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Abstract— We investigate the problem of searching for a
hidden target in a bounded region by an autonomous agent
that is only able to use limited local sensory information. We
propose an aggregation-based approach to solve this problem,
in which the continuous search space is partitioned into a
finite collection of regions on which we define a discrete search
problem. A solution to the original problem is then obtained
through a refinement procedure that lifts the discrete path
into a continuous one. The resulting solution is in general not
optimal but one can construct bounds to gauge the cost penalty
incurred.

I. INTRODUCTION

The problem addressed concerns searching for a hidden
target by an autonomous agent. Suppose that a “honey-pot”
is hidden in a bounded region R (typically a subset of the
plane R

2 or of the 3-dimensional space R
3). The exact

position x
∗ of the honey-pot is not known but we do know

its a-priori probability density f . The goal is to find the
honey-pot using an agent (called the searcher) that moves
in R and is able to see only a “small region” around it. If
the searcher get “sufficiently close,” it will detect the honey-
pot and the search is over. We assume that the target is
stationary and that the probability density f does not change
in time. Honey-pot searching is thus an (open-loop) path
planning problem where one seeks a path that maximizes the
probability of finding the honey-pot, given some constraint
on the time or fuel spent by the searcher.

To formalize this problem, let S[x] ⊂ R denote the set
of points in R that the searcher can see from some position
x ∈ R. The so called cookie cutter detection corresponds to
the special case where S[x] consists of a circle with fixed
radius around x [9], but here we consider general detection
regions.

Problem 1: Continuous Constrained Honey-pot Search
(cCHS) Find a continuously differentiable path ρ : [0, T ] →
R, T > 0 with ‖ρ̇(t)‖ ≤ 1, ∀t ∈ [0, T ] starting at
ρ(0) = ρinit ∈ R, that maximizes the probability of finding
the honey-pot given by

R[ρ] :=

∫

Spath[ρ]

f(x)dx, (1)
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subject to a constraint of the form

C[ρ] :=

∫ T

0

c
(

ρ(t))dt ≤ L, (2)

where L denotes a positive constant and Spath[ρ] :=
{

x ∈
R : x ∈ S[ρ(t)] for some t ∈ [0, T ]

}

the set of all points
that the searcher can scan along the path ρ. �

In the definition (1) of the reward, we have an integral
over the area Spath[ρ] and not a line integral along the
path ρ. The distinction may seems subtle but it is quite
fundamental because if a searcher transverses the same
location multiple times, a line integral would increase with
each passage but the region Spath[ρ] that the searcher scans
does not. This formulation does not prevent the path from
returning to a point previously visited (which could be
necessary) but does not reward the searcher for scanning
the same location twice.

For bounded-time searches, c(x) = 1, ∀x ∈ R and L
is the maximum time allowed for the search. For bounded-
fuel searches, c(·) is the fuel-consumption rate and L is the
total fuel available. The consumption rate can be position
dependent when the terrain is not homogeneous. One can
also “encode” obstacles in c(·) by making this function take
large values in regions to be avoided.

The honey-pot search problem is inspired by the optimal
search theory initiated by the pioneering work of Koopman
[12] and later further developed by Stone [19] and others.
A summary of this work can be found in the surveys
[8, 20]. The development of search theory was motivated by
U.S. Navy operations during the Second World War, which
included the search for targets in transit, setting up sonar
screens, and protection against submarine attacks [13]. In
the context of Naval operations, search theory has been
used more recently in search and rescue operations by the
U.S. Coast Guard [8], as well as to detect lost objects such
as the H-bomb lost in the Mediterranean coast of Spain in
1966, the wreck of the submarine USS Scorpion in 1968, or
the unexploded ordnance in the Suez Canal following the
1973 Yom Kippur war. However, its application spans many
other areas such as the clearing of land mines, locating parts
in a warehouse, etc. The collection of papers [10] discusses
several applications of search theory ranging from medicine
to mining.

Until the 70s, most of the work in search theory decou-
pled the problems of finding the area that should be searched
from that of finding a specific path for the searcher “cover-
ing” that area. This is sensible when (i) the cost-bound in



(2) essentially poses a constraint on the total area that can be
scanned and (ii) the optimal area turns out to be sufficiently
regular so that one can find a continuous path ρ that sweeps
it without overlaps. However, these assumptions generally
only hold for time-constrained searches and Gaussian (or
at least unimodal) a-priori target distributions. Complex
distributions for f are likely to arise in many practical
problems as discussed in [8].

More recently several researchers considered the so called
constrained search problem, where it is explicitly taken into
account it must be possible to “cover” the area to be scanned
using one or more searchers moving along continuous
paths. Mangel [15] considered continuous search problems
where the goal is to determine an optimal path that either
maximizes the probability of finding the target in a finite
time interval or minimizes the infinite-horizon expected
time needed to find the target. In Mangel’s formulation this
is reduced to an optimal control problem on the searcher’s
velocity ρ̇, subject to a constraint in the form of a partial
differential equation. In practice, this problem can only be
solved for very simple a-priori target distributions.

An alternative approach that proved more fruitful con-
sisted of discretizing time and partitioning the continuous
space into a finite collection of cells. The search problem
is then reduced to deciding which cell to visit at each
time interval. Constraints on the searcher’s motion can be
expressed by only allowing it to move from one cell to
adjacent ones [19]. At least when the time horizon is finite
(and in some cases even when the time horizon is infinite
[14]), the resulting optimal discrete search problem can
be solved by finite enumeration of all possible solutions.
However, this method scales poorly (exponentially!) with
the number of cells. Eagle [6] noted that a discrete search
can be formulated as an optimization on a partially ob-
servable Markov decision process (POMDP) and proposed
a dynamic programing solutions to it. However, since the
optimization of POMDPs is computationally very difficult,
this approach is often not practical. Instead, Eagle and Yee
[7], Stewart [17, 18] formulated the discrete search as a non-
linear integer programming problem and proposed branch-
and-bound procedures to solve it, which in the case of [7]
are optimal. Hespanha et al. [11] proposed a (non-optimal)
but computationally efficient greedy strategy that leads to
capture with probability one, but no claims of optimality
are made. DasGupta et al. [5] proposed polynomial-time
solutions to the discrete search problem that are also not
guaranteed to find the optimal path but instead to find
a feasible path with reward no smaller than 1/5 of the
optimal (in the worst case). The references [6, 7, 11, 17, 18]
above considered the general case of a moving target, but
as noted by Trummel and Weisinger [21] even the case of
a stationary target is NP-Hard.

We pursue here an approximate solution to the cCHS
Problem 1 that is also based on a discretization of the
continuous problem. We start by aggregating the continuous

search space R into a finite collection of regions on which
we define a discrete search problem. From the solution
to this problem, we can then recover a solution of the
original problem through a refinement procedure that lifts
the discrete path into a continuous one. In general, the
solution obtained is not optimal for the original cCHS. A
fundamental distinction between the work reported here and
previous one on discrete search is that we provide bounds
on how much performance degradation is introduced by
the aggregation/refinement procedure. These bounds can in
principle be used to determine partitions of R that minimize
the performance degradation.

Our work is inspired by discrete abstraction of hybrid
system, where the behavior of a system with a state-
space that has both discrete and continuous components
is abstracted to a purely discrete system to reduce the
complexity (cf. survey [1]). In our problem, the original
system has no discrete components but we still reduced
it to a discrete system by an abstraction procedure. A
key difference between the results here and those summa-
rized in [1] is that in general our abstraction procedure
introduces some degradation in performance because the
discretized system does not capture all the details of the
original system. In particular, some information about the
distribution of the honey-pot may be lost in the abstraction.
However, by allowing some performance degradation we
can significantly enlarge the class of problems for which
the procedure is applicable.

The remaining of this paper is organized as follows. The
aggregation-based approach to solve the cCHS Problem 1
is outlined in Section II. This requires the definition of
a discrete Aggregate Reward Budget (dARB) problem in
Section II-A, which turns out to be NP-hard. In Section II-
B we show how the solution to a particular instance of
the dARB problem can be refined to provide a feasible
solution to the cCHS problem with some guaranteed reward.
In Section II-C we provide a different instance of the
dARB problem that provides an upper-bound on the best
achievable reward for the cCHS problem, which can be
used to estimate the cost penalty incurred by the aggregation
procedure. In Section III, we prove a few properties of the
optimal solution to the dARB problem that can significantly
decrease the search space and also reduce the conservative-
ness of our approach. Finally, Section IV contains a brief
conclusion and directions for future research.

II. AGGREGATION

We pursue an aggregation/refinement-based approach to
solve the cCHS Problem 1. The starting point is a partition
V of the region R, i.e., V is a collection of subsets of R
such that

⋃

v∈V v = V , and v ∩ v′ = ∅ for every v 6= v′ ∈
V . We use this partition to reduce the problem-space to a
discrete set as follows:

1) We define a discrete constrained-search problem that
seeks for a path consisting of a finite sequence of



regions in V , satisfying an appropriate cost-constraint
and maximizing an appropriately defined reward.

2) We refine the discrete path into a continuous one that
is guaranteed to satisfy (2) and have a probability of
finding the honey-pot at least as large as the reward
obtained for the discrete problem.

To obtain the desired properties for the refinement, the
selection of the cost and reward of the discrete problem
must take into account the criteria (1), the constraint (2), and
the refinement procedure. This is because the cost penalty
introduced by the aggregation approach depends not only
on the choice of the partition V but also on the cost and
reward used for the discrete optimization.

In this paper we take the partition V as given. However,
it will become clear that this partition should have a few
desirable properties so as to make minimize the cost penalty
introduced by the aggregation procedure.

A. Aggregate Reward Budget Problem

To define the discrete constrained-search problem we as-
sume given a path-refinement algorithm R that takes a finite
sequence (v1, v2, . . . , vN ) of regions in V (possibly with
the same region appearing multiple times) and produces a
continuously differentiable path ρ : [0, T ] → R, T > 0,
‖ρ̇(t)‖ ≤ 1, ∀t ∈ [0, T ]. The algorithm operates recursively
generating ρ as follows: It starts with the zero-length path

ρ0 : [0, 0] → R, ρ0(0) = ρinit,

and iteratively extends it according to

ρk = E(ρk−1, vk), ∀k ∈ {1, 2, . . . , N}, (3)

where the operator E “extends” the partial-path ρk−1 :
[0, Tk−1] → R to the next partial-path ρk : [0, Tk] → R,
with Tk ≥ Tk−1, ρk−1 equal to ρk on [0, Tk−1], and
ρk(Tk) ∈ vk. The refined path ρ is the final ρN .

To construct the cost/reward structure of the discrete
problem we place the following requirement on the path-
refinement algorithm.

Assumption 1 (Refinement Requirements): There are
functions cworst : V × V → [0,∞), rworst : V → [0,∞),
| · |worst : V → N such that, given a partial-path ρk−1 that
ends in a region vk−1 and a new region vk, the extended
partial-path ρk = E(ρk−1, vk) satisfies

R[ρk] ≥ R[ρk−1] + rworst(vk) (4)
C[ρk] ≤ C[ρk−1] + cworst(vk−1, vk). (5)

However, (4) only needs to hold for the first |vk|worst times
that the refinement algorithm is asked to extend the path to
the region vk . �

The requirement above can be informally expressed as:
(i) the first |v|worst times that a region v appears in the
discrete path, a reward of at least rworst(v) is collected
and (ii) each transition from region v to v′ results in an
added cost of at most cworst(v, v′). Note that in general

cworst(v, v) > 0. When these properties hold one can
estimate worst-case lower and upper bounds on the reward
and cost, respectively, that will be obtained for the refined
continuous path. Moreover, one can optimize the discrete
path to make these bounds as favorable as possible. This
motivates the following graph-optimization problem:

Problem 2: Discrete Aggregated Reward Budget (dARB)
Instance: Given 〈G, s, c, r, | · |, L〉, where G = (V, E)
denotes a graph with vertex set V and edge set E, s ∈ V
an initial vertex, c : E → [0,∞) an edge cost function,
r : V → [0,∞) a vertex reward function, | · | : V → N a
vertex cardinality function, and L a positive integer.

Valid Solution: A (possibly self-intersecting) path p =
(v0 = s, v2, . . . , vk) in G with vi ∈ V such that
∑k

i=1 c(vi−1, vi) ≤ L.

Objective: maximize the total reward
∑

v∈p

r(v) min{|v|, #(p, v)}, (6)

where #(p, v) denotes the number of times that the vertex
v appears in the path p. �

To make the aggregation/refinement procedure efficient,
one would like the bounds in (4)–(5) to be tight. The
construction of a “good” path refinement algorithms is
simple when the probability density f used to define the
reward and the function c used to define the cost are
essentially constant within each region. In this case, one
could simply break each region v into |v|worst disjoint
cells chosen so that the searcher could scan an whole cell
from a single point (perhaps its center). Each time the path
needs to be extended to v the continuous path would be
taken to a cell not yet visited and one would collect a
reward rworst(v) equal to the area of the cell times the
(constant) probability density over the region. This reward
would be collected until there are no more unvisited cells,
i.e., at most |v|worst times. The costs cworst(v, v′) could
be obtained from shortest-path optimizations between the
most unfavorable cells in the regions v and v′. The order in
which the cells in a particular region v are selected could
be chosen to approximately minimize cworst(v, v′). This is
straightforward when the regions in V have regular shapes
and one can “sweep” the region. We will return to this issue
later.

There are good reasons to want the number of regions
in V to be small. In general it is computationally difficult
to solve exactly the dARB Problem 2. However, it can be
solved efficiently when the number of regions is small or
when one is willing to simply find an approximate solution
to it. The following result is a consequence of results in
[5] and establishes the computational complexity of this
problem.

Lemma 1: The dARB Problem 2 is NP-hard, even when
r(v) = 1, ∀v ∈ V and c(e) = 1, ∀e ∈ E. �



B. Suboptimal solution—lower bound on the reward

Given a partition V of the region R and a path-refinement
algorithm R satisfying Assumption 1, we can construct
an instance 〈G, s, cworst, rworst, | · |worst, L〉 of the dARB
Problem 2 by defining G = (V, E) to be a fully connected
graph whose vertices are the regions in V, s the region that
contains ρinit, and taking from Assumption 1 the edge cost,
the vertex reward, and the vertex cardinality functions. The
dARB problem just defined is said to be worst-case induced
by the partition V and the path refinement algorithm R.
As hinted above, we can use a solution to a worst-case
induced dARB problem to generate a path that is feasible for
the original cCHS Problem 1 and exhibits some guaranteed
reward:

Theorem 1: Consider an instance 〈G, s, cworst, rworst, | ·
|worst, L〉 of the worst-case dARB problem induced by
a partition V and a path refinement algorithm R. Let
p = (v1 = s, v2, . . . , vk) be a feasible path for
〈G, s, cworst, rworst, | · |worst, L〉 and suppose one constructs
a continuous path ρ using the path refinement algorithm R.
The path ρ satisfies the constraint (2) and its reward R[ρ]
is at least as large as that of p. Thus, if p is optimal for the
dARB problem,

R∗[L] ≥ R[ρ] ≥ R∗
worst[L],

where R∗[L] and R∗
worst[L] denote the optimal rewards

for the cCHS and the worst-case induced dARB problems,
respectively. �

Proof: [Theorem 1] The feasibility of ρ steams directly
from the recursive construction in (3) together with the cost-
bound provided by (5), from which one concludes that the
cost of ρ does not exceed the cost of p, which is upper
bounded by L. As for the reward, take some v ∈ V and let
#(p, v) denote the number of times that v appears in the
path p. The first min{|v|, #(p, v)} times that the partial-
paths are extended to the region v, the reward will increase
by rworst(v). This will contribute to the total reward of ρ
by at least rworst(v) min{|v|, #(p, v)}. Adding over all v
in the path p, we conclude that the total reward of ρ must
be no smaller than the total reward of p given by (6).

C. Upper bound on the reward

We formulate next another dARB problem that can be
used to construct a bound to gauge how far from the
optimal a path generated using the worst-case induced
dARB problem is.

Given a partition V of the region R and a positive integer
k, we can construct an instance 〈G, s, cbest, rbest, |·|best, L〉
of the dARB problem by defining G = (V, E) to be a fully
connected graph whose vertices are the regions in V ; s to
be the region that contains ρinit; each edge cost cbest(v, v′),
v, v′ ∈ V to be a either a lower-bound on the cost incurred
in going from a point in v to a point in v′ or L/k, whichever
is greater; each vertex reward rbest(v), v ∈ V to be an
upper bound on the maximum reward for an instance of the

cCHS Problem 1 starting from any position in v with a cost
bounded by L/k; and each vertex cardinality |v|best to be
an upper-bound on

∫

S[v]
f(x)dx

rbest(v)
,

where S[v] denotes the set of all points that can be scanned
from the region v with a cost not exceeding L/k. The dARB
problem just defined is said to be best-case induced by the
partition V and the cost-bound L/k.

Computing tight bound for the functions that define best-
case induced dARB problems can be as hard as solving
the original cCHS problem. However, also here when the
probability density f used to define the reward and the
function c used to define the cost are essentially constant
within each region this task becomes much simpler because
optimal paths are straight lines.

We can use a solution to the best-case induced dARB
problem to generate an upper bound on the achievable
reward.

Theorem 2: Given an instance 〈G, s, cbest, rbest, | ·
|best, L〉 of the best-case dARB problem induced by a
partition V and the cost-bound L/k,

R∗
best[L] ≥ R∗[L], (7)

where R∗[L] and R∗
best[L] denote the optimal rewards

for the cCHS and the best-case induced dARB problems,
respectively. �

Proof: [Theorem 2] Let ρ : [0, T ] → R be a path for
the cCHS problem that satisfies the cost constraint (2) and
achieves a reward larger than or equal to R∗[L] − δ for
some small δ ≥ 0 1. One can then pick a sequence of reals
t0 := 0 < t1 < · · · < tk := T such that

∫ ti

ti−1

c
(

ρ(t)
)

dt =
L

k
, ∀i ∈ {1, 2, . . . , k}.

Suppose now that we define a path p = (v0 =
s, v2, . . . , vk), where each vi denotes the region on which
ρ(ti) lies. This sequence is admissible for the best-case
dARB problem because from the definition of cbest we
conclude that

k
∑

i=1

cbest(vi−1, vi) ≤
k

∑

i=1

max
{L

k
,

∫ ti

ti−1

c
(

ρ(t)
)

dt
}

= L.

As for the reward, let S̄ [v] denote the set

S̄ [v] :=
{

x ∈ R : x ∈ S[ρ(t)]

for some t ∈ [ti, ti+1), vi = v
}

.

Since S[ρ] = ∪v∈pS̄[v], we have that

R[ρ] =

∫

∪v∈pS̄[v]

f(x)dx ≤
∑

v∈p

∫

S̄[v]

f(x)dx. (8)

1The need for δ > 0 only arises when the optimal reward cannot be
achieved for any admissible path.



Let #(p, v) denote the number of times that v appears in
the path p. From the fact that the points ρ(ti) are separated
by path-segments with costs no larger than L/k and the
definition of rbest(v), we conclude that

∫

S̄[v]

f(x)dx ≤ rbest(v) #(p, v).

On the other hand, since S̄ [v] ⊂ S[v] we also obtain from
the definition of |v|best that

∫

S̄[v]

f(x)dx ≤

∫

S[v]

f(x)dx ≤ rbest(v) |v|best. (9)

From (8)–(9) we conclude that

R[ρ] ≤
∑

v∈p

rbest(v) min
{

|v|best, #(p, v)
}

.

Since left hand side of the above inequality is larger or
equal than R∗[L]− δ and the right-hand-side is the reward
of an admissible path for the best-case dARB problem, we
conclude that

R∗[L] − δ ≤ R[ρ]

≤
∑

v∈p

rbest(v) min
{

|v|best, #(p, v)
}

≤ R∗
best[L].

Inequality (7) follows since δ can be made arbitrarily close
to zero.

III. SOLUTION TO THE dARB PROBLEM

In Lemma 1 we saw that the dARB problem is com-
putationally difficult. In this section we prove a few prop-
erties of the optimal solution to the dARB problem that
can significantly decrease the search space. We consider
instances 〈G, s, c, r, | · |, L〉 of the dARB problems that are
subadditive, meaning that the graph G = (V, E) is fully
connected and

c(v1, v2) + c(v2, v3) ≥ c(v1, v3) + c(v4, v4),

∀v1, v2, v3, v4 ∈ V . When c(v, v) = 0, ∀v ∈ V , this
simply expresses a triangular inequality. In fact a similar as-
sumption is made in [14]. Typically, the worst-case induced
dARB problems introduced above are subadditive. In this
case, the search space for optimal paths can be significantly
reduced.

Theorem 3: The maximum achievable reward for a sub-
additive dARB problem does not increase if we restrict the
valid paths p := {v1, v2, . . . , vN} to satisfy:

(a) If vi = vj , i < j then vk = vi for every k ∈
{i, i + 1, . . . , j}.

(b) The number of times #(p, v) that a vertex v ∈ V
appears in p never exceeds |v|.

(c) If a vertex v ∈ V appears in p and

r(v) > min
vi∈p

r(vi),

then the number of times #(p, v) that v appears in
p is exactly |v|. �

Proof: [Theorem 3] For (a), consider a path p with
total cost C[p] for which vi = vj , i < j but vj−1 6= vi. If
we then construct a path

p′ := {v1, v2, . . . , vi−1, vi, vj = vi, vi+1, . . . ,

vj−1, vj+1, . . . , vN}

(vj , which is equal to vi, was moved to right after vi), p′ has
exactly the same reward as p and, because of subadditivity,
its cost C[p′] satisfies

C[p′] = C[p] −
(

c(vj−1, vj) + c(vj , vj+1)
)

+ c(vi, vi) + c(vj−1, vj+1) ≤ C[p].

Since p′ has the same reward as p and no worse cost, it
will not increase the maximum achievable reward for the
dARB problem. By induction, we conclude that any path for
which (a) does not hold will also not improve the maximum
achievable reward for the dARB problem.
For (b), consider a path p with total cost C[p] for which vi

already appeared in p at least |vi| times before i. If we then
construct a path

p′ := {v1, v2, . . . , vi−1, vi+1, . . . , vN}

(vi was removed), p′ has exactly the same reward as p and,
because of subadditivity, its cost C[p′] satisfies

C[p′] = C[p] −
(

c(vi−1, vi) + c(vi, vi+1)
)

+ c(vi−1, vi+1) ≤ C[p].

Since p′ has the same reward as p and no worse cost, it
will not increase the maximum achievable reward for the
dARB problem. By induction, we conclude that any path in
which v appears more than |v| times will also not improve
the maximum achievable reward for the dARB problem.
For (c), consider a path p with total reward R[p] and total
cost C[p] for which the vertex vi appears less than |vi| times
and there is a vertex vj such that r(vi) > r(vj ). If we then
construct a path

p′ := {v1, v2, . . . , vi−1, vi, vi, vi+1, . . . , vj−1, vj+1, . . . , vN}

(vj was replaced by an extra vi, right after the original one),
its reward R[p′] satisfies

R[p′] ≥ R[p] − r(vj) + r(vi) > R[p].

and, again because of subadditivity, its cost C[p′] satisfies

C[p′] = C[p] − (c(vj−1, vj) + c(vj , vj+1))

+ c(v, v) + c(vj−1, vj+1) ≤ C[p].

Since p′ has better reward and no worse cost than p, it
will not increase the maximum achievable reward for the
dARB problem. By induction, we conclude that any path for
which (c) does not hold will also not improve the maximum
achievable reward for the dARB problem.



Theorem 3 allows one to reduce significantly the com-
plexity of solving subadditive dARB problems. In fact, we
simply have to determine in which order one needs to visit
the different vertices (without repetitions). The problem
still seems to have a combinatorial flavor but now only an
enumeration of the ordering is needed, because the time
spent on each vertex is uniquely determined once an order
has been chosen.

Theorem 3 also simplifies considerably the construction
of a refinement algorithm R that satisfies Assumption 1,
with tight bounds (4)–(5). Because of this theorem, the path
extension E will only be called with sequences p for which
each v only appears multiple times back to back (typically
|v| times). Assuming that the regions in the partition V
have “regular” shapes, one should be able to get very tight
bounds at least in (5).

IV. CONCLUSIONS

We presented an aggregation-based approach to the cCHS
Problem 1. We start by aggregating the continuous search
space R into a finite collection of regions on which we
define a discrete search problem. A solution to the original
problem is obtained through a refinement procedure that
lifts the discrete path into a continuous one. The solution
obtained is in general not optimal but one can construct
bounds to gauge the cost penalty incurred.

We are currently working on algebraic algorithms that
produce partitions of the continuous search space for which
the procedure proposed in this paper results in a small
cost penalty. These algorithms are inspired by the results
in [16] on state aggregation in Markov chains. We are also
working on approaches to compute suboptimal solutions to
the dARB problem that are based on approximate solutions
to the k-MST problem found in [2, 3]. Preliminary results
are available in [5]. Another avenue for future research is
the search for a mobile honey-pot, or more generally, the
case where the probability distribution f is not constant.
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