its dual cone P∗.

Lemma 4. P = P∗.

Lemma 5. If P ∈ P and P ∗ ∈ P∗ are such that 〈P ∗, P 〉 = 0, then P ∗P = 0 = PP ∗.
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Lemma 6. Let P,Q ∈ P+ and Q− P ∈ P. Then P−1, Q−1 ∈ P+ and P−1 −Q−1 ∈ P.

With this background material in place, we are ready to introduce the matrix Riccati differential
equation on R:

Ẋ = XAX +B1X +XBT2 + C, (12)

where X ∈ R and A,B1, B2 and C are given matrices in R.
Obviously, solutions exist and are unique for every X0 ∈ R, since the vectorfield of (12) is

locally Lipschitz. We will denote the solution by X(t,X0) with t ∈ I, where I is the (open)
maximal interval of existence in R, which contains 0. We will also consider the forward maximal
interval of existence which is defined by I+ = I ∩ R+.

On the other hand, this system is not necessarily (forward) complete. (Forward) completeness
means that for every solution we have that I = R (I+ = R+). For instance, consider the scalar
Riccati equation with A = 1, B1 = B2 = C = 0 with initial condition X(0) = 1. Then the
corresponding solution is X(t, 1) = 1/(1− t), which is of course only defined for t ∈ (−∞, 1).

We will study system (12) under the following additional constraint:
(S) A, C ∈ S and B1 = B2.
An immediate consequence is that if (S) holds, then S is an invariant set of (12). This follows

from the fact that if X(t) is a solution of (12), then XT (t) is also a solution of (12). Uniqueness of
solutions then implies that if X(0) ∈ S, then X(t) = XT (t) for all t for which the solution exists.
This observation justifies the restriction of the dynamics of system (12) to the invariant set S,
which will be assumed henceforth.

Our goal is to show that assuming (S), system (12) is monotone on S. The partial order on S
which will be preserved by the solutions is generated by the cone of positive semidefinite matrices
P. Thus, for X0, Y0 ∈ S, X0 � Y0 if and only if Y0 −X0 ∈ P. In view of the above fact that the
Riccati equation is not necessarily forward complete, we must slightly relax our original definition
of a monotone system (which assumed that the solutions of the system generate a semiflow; in
particular this implies that solutions are defined for all t ∈ R+). The modification is not at all
surprising. We will say that system (12) is monotone on S (with respect to the order generated by
P) if:

∀X0, Y0 ∈ S : X0 � Y0 ⇒ X(t,X0) � X(t, Y0), ∀t ∈ I+
1 ∩ I

+
2 ,

where I+
1 and I+

2 are the maximal forward intervals of existence of the solutions X(t,X0) and
X(t, Y0).

Theorem 6. Let (S) hold. Then system (12) is monotone on S.

Proof. Since S is convex, (hence in particular p-convex) it suffices by Theorem 1.1 and 1.2 in [17]
to verify that:

∀(P,Q) ∈ ∂P × P∗ : 〈Q,P 〉 = 0⇒ 〈Q,DFX(P )〉 ≥ 0,

where DFX(Y ) = XAY + Y AX +B1Y + Y BT1 , the linearization of system (12) at X.
Now if (P,Q) ∈ ∂P × P∗, satisfy 〈Q,P 〉 = 0, then lemma 5 implies that QP = PQ = 0. From

this we get:
〈Q,DFX(P )〉 = tr

(
Q[XAP + PAX +B1P + PBT1 ]

)
= 0,

which concludes the proof.
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