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Abstract—In this note, we show how certain properties < M- - Pe—= PP——> Pr—»

of Goldbeter's 1995 model for circadian oscillations can be 2 Vy
proved mathematically, using techniques from the recently US‘ k1| ko
developed theory of monotone systems with inputs and out- Pr
puts. The theory establishes global asymptotic stability, and
in particular no oscillations, if the rate of transcription is Fig. 1. Goldbeter's Model

somewhat smaller than that assumed by Goldbeter. This

stability persists even under arbitrary delays in the feedback

loop.

also satisfying saturation dynamics (with parametgrs:;),

and it is translocated to the nucleus with rate conskant
The molecular biology underlying the circadian rhythmNuclear PER inhibits transcription of thger gene, with a

in Drosophila is the focus of a large amount of bothHill-type reaction of cooperativity degree and threshold

experimental and theoretical work. Goldbeter proposed onstantk;, and mRNA is produced. and translocated to

simple model for circadian oscillations in [4] (see also highe cytoplasm, at a rate determined by a constanfddi-

book [5]). Although by now several more realistic modeldionally, there is saturated degradation of mMRNA (constants

are available, in particular incorporating other genes, this,, andk,,).

simpler model exhbits many realistic features, such as a The equations for concentrations are as follows:

24-hour period. The key to the model is the inhibition of

per gene transcription by its protein product PER, forming

I. INTRODUCTION

= v K}/(K}4+Py) —vmM/(kym+M)

an autoregulatory negative feedback loop. Py = kM —-ViR/(Ki+F)+ V2P /(Ka+Pr)
In this note, we show how certain properties of the P, = ViPy/(K,+Py) — VoP,/(Ky+Py)
model can be proved mathematically, using techniques from V5P, /(K3+Py) + VaPy ) (Ky+Ps)

the recently developed theory of monotone systems with
inputs and outputs. The theory establishes global asymptotic ~ 2~ VsP1/(Ks+P1) = VaPo/(Kyt P)

stability, and in particular no oscillations, if the rate of —k1 Py + ko Py — va P/ (ka+ Pa)
transcription is somewhat smaller than that assumed by Py = kP — ks Py

Goldbeter. This stability persists even under arbitrary delays . ) .

in the negative feedback loop. On the other hand, a largifnere the subscript = 0,1,2 in the concentration?;

_but still smaller than Goldbeter's— strength, in the presendBdicates the degree of phosphorylation of PER protéia,
of delays, results in oscillations. is used to indicate the concentration of PER in the nucleus,

The terminology and notations are as given in [2], [3]2d M indicates the conpentrationlqjer MRNA. The
and are not repeated here. parameters (in suitable unitg\/ or h~+) are as in Table I.
With these parameters, there are limit cycle oscillations.
Il. THE MODEL We leave all fixed excepts, and show that there are no

The model is as shown in Figure 1. PER protein is SynQscillations ifvy, = 0.4, but oscillations exist ifo, = 0.5
thesized at a rate proportional to its mRNA concentratiorf"d there are delays in the negative regulatory loop, either
Two phosphorylation sites are available, and constitutiv franscription or n translation (or in both). i
phosphorylation and dephosphorylation occur with satura- W€ Choose to view the system as the feedback intercon-
tion dynamics, at maximum rate;’'s and with Michaelis nection of two su.bsyst.ems, see Figure 2'_ )
constantsK;. Doubly phosphorylated PER is degraded MRNA Sy_stem'.l'he first M) subsystem is described by

the scalar differential equation
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Parz;neter V"lige Par:;neter V'fge satisfies all the constraints. As input space for the mRNA
Vi 3.2 Va 1.58 system, we pickU; = Rxo, and as output spack; =
V3 5 Vi 2.5 [0,v4). Note thaty; = k.M < kM < vg, by (2), so the
Vs 0.76 km, 0.5 | &

k. 038 vy 095 output belongs td;.
kq 0.2 n 4 For the second system, the state spadkgg, the input
Ky 2 K 2 space iU, = Y7, and the output space 1§ = U;.
Ks 2 Ky 2 . ) .
K 1 v 0.65 When looking at the first system, we vigiyf as ordered
by the coneR<q, butU,, Y7, Y, are all ordered in the usual
TABLE | manner (conR>o).

PARAMETER VALUES
IIl. M ONOTONICITY AND CHARACTERISTICS

51 Y1 The first system is monotone, and has a well-defined char-
M acteristic, in the sense of [2]. Monotonicity is clear (one-
dimensional system), and the existence of characteristics is
immediate from the fact that/ > 0 for M < k;(u;) and

p M < 0 for M > k1(u1), where, for each constant input
Y2 U2 Uy,
i B vs K7 ki,
Fig. 2. Systems in feedback 1(u) = Um K+ 0y iy — vy K7
(which is an element oi;).
with input «; and outputy, = k, M. Not.e that all solutions of the differential equations whigh
PER System:The second P) subsystem is four- describe theM-s_ystem, even those that do not start in
dimensional: X1, enter X in finite time (becausé\/(t) < 0 whenever
. M(t) > M, for any inputus(-)). The restriction to the
Py = uy—ViR/(K1+F)+ V2P /(Ko +P1) state spaceX; (instead of using all ofR~) is done for
P = ViPy/(K1+Py) — Vo Py /(Ka+Py) convenience, so that one can view the output of e
V5P, /(K3+Py) + ViPy /(K +Ps) system as in input to th2-subsystem. (Desirgblg prqperties
P — VP J(Ks+Pr) — VaPy/(Ks+ Py) of the P-§ubsystem d_epend on the restr_lct|on |m_pos_ed
2 3RS 472/\ a2 on U,.) Given any trajectory, its asymptotic behavior is
—k1 Py + ko Py — vaPs/(ka+P2) independent of the behavior in an initial finite time interval,
Py = kiPy—koPy so this does not change the conclusions to be drawn. (Note

that solutions are defined for all times —no finite explosion
times— because the right-hand sides of the equations have
linear growth.)

vs < 0.54 1) Monotonicity of the second system is also clear, from

(the remaining parameters will be constrained below, if'€ fact thatzp > 0 for all ¢ 7 j; in fact, this is a

J T
such a manner that those in the previously given table wifirongly monotone t”d'agonal syste(j6], [7]). We show
satisfy all the constraints). that (for the parameters in the table, as well as for a larger

As state-space for the first system, we will pick acompa&et of parameters) the system has, for each constant input
interval X, = [0, M], where u, a unique equilibrium, and trajectories are all bounded,;
Y it follows then from [6], [7] that the unique equilibrium is

with input us and outputy, = Py.
Assume from now on that:

Vskm <M < Yd (2) 9globally asymptotically stable, which means that character-
U — Us ks istics are well-defined.
and we assume that < v,,. Note that the first inequality  Proposition 3.1: Suppose that the following conditions
implies that B hold:
m M
US<U7— 3) o g+ Vo< Vg
fim + M e Vi Vi< Vot Vi
and therefore e 0< <y
VoK [ (KPA4T) = v M | (k) < 0 * Vatea<V3

and that all constants are positive and the inpiytt) = c.

for all u; > 0, so that indeedX; is forward-invariant for Then the P-system has a unique globally asymptotically

the dynamics. With the parameters shown in the table giv

egi el .
) SR . able equilibrium.
earlier (except fo, WhjCh is picked as in (1)), This will be a corollary of the following more general

M =245 result.



Theorem 1:Consider a system of the following form: bounded function, and the one involving becausers is
bounded. Thus

i’o = c—ao(x0)+ﬁo(x1)
1 = ao(xo) — Bo(z1) — ax(xr) + Bi(w2) &p <o(t) — an(x2),
9,62 = oa(m) ~hiles) —ex(ez) —2(m) +(es) where0 < v(t) < k for some constank. Thus 2(t) <
s = 72(72) = 75(ws) 0 wheneverzy(t) > ~;'(k), and this proves that, is
evolving onR%,, wherec > 0 is a constant, and the bounded, as claimed.
functions Now we show thatry andx; are bounded as well. For
ai, B, i+ [0,00) — [0, 00) xo, it is enough to notice that, < ¢ — ag(zo) + Bo(0),
are all differentiable, with derivatives everywhere positive,So that
and so thaty; and g; are bounded, for each and~y, v, _ 2o(t) > agl(c+ﬂo(oo)) = do(t) <0
are unbounded. Furthermore, suppose that the following
conditions hold: so (8) shows that is bounded. Similarly, for:; we have
O[Q(OO) + 50(00) < 0[()(00) (4) thatéﬂl < Oé()(OO)7ﬁ0(£€1)70&1(£€1)+ﬁ1(00) SO (5) prOVideS
boundedness.
a(00) + B1(00) < ag(o0) + Bo(o0) (5) Once that boundedness has been established, if we also
a2 (00) + A1 (00) < a1 (c0) (6) show that there is a unique equilibrium then the theory

of strongly monotone tridiagonal systems ([6], [7]) will
¢ < az(00). (7)  ensure global asymptotic stability of the equilibrium. So we
show that equilibria exist and are unique. It is convenient

Then, there is a (unique) globally asymptotically stablx?O change variables and write

equilibrium for the system.
Note that (4) and (7) imply also:
¢+ Bo(00) < ap(o0). (8)

Proof: We start by noticing that solutions are defined
for all ¢ > 0. Consider any maximal solution(t) =

Yo = To + 1 + T2 + X3,

Y1 =21+ 22+ X3, Y2 :=T2+ T3, Y3:=2T3.

In terms of these variables, we may get= 0,7 = 0,2, 1, 3,

(2o (t), (), 22(t), x3(t)). From so that the equilibria are precisely the solutions of:
d
g @Wot a1t e tay) = ¢ —as(z) 9) as(zs) = ¢
we conclude there is an estimaig(t) < 3. zi(t) < ar(z1) = az(x2) + Bi(z2)
>, zi(0) + tc and hence there are no finite escape times. ao(zo) = ao(ze)+ Bo(z1)
Moreover, we claim that(-) is bounded. _
v3(x3) = 72(z2).

Since the system is a strongly monotone tridiagonal

system, we know (see [6], Corollary 1), thag(t) is  This shows uniqueness (all the functions are strictly increas-

eventually monotoneThat is, for somel’ > 0, either ing), and existence follows from, respectively, (7), (6), (4),
i3(t) >0 Vt>T (10) and the fact thaty; is unbounded. [ |

or IV. CLOSING THELOOP

i3(t) <0 Vt>T. (12)

Now we are ready to apply the main theorem in [2].
In order to do this, we need to plot the characteristics. See
Figure 3 for the “spiderweb diagram” (the dotted and dashed
curves are the characteristics) that shows convergence of
the discrete iteration described in [2] when we pick the pa-

1 rameterv, = 0.4. The theorem implies that no oscillations
z2(t) = 75 (3(73(t))) — o00. can happen in that case, even under arbitrary delays in the
Looking again at (9), and using that- az(cc) < 0 (prop-  feedback fromPy to M.
erty (7)), we conclude thaf (zo + x1 + z2 + x3) (t) < 0 On the other hand, for a larger value, suchvas= 0.5,
for all ¢ sufficiently large. Thusg+x; +x2+x3 is bounded the discrete iteration conditions are violated; see Figure 4
(and nonnegative), and this implies that is bounded, a for the “spiderweb diagram” that shows divergence of the
contradiction. Sars is bounded. discrete iteration. Thus, and one may expect periodic orbits

Next we examine the equation fas. The two positive in this case. Indeed, simulations show that, for large enough
terms are bounded: the one involviag becausex; is a delays, such periodic orbits arise, see Figure 5.

Hence,z3(t) admits a limit, either finite or infinite. Assume
first thatxs(¢t) — oco. Then, case (11) cannot hold, so (10)
holds. Looking at the differential equation fog, we know
that vo(z2(t)) — v3(x3(t)) > 0 for all t > T', which means
that
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Fig. 5. Oscillations seen in simulationss(= 0.5, delay of100, initial
conditions all at0.2), using MATLAB’s dde23 package

Fig.
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Fig. 4. Instability of spiderwebus = 0.5)
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